Effect of Rainfall on Soil Aggregate Breakdown and Transportation on Cultivated Land in the Black Soil Region of Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soils
2.2. Rainfall Simulation
2.2.1. Test Device
2.2.2. Experimental Design
2.3. Index Calculation Methods
2.4. Data Processing
3. Results
3.1. Fraction Size Distribution of Aggregates
Experimental Treatment | Total Mass Percentage of Aggregates Under Experimental Treatment (mg) | MWD (μm) | |||
---|---|---|---|---|---|
5–1 mm | 1–0.25 mm | 0.25–0.053 mm | <0.053 mm | ||
RI78b | 4.6 Aa | 25.9 Aa | 18.0 Aa | 51.5 Aa | 258 Aa |
RI78a | 1.1 Ba | 35.2 Ba | 22.2 Aa | 41.5 Ba | 127 Ba |
RI127b | 2.3 Ab | 23.4 Aa | 16.4 Aa | 57.9 Aa | 198 Aa |
RI127a | 0.5 Ba | 26.9 Ab | 19.5 Ba | 53.0 Ba | 93 Ba |
3.2. Aggregate Enrichment Rate (ER)
3.3. Transported Characteristics of Aggregates
Experimental Treatment | Total Mass of Aggregates Transported before Runoff Generation (mg·cm−1) | Occurrence Time of Runoff Generation (min) | Mass of Aggregates Transported after Runoff Generation for Each Time | Total Mass of Aggregates Transported after Runoff Generation (mg·cm−1) | Total Mass of Aggregates Transported before and after Runoff Generation (mg·cm−1) | |||||
---|---|---|---|---|---|---|---|---|---|---|
5 min | 10 min | 15 min | 20 min | 25 min | 30 min | |||||
RI78 | 54.9 ± 7.0 | 17 | 20.7 ± 1.4 a | 13.3 ± 1.6 b | 10.4 ± 1.7 c | 9.9 ± 1.9 c | 8.2 ± 0.6 c | 9.7 ± 1.0 c | 72.3 ± 2.0 A | 127.2 ± 11.7 A |
RI127 | 52.7 ± 7.4 | 7 | 17.5 ± 1.5 a | 12.4 ± 1.5 b | 9.8 ± 0.3 c | 7.8 ± 0.8 cd | 6.8 ± 0.8 d | 8.2 ± 0.3 d | 62.5 ± 3.7 B | 115.2 ± 8.9 A |
Transport Distance (cm) | Fraction Size (mm) | Mass Percentage of Aggregates Under Experimental Treatment (%) | |||
---|---|---|---|---|---|
RI78b | RI78a | RI127b | RI127a | ||
0–10 | 5–1 | 6.4 Aa | 1.8Ba | 2.4 Ab | 0.5 Ab |
1–0.25 | 22.4 Aa | 23.5 Aa | 20.6 Aa | 17.6 Aa | |
0.25–0.053 | 16.5 Aa | 20.3 Aa | 14.0 Aa | 14.2 Aa | |
<0.053 | 54.8 Aa | 54.3 Aa | 62.9 Aa | 67.7 Aa | |
10–20 | 5–1 | 3.1 Aa | 0.9 Aa | 1.7 Aa | 0.3 Aa |
1–0.25 | 21.2 Aa | 33.7 Ba | 22.1 Aa | 26.7 Ab | |
0.25–0.053 | 18.9 Aa | 21.6 Aa | 19.2 Aa | 19.9 Aa | |
<0.053 | 56.8 Aa | 43.9 Ba | 57.1 Aa | 53.1 Aa | |
20–30 | 5–1 | 3.6 Aa | 0.3 Aa | 1.3 Aa | 0.1 Aa |
1–0.25 | 28.7 Aa | 40.6 Aa | 24.7 Aa | 33.9 Ba | |
0.25–0.053 | 21.1 Aa | 24.7 Aa | 20.0 Aa | 21.4 Aa | |
<0.053 | 46.6 Aa | 34.4 Aa | 54.0 Aa | 44.6 Ba | |
30–40 | 5–1 | 2.5 Aa | 0.3 Aa | 3.1 Aa | 0.6 Aa |
1–0.25 | 37.0 Aa | 43.8 Aa | 35.5 Aa | 34.9 Aa | |
0.25–0.053 | 20.5 Aa | 25.7 Aa | 17.8 Aa | 24.4 Aa | |
<0.053 | 40.0 Aa | 30.2 Aa | 43.6 Aa | 34.0 Aa | |
40–50 | 5–1 | 0.0 Aa | 1.2 Aa | 3.1 Aa | 1.3 Aa |
1–0.25 | 50.5 Aa | 47.1 Aa | 40.8 Aa | 37.6 Aa | |
0.25–0.053 | 18.9 Aa | 19.8 Aa | 24.9 Aa | 27.5 Ab | |
<0.053 | 30.6 Aa | 31.9 Aa | 31.2 Aa | 33.6 Aa |
4. Discussion
4.1. The Impact of Rainfall on the Fraction Size Distribution of Aggregates
4.2. Change in the Mass of Aggregates Transported
4.3. The Variation in the Characteristics of Aggregates with Different Fraction Sizes with the Transport Distance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, M.; Fu, Y.; Li, G.; Ren, Y.; Li, Z.; Ma, G. Microcharacteristics of soil pores after raindrop action. Soil Sci. Soc. Am. J. 2020, 84, 1693–1704. [Google Scholar] [CrossRef]
- Peng, J.; Wu, X.L.; Ni, S.M.; Wang, J.G.; Song, Y.T.; Cai, C.F. Investigating intra-aggregates microstructure characteristics and influencing factors of six soil types along a climatic gradient. Catena 2022, 210, 105867. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, D.; Proshad, R.; Chen, Y.-L.; Huang, T.-F.; Ugurlu, A. Effects of soil conservation practices on soil erosion and the size selectivity of eroded sediment on cultivated slopes. J. Mt. Sci. 2021, 18, 1222–1234. [Google Scholar] [CrossRef]
- Shen, H.-O.; Wen, L.-L.; He, Y.-F.; Hu, W.; Li, H.-L.; Che, X.-C.; Li, X. Rainfall and inflow effects on soil erosion for hillslopes dominated by sheet erosion or rill erosion in the Chinese Mollisol region. J. Mt. Sci. 2018, 15, 2182–2191. [Google Scholar] [CrossRef]
- An, J.; Wu, Y.Z.; Wu, X.Y.; Wang, L.Z.; Xiao, P.Q. Soil aggregates loss affected by raindrop impact and runoff under surface hydrologic conditions within contour ridge systems. Soil Tillage Res. 2021, 209, 104937. [Google Scholar] [CrossRef]
- Vaezi, A.R.; Eslami, S.F.; Keesstra, S. Interrill erodibility in relation to aggregate size class in a semi-arid soil under simulated rainfalls. Catena 2018, 167, 385–398. [Google Scholar] [CrossRef]
- Sophie, L.; Olivier, P.; Cédric, L.; Yves, L.B. Splash Projection Distance for Aggregatesd Soils. Soil Sci. Soc. Am. J. 2005, 69, 30–37. [Google Scholar]
- Fu, Y.; Li, G.L.; Zheng, T.h.; Zhao, Y.S.; Yang, M.X. Fragmentation of soil aggregates induced by secondary raindrop splash erosion. Catena 2020, 185, 104342. [Google Scholar] [CrossRef]
- Zambon, N.; Johannsen, L.L.; Strauss, P.; Dostal, T.; Zumr, D.; Neumann, M.; Cochrane, T.A.; Klik, A. Rainfall parameters affecting splash erosion under natural conditions. Appl. Sci. 2020, 10, 4103. [Google Scholar] [CrossRef]
- Li, H.R.; Liu, G.; Gu, J.; Chen, H.; Shi, H.Q.; Abd Elbasit Mohamed, A.M.; Hu, F.N. Response of soil aggregates disintegration to the different content of organic carbon and its fraction during splash erosion. Hydrol. Process. 2021, 35, 14060. [Google Scholar] [CrossRef]
- Liu, T.; Luo, J.; Zhang, Z.C.; Li, T.X.; He, S.Q. Effects of rainfall intensity on splash erosion and its spatial distribution under maize canopy. Nat. Hazards Rev. 2016, 84, 233–247. [Google Scholar] [CrossRef]
- Ma, R.M.; Li, Z.X.; Cai, C.F.; Wang, J.G. The dynamic response of splash erosion to aggregates mechanical breakdown through rainfall simulation events in Ultisols (subtropical China). Catena 2014, 121, 279–287. [Google Scholar] [CrossRef]
- Legout, C.; Leguédois, S.; Bissonnais, Y.L.; Issa, M. Splash distance and size distributions for various soils. Geoderma 2005, 124, 279–292. [Google Scholar] [CrossRef]
- Farres, P.J. The dynamics of rainsplash erosion and the role of soil aggregates stability. Catena 1987, 14, 119–130. [Google Scholar] [CrossRef]
- Bernard, B.; Eric, R. Aggregates stability as an indicator of soil susceptibility to runoff and erosion: Validation at several levels. Catena 2002, 47, 133–149. [Google Scholar]
- Zeng, Q.C.; Frédéric, D.; Man, C.; Zhu, Z.L.; An, S.S. Soil aggregates stability under different rain conditions for three vegetation types on the Loess Plateau (China). Catena 2018, 167, 276–283. [Google Scholar] [CrossRef]
- Ramos, M.C.; Nacci, S.; Pla, I. Effect of raindrop impact and its relationship with aggregates stability to different disaggregation forces. Catena 2003, 53, 365–376. [Google Scholar] [CrossRef]
- Shi, P.; Oost, K.V.; Schulin, R. Dynamics of soil fragment size distribution under successive rainfalls and its implication to size-selective sediment transport and deposition. Geoderma 2017, 308, 104–111. [Google Scholar] [CrossRef]
- Zhang, Q.W.; Wang, Z.L.; Guo, Q.; Tian, N.L.; Shen, N.; Wu, B.; Liu, J. Plot-based experimental study of raindrop detachment, interrill wash and erosion-limiting degree on a clayey loessal soil. J. Hydrol. 2019, 575, 1280–1287. [Google Scholar] [CrossRef]
- Mahmoodabadi, M.; Sajjadi, S.A. Effects of rain intensity, slope gradient and particle size distribution on the relative contributions of splash and wash loads to rain-induced erosion. Geomorphology 2016, 253, 159–167. [Google Scholar] [CrossRef]
- Van, D.A.; Bruijnzeel, L.A.; Eisma, E.H. A methodology to study rain splash and wash processes under natural rainfall. Hydrol. Process. 2003, 17, 1154. [Google Scholar]
- Ghahramani, A.; Ishikawa, Y.; Gomi, T.; Shiraki, K.; Miyata, S. Effect of ground cover on splash and sheetwash erosion over a steep forested hillslope: A plot-scale study. Catena 2011, 85, 34–47. [Google Scholar] [CrossRef]
- Hu, W.; Zheng, F.L.; Bian, F. Effects of raindrop kinetic energy on splash erosion in typical black soil region of Northeast China. Acta Ecol. Sin. 2016, 36, 4708–4717. [Google Scholar]
- Fang, H.Y. Impacts of rainfall and soil conservation measures on soil, SOC, and TN losses on slopes in the mollisol region, northeastern China. Ecol. Indic. 2021, 129, 108016. [Google Scholar] [CrossRef]
- Wang, H.; Yang, S.L.; Wang, Y.D.; Gu, Z.Y.; Xiong, S.F.; Huang, X.F.; Sun, M.M.; Zhang, S.H.; Guo, L.C.; Cui, J.Y.; et al. Rates and causes of black soil erosion in Northeast China. Catena 2022, 214, 106250. [Google Scholar] [CrossRef]
- Li, J.W.; Zhong, S.Q.; Han, Z.; Gao, P.F.; Wei, C.F. The relative contributions of soil hydrophilicity and raindrop impact to soil aggregate breakdown for a series of textured soils. Int. Soil Water Conserv. Res. 2022, 10, 433–444. [Google Scholar] [CrossRef]
- Liu, B.Y.; Xie, Y.; Li, Z.G.; Liang, Y.; Zhang, W.B.; Fu, S.H.; Yin, S.Q.; Wei, X.; Zhang, K.L.; Wang, Z.Q.; et al. The assessment of soil loss by water erosion in China. Int. Soil Water Conserv. Res. 2020, 8, 430–439. [Google Scholar] [CrossRef]
- Bu, C.F.; Wu, S.F.; Yang, K.B. Effects of physical soil crusts on infiltration and splash erosion in three typical Chinese soils. Int. J. Sediment Res. 2014, 29, 491–500. [Google Scholar] [CrossRef]
- Ellison, W.D. Studies of raindrop erosion. J. Agric. Eng. 1944, 25, 131–136, 181–182. [Google Scholar]
- Jiang, Y.L.; Zheng, F.L.; Wen, L.L.; Shen, H.O.; Yi, Y. An experimental study on the impacts of rainfall and inflow on hillslope soil erosion in typical black soil regions. Sheng Tai Xue Bao 2017, 37, 8207–8215. [Google Scholar]
- Grag, L.I.; Abrahams, A.D.; Atkinson, J.F. Correction factors in the determination of mean velocity of overland flow. Earth Surf. Process. Landf. 1996, 21, 509–515. [Google Scholar]
- Shen, E.S.; Liu, G.; Jia, Y.F.; Dan, C.X.; Abd Elbasit Mohamed, A.M.; Liu, C.; Gu, J.; Shi, H.Q. Effects of raindrop impact on the resistance characteristics of sheet flow. J. Hydrol. 2021, 592, 125767. [Google Scholar] [CrossRef]
- Le Bissonnais, Y. Aggregates stability and assessment of soil crustability and erodibility: I. Theory and methodology. Eur. J. Soil Sci. 1996, 47, 425–437. [Google Scholar] [CrossRef]
- Huang, B.; Yuan, Z.J.; Li, D.Q.; Nie, X.D.; Xie, Z.Y.; Chen, J.Y.; Liang, C.; Liao, Y.S.; Liu, T. Loss characteristics of Cd in soil aggregates under simulated rainfall conditions. Sci. Total Environ. 2019, 650, 313–320. [Google Scholar] [CrossRef]
- Zhang, Q.W.; Wang, Z.L.; Guo, Q.; Shen, N.; Ke, Z.M.; Tian, N.L.; Wu, B.; Liu, J.E. Size-selective characteristics of splash-detached sediments and their responses to related parameters on steep slopes in Chinese loessial region. Soil Tillage Res. 2020, 198, 104539. [Google Scholar] [CrossRef]
- Kinnell, P.I.A. Raindrop-impact-induced erosion processes and prediction: A review. Hydrol. Process. 2005, 19, 2815–2844. [Google Scholar] [CrossRef]
- Hairsine, P.B.; Rose, C.W. Rainfall detachment and deposition: Sediment transported in the absence of Flow-driven processes. Soil Sci. Soc. Am. J. 1991, 55, 320–324. [Google Scholar] [CrossRef]
- Walker, P.; Kinnell, P.; Green, P. Transported of a noncohesive sandy mixture in rainfall and runoff experiments. Soil Sci. Soc. Am. J. 1978, 42, 793–801. [Google Scholar] [CrossRef]
- Guy, B.T.; Dickinson, W.T.; Rudra, R.P. The roles of rainfall and runoff in the sediment transported capacity of interrill flow. Trans. ASABE 1987, 30, 1378–1386. [Google Scholar] [CrossRef]
- Yao, J.J.; Cheng, J.H.; Zhou, Z.D.; Sun, L.; Zhang, H.J. Effects of herbaceous vegetation coverage and rainfall intensity on splash characteristics in northern China. Catena 2018, 167, 411–421. [Google Scholar] [CrossRef]
- Ma, R.T.; Hu, F.N.; Xu, C.Y.; Liu, J.F.; Zhao, S.W. Response of soil aggregate stability and splash erosion to different breakdown mechanisms along natural vegetation restoration. Catena 2022, 208, 105775. [Google Scholar] [CrossRef]
- Ben-Hur, M.; Shainberg, I.; Letey, J. Polymer Effects on Erosion under Laboratory Rainfall Simulator Conditions. Soil Sci. Soc. Am. J. 1990, 54, 1092–1095. [Google Scholar] [CrossRef]
- Wan, Y.; El-Swaify, S.A.; Sutherland, R.A. Partitioning interrill splash and wash dynamics: A novel laboratory approach. Soil Technol. 1996, 9, 55–69. [Google Scholar] [CrossRef]
Experimental Treatment | Raindrop Diameter (mm) | Average Velocity (cm·s−1) | Average Runoff Depth (mm) |
---|---|---|---|
RI78b | 3.46 | ||
RI78a | 3.46 | 0.88 | 0.73 |
RI127b | 3.66 | ||
RI127a | 3.66 | 1.27 | 0.82 |
Experimental Treatment | The Transport Rate of Aggregates before Runoff Generation (mg·cm−1·min−1) | The Transport Rate of Aggregates after Runoff Generation (mg·cm−1·min−1) | The Total Transport Rate of Aggregates under Rainfall (mg·cm−1·min−1) |
---|---|---|---|
RI78 | 3.23 | 5.56 | 2.71 |
RI127 | 7.53 | 2.71 | 3.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Wang, H.; Chen, X.; Fu, Y. Effect of Rainfall on Soil Aggregate Breakdown and Transportation on Cultivated Land in the Black Soil Region of Northeast China. Sustainability 2022, 14, 11028. https://doi.org/10.3390/su141711028
Zhao Y, Wang H, Chen X, Fu Y. Effect of Rainfall on Soil Aggregate Breakdown and Transportation on Cultivated Land in the Black Soil Region of Northeast China. Sustainability. 2022; 14(17):11028. https://doi.org/10.3390/su141711028
Chicago/Turabian StyleZhao, Yikai, Han Wang, Xiangwei Chen, and Yu Fu. 2022. "Effect of Rainfall on Soil Aggregate Breakdown and Transportation on Cultivated Land in the Black Soil Region of Northeast China" Sustainability 14, no. 17: 11028. https://doi.org/10.3390/su141711028