Effect of Carboxylic Acids on Corrosion of Type 410 Stainless Steel in Pyrolysis Bio-Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Corrosion Exposure
2.2. ICP-MS Elemental Analysis
2.3. Capillary Electrophoresis (CE)
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Czernik, S.; Bridgwater, A.V. Overview of Applications of Biomass Fast Pyrolysis Oil. Energy Fuels 2004, 18, 590–598. [Google Scholar] [CrossRef]
- Huber, G.W.; Iborra, S.; Corma, A. Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering. Chem. Rev. 2006, 106, 4044–4098. [Google Scholar] [CrossRef] [PubMed]
- Downing, M.; Eaton, L.M.; Graham, R.L.; Langholtz, M.H.; Perlack, R.D.; Turhollow, J.A.F.; Stokes, B.; Brandt, C.C. U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry; U.S. Department of Energy: Washington, DC, USA, 2011.
- Zhang, X.-S.; Yang, G.-X.; Jiang, H.; Liu, W.-J.; Ding, H.-S. Mass production of chemicals from biomass-derived oil by directly atmospheric distillation coupled with co-pyrolysis. Sci. Rep. 2013, 3, 1120. [Google Scholar] [CrossRef]
- Zacher, A.H.; Olarte, M.V.; Santosa, D.M.; Elliott, D.C.; Jones, S.B. A review and perspective of recent bio-oil hydrotreating research. Green Chem. 2014, 16, 491–515. [Google Scholar] [CrossRef]
- Elkasabi, Y.; Mullen, C.A.; Boateng, A.A. Distillation and Isolation of Commodity Chemicals from Bio-Oil Made by Tail-Gas Reactive Pyrolysis. ACS Sustain. Chem. Eng. 2014, 2, 2042–2052. [Google Scholar] [CrossRef]
- Butler, E.; Devlin, G.; Meier, D.; McDonnell, K. A review of recent laboratory research and commercial developments in fast pyrolysis and upgrading. Renew. Sustain. Energy Rev. 2011, 15, 4171–4186. [Google Scholar] [CrossRef]
- Bridgwater, A.V. Upgrading biomass fast pyrolysis liquids. Environ. Prog. Sustain. Energy 2012, 31, 261–268. [Google Scholar] [CrossRef]
- Carpenter, D.; Westover, T.L.; Czernik, S.; Jablonski, W. Biomass feedstocks for renewable fuel production: A review of the impacts of feedstock and pretreatment on the yield and product distribution of fast pyrolysis bio-oils and vapors. Green Chem. 2014, 16, 384–406. [Google Scholar] [CrossRef]
- Christensen, E.D.; Chupka, G.M.; Luecke, J.; Smurthwaite, T.; Alleman, T.L.; Iisa, K.; Franz, J.A.; Elliott, D.C.; McCormick, R.L. Analysis of Oxygenated Compounds in Hydrotreated Biomass Fast Pyrolysis Oil Distillate Fractions. Energy Fuels 2011, 25, 5462–5471. [Google Scholar] [CrossRef]
- Lyu, G.; Wu, S.; Zhang, H. Estimation and Comparison of Bio-Oil Components from Different Pyrolysis Conditions. Front. Energy Res. 2015, 3, 28. [Google Scholar] [CrossRef] [Green Version]
- Czernik, S. Storage of biomass pyrolysis oils. In Proceedings of the Storage of Biomass Pyrolysis Oils—Proceedings of Biomass Pyrolysis Oil Properties and Combustion Meeting, Estes Park, CO, USA, 26–28 September 1994; NREL CP-4397215. pp. 26–28. [Google Scholar]
- Oasmaa, A.; Czernik, S. Fuel Oil Quality of Biomass Pyrolysis OilsState of the Art for the End Users. Energy Fuels 1999, 13, 914–921. [Google Scholar] [CrossRef]
- Ropital, F. Current and future corrosion challenges for a reliable and sustainable development of the chemical, refinery, and petrochemical industries. Mater. Corros. 2009, 60, 495–500. [Google Scholar] [CrossRef]
- Keiser, J.R.; Brady, M.P.; Lewis, S.S.A.; Connatser, R.M.; Leonard, D.N.; Whitmer, L. Impact of corrosion on selection of structural materials for thermochemical processing of biomass. In Proceedings of the TAPPI PEERS 2014, Tacoma, WA, USA, 15 September 2014. [Google Scholar]
- Keiser, J.R.; Brady, M.P.; Thomson, J.K.; Connatser, R.M.; Lewis, S.A., Sr.; Leonard, D.N. BBio-Oil Properties and Effects on Containment Materials. In Proceedings of the NACE CORROSION Conference, San Antonio, TX, USA, 9–13 March 2014. NACE-2014-4423. [Google Scholar]
- Jun, J.; Sulejmanovic, D.; Keiser, J.; Brady, M.; Kass, M. Evaluation of Corrosion Susceptibility of Structural Steels in Biomass Derived Pyrolysis Oil. In Proceedings of the NACE CORROSION Conference 2021, Virtual, 19 April 2021. Paper No. 16502. [Google Scholar]
- Keiser, J.; Brady, M.P.; Connatser, R.; Lewis, S. Degradation of structural alloys in biomass-derived pyrolysis oil. J. Sci. Technol. For. Prod. Processes 2013, 3, 16–22. [Google Scholar]
- Kass, M.D.; Janke, C.J.; Connatser, R.M.; Lewis, S.A.; Keiser, J.R.; Gaston, K. Compatibility Assessment of Fuel System Elastomers with Bio-oil and Diesel Fuel. Energy Fuels 2016, 30, 6486–6494. [Google Scholar] [CrossRef]
- Kass, M.D.; Janke, C.J.; Connatser, R.M.; Lewis, S.A.; Keiser, J.R.; Gaston, K. Compatibility Assessment of Fuel System Infrastructure Plastics with Bio-oil and Diesel Fuel. Energy Fuels 2018, 32, 542–553. [Google Scholar] [CrossRef]
- Jun, J.; Sulejmanovic, D.; Keiser, J.; Brady, M.; Kass, M. Corrosion Behavior of Alloy Structural Steels in Catechol and Biomass-Derived Pyrolysis Oils. In Proceedings of the NACE CORROSION Conference 2021, Virtual, 19 April 2021. Paper No. 16361. [Google Scholar]
- Jun, J.; Sulejmanovic, D.; Keiser, J.R.; Brady, M.P.; Kass, M.D. Electrochemical Corrosion Analysis of Stainless Steels in LALM Pyrolysis Bio-Oil with Organic Corrodents. In Proceedings of the AMPP CORROSION Conference 2022, San Antonio, TX, USA, 6–10 March 2022. Paper No.17759. [Google Scholar]
- Kass, M.D.; Janke, C.J.; Lobodin, V.V.; Bras, W.; Keiser, J.R.; Sulejmanovic, D.; Jun, J. Compatibility of Fuel System Elastomers and Plastics with a Fast-Pyrolysis Oil (Bio-oil) at Room Temperature. Energy Fuels 2022, 36, 9158–9170. [Google Scholar] [CrossRef]
- Antunes, R.A.; de Oliveira, M.C.L. Corrosion in biomass combustion: A materials selection analysis and its interaction with corrosion mechanisms and mitigation strategies. Corros. Sci. 2013, 76, 6–26. [Google Scholar] [CrossRef]
- Okoro, S.C.; Montgomery, M.; Frandsen, F.J.; Pantleon, K. High Temperature Corrosion under Laboratory Conditions Simulating Biomass-Firing: A Comprehensive Characterization of Corrosion Products. Energy Fuels 2014, 28, 6447–6458. [Google Scholar] [CrossRef]
- Keiser, J.R.; Howell, M.; Lewis Sr, S.; Connatser, R.M. Corrosion Studies Of Raw and Treated Biomass-Derived Pyrolysis Oils. In Proceedings of the NACE CORROSION Conference 2012, Salt Lake City, UT, USA, 11–15 March 2012. C2012-0001645. [Google Scholar]
- Sekine, I.; Ohkawa, H.; Handa, T. The corrosion behaviour and hydrogen evolution reaction of Fe in non-aqueous formic acid. Corros. Sci. 1982, 22, 1113–1123. [Google Scholar] [CrossRef]
- Singh, M.M.; Gupta, A. Corrosion behaviour of mild steel in formic acid solutions. Mater. Chem. Phys. 1996, 46, 15–22. [Google Scholar] [CrossRef]
- Klinger, J.; Carpenter, D.L.; Thompson, V.S.; Yancey, N.; Emerson, R.M.; Gaston, K.R.; Smith, K.; Thorson, M.; Wang, H.; Santosa, D.M.; et al. Pilot Plant Reliability Metrics for Grinding and Fast Pyrolysis of Woody Residues. ACS Sustain. Chem. Eng. 2020, 8, 2793–2805. [Google Scholar] [CrossRef]
- Jun, J.; Warrington, G.L.; Keiser, J.R.; Connatser, R.M.; Sulejmanovic, D.; Brady, M.P.; Kass, M.D. Corrosion of Ferrous Structural Alloys in Biomass Derived Fuels and Organic Acids. Energy Fuels 2021, 35, 12175–12186. [Google Scholar] [CrossRef]
- Lelek-Borkowska, U.; Palumbo, G.; Banaś, J. The Effect of the Methanol–Water Interaction on the Surface Layer on Titanium in CH3OH-H2O-LiClO4 Solutions. Electrochem 2020, 1, 87–103. [Google Scholar] [CrossRef]
- Connatser, R.M.; Frith, M.G.; Jun, J.; Lewis Sr, S.A.; Brady, M.P.; Keiser, J.R. Approaches to Investigate the Role of Chelation in the Corrosivity of Biomass-Derived Oils. Biomass Bioenergy 2020, 133, 105446. [Google Scholar] [CrossRef]
- Jun, J.; Frith, M.G.; Connatser, R.M.; Keiser, J.R.; Brady, M.P.; Lewis, S. Corrosion Susceptibility of Cr–Mo Steels and Ferritic Stainless Steels in Biomass-Derived Pyrolysis Oil Constituents. Energy Fuels 2020, 34, 6220–6228. [Google Scholar] [CrossRef]
- Jun, J.; Frith, M.G.; Connatser, R.M.; Keiser, J.R.; Brady, M.P.; Lewis, S., Sr. Corrosion of Ferrous Alloys by Organic Compounds in Simulated Bio-Oils. In Proceedings of the CORROSION 2019, Nashville, TN, USA, 24–28 March 2019. NACE-2019-12895, Paper No. 12895. [Google Scholar]
- Connatser, R.M.; Lewis, S.A.; Keiser, J.R.; Choi, J.-S. Measuring bio-oil upgrade intermediates and corrosive species with polarity-matched analytical approaches. Biomass Bioenergy 2014, 70, 557–563. [Google Scholar] [CrossRef]
- Jun, J.; Holguin, K.; Frankel, G.S. Pitting Corrosion of Very Clean Type 304 Stainless Steel. Corrosion 2013, 70, 146–155. [Google Scholar] [CrossRef]
- Sulejmanovic, D.; Jun, J.; Keiser, J.R.; Connatser, R.M.; Lewis, S.A.; Christensen, E.D.; Ferrell Iii, J.R. Corrosivity Screening of Pyrolysis Bio-Oils by Short-Term Alloy Exposures; Laboratory Analytical Procedure (LAP); NREL: Golden, CO, USA, 2022.
- Keiser, J.R.; Warrington, G.L.; Lewis, S.A., Sr.; Connatser, R.M.; Jun, J.; Qu, J.; Lee, K.; Brady, M.P. Corrosion and Chemical Characterization of Bio-Oils from Biomass with Varying Ash and Moisture Contents. In Proceedings of the NACE CORROSION Conference 2021, Virtual, 19 April 2021. Paper No. 16726. [Google Scholar]
- Kass, M.D.; Armstrong, B.L.; Kaul, B.C.; Connatser, R.M.; Lewis, S.; Keiser, J.R.; Jun, J.; Warrington, G.; Sulejmanovic, D. Stability, Combustion, and Compatibility of High-Viscosity Heavy Fuel Oil Blends with a Fast Pyrolysis Bio-Oil. Energy Fuels 2020, 34, 8403–8413. [Google Scholar] [CrossRef]
- Black, S.; Ferrell, J.R. Accelerated aging of fast pyrolysis bio-oil: A new method based on carbonyl titration. RSC Adv. 2020, 10, 10046–10054. [Google Scholar] [CrossRef]
- Loto, R.T. Study of the corrosion behaviour of S32101 duplex and 410 martensitic stainless steel for application in oil refinery distillation systems. J. Mater. Res. Technol. 2017, 6, 203–212. [Google Scholar] [CrossRef]
- Prifiharni, S.; Sugandi, M.T.; Pasaribu, R.R.; Sunardi, S.; Mabruri, E. Investigation of corrosion rate on the modified 410 martensitic stainless steel in tempered condition. IOP Conf. Ser. Mater. Sci. Eng. 2019, 541, 012001. [Google Scholar] [CrossRef]
Run # for FR3 Bio-Oil | ICP-MS, µg/g Oil | ICP Total (Cr + Mn + Fe) (mg) | Measured Mass Loss (mg) | Deviation (%) | ||
---|---|---|---|---|---|---|
Cr | Mn | Fe | ||||
1 | 91.2 (32.9) | 4.55 (1.4) | 795 (105) | 23.18 | 29.70 | 21.94 |
2 | 94.1 (33.9) | 4.62 (1.4) | 771 (101) | 22.24 | 27.92 | 20.35 |
3 | 92.7 (33.4) | 4.55 (1.4) | 849 (113) | 24.43 | 28.80 | 15.19 |
4 | 96.3 (34.7) | 4.88 (1.5) | 867 (116) | 24.54 | 29.08 | 15.62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sulejmanovic, D.; Keiser, J.R.; Su, Y.-F.; Kass, M.D.; Ferrell, J.R., III; Olarte, M.V.; Wade, J.E., IV; Jun, J. Effect of Carboxylic Acids on Corrosion of Type 410 Stainless Steel in Pyrolysis Bio-Oil. Sustainability 2022, 14, 11743. https://doi.org/10.3390/su141811743
Sulejmanovic D, Keiser JR, Su Y-F, Kass MD, Ferrell JR III, Olarte MV, Wade JE IV, Jun J. Effect of Carboxylic Acids on Corrosion of Type 410 Stainless Steel in Pyrolysis Bio-Oil. Sustainability. 2022; 14(18):11743. https://doi.org/10.3390/su141811743
Chicago/Turabian StyleSulejmanovic, Dino, James R. Keiser, Yi-Feng Su, Michael D. Kass, Jack R. Ferrell, III, Mariefel V. Olarte, John E. Wade, IV, and Jiheon Jun. 2022. "Effect of Carboxylic Acids on Corrosion of Type 410 Stainless Steel in Pyrolysis Bio-Oil" Sustainability 14, no. 18: 11743. https://doi.org/10.3390/su141811743
APA StyleSulejmanovic, D., Keiser, J. R., Su, Y.-F., Kass, M. D., Ferrell, J. R., III, Olarte, M. V., Wade, J. E., IV, & Jun, J. (2022). Effect of Carboxylic Acids on Corrosion of Type 410 Stainless Steel in Pyrolysis Bio-Oil. Sustainability, 14(18), 11743. https://doi.org/10.3390/su141811743