Study on the Carbon Emission Spillover Effects of Transportation under Technological Advancements
Abstract
:1. Introduction
2. Literature Review
2.1. Transportation Carbon Emission Influencing Factors
2.2. The Direct and Indirect Nature of Cross-Regional Spillover Effects
2.3. Spatial Overflow Model
3. Research Methods and Data Sources
3.1. Calculation of Transportation Carbon Emissions
3.2. Measurement of Traffic Technology Progress
3.3. Spatial Correlation Test
3.4. Transportation Technology Spillover Channels
3.4.1. Geographical Distance
3.4.2. Economic Distance
3.5. Spatial Durbin Model
4. Empirical Analysis
4.1. Provincial Distribution Characteristics of the Total and Intensity of the Transportation Carbon Emissions
4.2. Testing the Spatial Effects of Transportation Carbon Emissions
4.3. Analysis of the Cross-Regional Effects of Transportation Technology Progress
5. Conclusions and Recommendations
5.1. Conclusions
5.2. Suggestions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oreggioni, G.D.; Ferraio, F.M.; Crippa, M.; Muntean, M.; Schaaf, E.; Guizzardi, D.; Solazzo, E.; Duerr, M.; Perry, M.; Vignati, E. Climate change in a changing world: Socio-economic and technological transitions, regulatory frameworks and trends on global greenhouse gas emissions from EDGAR v.5.0. Glob. Environ. Change 2021, 70, 102350. [Google Scholar] [CrossRef]
- Cai, L.; Duan, J.; Lu, X.; Luo, J.; Yi, B.; Wang, Y.; Jin, D.; Lu, Y.; Qiu, L.; Chen, S.; et al. Pathways for electric power industry to achieve carbon emissions peak and carbon neutrality based on LEAP model: A case study of state-owned power generation enterprise in China. Comput. Ind. Eng. 2022, 170, 108334. [Google Scholar] [CrossRef]
- Li, W.; Zhang, S.; Lu, C. Research on the driving factors and carbon emission reduction pathways of China’s iron and steel industry under the vision of carbon neutrality. J. Clean. Prod. 2022, 357, 131990. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, X.; Zhang, M.; Feng, Y.; Liu, Y.; Wen, J.; Liu, L. Influencing factors of carbon emissions in transportation industry based on CD function and LMDI decomposition model: China as an example. Environ. Impact Assess. Rev. 2021, 90, 106623. [Google Scholar] [CrossRef]
- Albuquerque, F.D.; Maraqa, M.A.; Chowdhury, R.; Mauga, T.; Alzard, M. Greenhouse gas emissions associated with road transport projects: Current status, benchmarking, and assessment tools. Transp. Res. Procedia 2020, 48, 2018–2030. [Google Scholar] [CrossRef]
- Li, R.; Li, L.; Wang, Q. The impact of energy efficiency on carbon emissions: Evidence from the trans-portation sector in Chinese 30 provinces. Sustain. Cities Soc. 2022, 82, 103880. [Google Scholar] [CrossRef]
- Yao, X.; Fan, Y.; Zhao, F.; Ma, S.C. Economic and climate benefits of vehicle-to-grid for low-carbon transi-tions of power systems: A case study of China’s 2030 renewable energy target. J. Clean. Prod. 2022, 330, 129833. [Google Scholar] [CrossRef]
- Wei, F.; Zhang, X.; Chu, J.; Yang, F.; Yuan, Z. Energy and environmental efficiency of China’s transportation sectors considering CO2 emission uncertainty. Transp. Res. Part D Transp. Environ. 2021, 97, 102955. [Google Scholar] [CrossRef]
- Davis, S.J.; Lewis, N.S.; Shaner, M.; Aggarwal, S.; Arent, D.; Azevedo, I.L.; Benson, S.M.; Bradley, T.; Brouwer, J.; Chiang, Y.M.; et al. Net-zero emissions energy systems. Science 2018, 360, eaas9793. [Google Scholar] [CrossRef]
- Yi, H.; Zhao, L.; Qian, Y.; Zhou, L.; Yang, P. How to achieve synergy between carbon dioxide mitigation and air pollution control? Evid. China Sustain. Cities Soc. 2022, 78, 103609. [Google Scholar] [CrossRef]
- Guo, J.X. Cleaner technology choice in the synergistic control process for greenhouse gases and air pollutions. J. Clean. Prod. 2019, 238, 117885. [Google Scholar] [CrossRef]
- Fan, F.; Lei, Y. Responsive relationship between energy-related carbon dioxide emissions from the transportation sector and economic growth in Beijing—Based on decoupling theory. Int. J. Sustain. Transp. 2017, 11, 764–775. [Google Scholar] [CrossRef]
- Arvin, M.B.; Pradhan, R.P.; Norman, N.R. Transportation intensity, urbanization, economic growth, and CO2 emissions in the G-20 countries. Util. Policy 2015, 35, 50–66. [Google Scholar] [CrossRef]
- Liu, X.; Bao, Y.; Zhang, Y.; Li, J. Decoupling analysis on China’s civil aviation carbon emissions from transportation revenue: A three-dimension decomposition framework. Sustain. Prod. Consum. 2022, 32, 718–730. [Google Scholar] [CrossRef]
- Sufyanullah, K.; Ahmad, K.A.; Ali, M.A.S. Does emission of carbon dioxide is impacted by urbanization? An empirical study of urbanization, energy consumption, economic growth and carbon emissions-Using ARDL bound testing approach. Energy Policy 2022, 164, 112908. [Google Scholar] [CrossRef]
- Adams, S.; Boateng, E.; Acheampong, A.O. Transport energy consumption and environmental quality: Does urbanization matter? Sci. Total Environ. 2020, 744, 140617. [Google Scholar] [CrossRef] [PubMed]
- Lv, Q.; Liu, H.; Yang, D.; Liu, H. Effects of urbanization on freight transport carbon emissions in China: Common characteristics and regional disparity. J. Clean. Prod. 2018, 211, 481–489. [Google Scholar] [CrossRef]
- Yu, Y.; Li, S.; Sun, H.; Taghizadeh-Hesary, F. Energy carbon emission reduction of China’s transportation sector: An input–output approach. Econ. Anal. Policy 2021, 69, 378–393. [Google Scholar] [CrossRef]
- Liu, J.; Li, S.; Ji, Q. Regional differences and driving factors analysis of carbon emission intensity from transport sector in China. Energy 2021, 224, 120178. [Google Scholar] [CrossRef]
- Chen, W.; Lei, Y. Path analysis of factors in energy-related CO2 emissions from Beijing’s transportation sector. Transp. Res. Part D Transp. Environ. 2017, 50, 473–487. [Google Scholar] [CrossRef]
- Wang, Y.; Xing, Z.; Zhang, H.; Wang, Y.; Du, K. On-road mileage-based emission factors of gaseous pollutants from bi-fuel taxi fleets in China: The influence of fuel type, vehicle speed, and accumulated mileage. Sci. Total Environ. 2022, 819, 151999. [Google Scholar] [CrossRef] [PubMed]
- Turgut, E.T.; Usanmaz, O.; Cavcar, M. The effect of flight distance on fuel mileage and CO2 per passenger kilometer. Int. J. Sustain. Transp. 2018, 13, 224–234. [Google Scholar] [CrossRef]
- Yang, X.; Jia, Z.; Yang, Z.; Yuan, X. The effects of technological factors on carbon emissions from various sectors in China—A spatial perspective. J. Clean. Prod. 2021, 301, 126949. [Google Scholar] [CrossRef]
- Yang, X.; Jia, Z.; Yang, Z. How does technological progress impact transportation green total factor productivity: A spatial econometric perspective. Energy Rep. 2021, 7, 3935–3950. [Google Scholar] [CrossRef]
- Xie, Z.; Wu, R.; Wang, S. How technological progress affects the carbon emission efficiency? Evidence from national panel quantile regression. J. Clean. Prod. 2021, 307, 127133. [Google Scholar] [CrossRef]
- Zhao, M.; Sun, T. Dynamic spatial spillover effect of new energy vehicle industry policies on carbon emission of transportation sector in China. Energy Policy 2022, 165, 112991. [Google Scholar] [CrossRef]
- Nan, S.; Huo, Y.; You, W.; Guo, Y. Globalization spatial spillover effects and carbon emissions: What is the role of economic complexity? Energy Econ. 2022, 112, 106184. [Google Scholar] [CrossRef]
- Jost, F.; Dale, A.; Newell, R.; Robinson, J. Climate action assessment in three small municipalities in British Columbia: Advancements vis-à-vis major neighboring cities. Curr. Res. Environ. Sustain. 2020, 2, 100010. [Google Scholar] [CrossRef]
- Cheng, S.; Fan, W.; Zhang, J.; Wang, N.; Meng, F.; Liu, G. Multi-sectoral determinants of carbon emission inequality in Chinese clustering cities. Energy 2020, 214, 118944. [Google Scholar] [CrossRef]
- Yu, Q.; Li, M.; Li, Q.; Wang, Y.; Chen, W. Economic agglomeration and emissions reduction: Does high agglomeration in China’s urban clusters lead to higher carbon intensity? Urban Clim. 2022, 43, 101174. [Google Scholar] [CrossRef]
- Wang, S.; Ren, H.; Liang, L.; Li, J.; Wang, Z. The effect of economic development on carbon intensity of human well-being: Evidence from spatial econometric analyses. J. Clean. Prod. 2022, 364, 132632. [Google Scholar] [CrossRef]
- Xu, J.; Wang, J.; Yang, X.; Xiong, C. Peer effects in local government decision-making: Evidence from urban environmental regulation. Sustain. Cities Soc. 2022, 85, 104066. [Google Scholar] [CrossRef]
- Li, Z.; Wang, J. Spatial emission reduction effects of China’s carbon emissions trading: Quasi-natural experiments and policy spillovers. Chin. J. Popul. Resour. Environ. 2021, 19, 246–255. [Google Scholar] [CrossRef]
- Liu, S.; He, N.; Shi, Y.; Li, G. The roles logistics agglomeration and technological progress play in air pollution—New evidence in sub-regions of Chongqing, China. J. Clean. Prod. 2021, 317, 128414. [Google Scholar] [CrossRef]
- Apa, R.; De Noni, I.; Orsi, L.; Sedita, S.R. Knowledge space oddity: How to increase the intensity and relevance of the technological progress of European regions. Res. Policy 2018, 47, 1700–1712. [Google Scholar] [CrossRef]
- Xu, Y.; Heikkila, E.J. How can cities learn from each other? Evidence from China’s five-year plans. J. Urban Manag. 2020, 9, 216–227. [Google Scholar] [CrossRef]
- Wang, Z.; Qiu, S. Can “energy saving and emission reduction” demonstration city selection actually contribute to pollution abatement in China? Sustain. Prod. Consum. 2021, 27, 1882–1902. [Google Scholar] [CrossRef]
- Mouratidis, K.; Peters, S.; van Wee, B. Transportation technologies, sharing economy, and teleactivities: Implications for built environment and travel. Transp. Res. Part D Transp. Environ. 2021, 92, 102716. [Google Scholar] [CrossRef]
- Guo, Y.; Lu, Q.; Wang, S.; Wang, Q. Analysis of air quality spatial spillover effect caused by transportation infrastructure. Transp. Res. Part D Transp. Environ. 2022, 108, 103325. [Google Scholar] [CrossRef]
- Marinos, T.; Belegri-Roboli, A.; Michaelides, P.G.; Konstantakis, K. The spatial spillover effect of transport infrastructures in the Greek economy (2000–2013): A panel data analysis. Res. Transp. Econ. 2022, 94, 101179. [Google Scholar] [CrossRef]
- Wang, J.; Dong, K.; Dong, X.; Jiang, Q. Research on the carbon emission effect of the seven regions along the Belt and Road—Based on the spillover and feedback effects model. J. Clean. Prod. 2021, 319, 128758. [Google Scholar] [CrossRef]
- Lv, T.; Zeng, C.; Stringer, L.C.; Yang, J.; Wang, P. The spatial spillover effect of transportation networks on ecological footprint. Ecol. Indic. 2021, 132, 108309. [Google Scholar] [CrossRef]
- Zhao, P.; Zeng, L.; Li, P.; Lu, H.; Hu, H.; Li, C.; Zheng, M.; Li, H.; Yu, Z.; Yuan, D.; et al. China’s transportation sector carbon dioxide emissions efficiency and its influencing factors based on the EBM DEA model with undesirable outputs and spatial Durbin model. Energy 2022, 238, 121934. [Google Scholar] [CrossRef]
- Zhang, Y. Interregional carbon emission spillover–feedback effects in China. Energy Policy 2017, 100, 138–148. [Google Scholar] [CrossRef]
- Yoo, S.; Cho, A.; Salman, F.; Yoshida, Y. Green paradox: Factors affecting travel distances and fuel usages, evidence from Japanese survey. J. Clean. Prod. 2020, 273, 122280. [Google Scholar] [CrossRef]
- Heinen, E.; Mattioli, G. Multimodality and CO2 emissions: A relationship moderated by distance. Transp. Res. Part D Transp. Environ. 2019, 75, 179–196. [Google Scholar] [CrossRef]
- Sturm, P.J.; Pucher, K.; Sudy, C.; Almbauer, R.A. Determination of traffic emissions—Intercomparison of different calculation methods. Sci. Total Environ. 1996, 189, 187–196. [Google Scholar] [CrossRef]
- Jiang, Y.; Ding, Z.; Zhou, J.; Wu, P.; Chen, B. Estimation of traffic emissions in a polycentric urban city based on a macroscopic approach. Phys. A Stat. Mech. Its Appl. 2022, 602, 127391. [Google Scholar] [CrossRef]
- Climate Department of National Developement and Re-form Commission Guidance for Compiling Provincial Greenhouse Gas Emission Lists (Trial) [R]. Beijing. 2011. Available online: http://www.ncsc.org.cn/SY/tjkhybg/202003/t20200319_769763.shtml (accessed on 29 June 2022).
- Energy Department of National Bureau of Statistics of China. China Energy Statistical Yearbook; China Statistics Press: Beijing, China, 2012. [Google Scholar]
- Energy Department of National Bureau of Statistics of China. China Energy Statistical Yearbook; China Statistics Press: Beijing, China, 2013. [Google Scholar]
- Energy Department of National Bureau of Statistics of China. China Energy Statistical Yearbook; China Statistics Press: Beijing, China, 2014. [Google Scholar]
- Energy Department of National Bureau of Statistics of China. China Energy Statistical Yearbook; China Statistics Press: Beijing, China, 2015. [Google Scholar]
- Energy Department of National Bureau of Statistics of China. China Energy Statistical Yearbook; China Statistics Press: Beijing, China, 2016. [Google Scholar]
- Energy Department of National Bureau of Statistics of China. China Energy Statistical Yearbook; China Statistics Press: Beijing, China, 2017. [Google Scholar]
- Energy Department of National Bureau of Statistics of China. China Energy Statistical Yearbook; China Statistics Press: Beijing, China, 2018. [Google Scholar]
- Energy Department of National Bureau of Statistics of China. China Energy Statistical Yearbook; China Statistics Press: Beijing, China, 2019. [Google Scholar]
- Energy Department of National Bureau of Statistics of China. China Energy Statistical Yearbook; China Statistics Press: Beijing, China, 2020. [Google Scholar]
- Energy Department of National Bureau of Statistics of China. China Energy Statistical Yearbook; China Statistics Press: Beijing, China, 2021. [Google Scholar]
- Liu, H.; Yang, R.; Wu, D.; Zhou, Z. Green productivity growth and competition analysis of road transportation at the provincial level employing Global Malmquist-Luenberger Index approach. J. Clean. Prod. 2020, 279, 123677. [Google Scholar] [CrossRef]
- Wang, C.; Wood, J.; Wang, Y.; Geng, X.; Long, X. CO2 emission in transportation sector across 51 countries along the Belt and Road from 2000 to 2014. J. Clean. Prod. 2020, 266, 122000. [Google Scholar] [CrossRef]
Fuel Type | Raw Coal | Coke | Crude Oil | Gasoline | Kerosene | Diesel | Fuel Oil | Liquefied Gas | Natural Gas |
---|---|---|---|---|---|---|---|---|---|
Average low calorific value of energy (ALC; kJ/kg) | 20,908 | 28,435 | 41,816 | 43,070 | 43,070 | 42,652 | 41,816 | 44,200 | 38,931 |
Carbon content (C; t/TJ) | 26.37 | 29.42 | 20.08 | 18.90 | 19.60 | 20.20 | 21.10 | 17.20 | 15.32 |
Carbon oxidation rate (R) | 0.94 | 0.93 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.99 |
Province | Fujian, Anhui, Zhejiang, Shanghai, Jiangsu | Shanxi, Beijing, Tianjin, Shandong, Hebei, Inner Mongolia | Heilong jiang, Jilin, Liaoning | Sichuan, Chongqing, Hunan, Hubei, Henan, Jiangxi | Gansu, Shaanxi, Qinghai, Ningxia, Xinjiang | Yunnan, Guizhou, Guangdong, Guangxi | Hainan |
---|---|---|---|---|---|---|---|
Electricity carbon emission factors (EF; kgCO2/kWh) | 0.928 | 1.246 | 1.096 | 0.801 | 0.977 | 0.714 | 0.917 |
Indicator Type | Indicators | Data Source |
---|---|---|
Input Indicators | Freight turnover | China Statistical Yearbook 2011–2020 and the statistical yearbooks of each province |
Passenger turnover | ||
Number of employees in the transportation industry | ||
Output Indicators | Transportation value added | |
Transportation carbon emissions |
Variable Type | Name | Indicators | Connotation | Data Source |
---|---|---|---|---|
Dependent variable | Car | Total carbon emissions | Traffic pollution level | Indirect calculation through electricity consumption and fuel consumption |
Independent variable | TFPT | Transportation total factor productivity | Level of technological progress in transportation | Data envelopment analysis method |
NTE | Number of traffic employees | Labor input level | Provinces 2011–2020 Statistical Yearbook | |
RT | Passenger turnover | Traffic and travel level | ||
RVFT | Freight turnover | Transport production level |
Year | Moran Index | Statistical Values | p-Value |
---|---|---|---|
2011 | 0.119 *** | 2.508 | 0.020 |
2012 | 0.123 *** | 2.513 | 0.016 |
2013 | 0.142 *** | 2.431 | 0.008 |
2014 | 0.138 *** | 2.311 | 0.010 |
2015 | 0.139 *** | 2.312 | 0.010 |
2016 | 0.138 ** | 2.207 | 0.014 |
2017 | 0.153 *** | 2.384 | 0.009 |
2018 | 0.155 *** | 2.412 | 0.008 |
2019 | 0.158 *** | 2.426 | 0.008 |
2020 | 0.168 *** | 2.869 | 0.002 |
Inspection Method | Statistical Values | p-Value |
---|---|---|
LR-lag | 15.53 *** | 0.0012 |
LR-error | 10.93 *** | 0.0042 |
Wald-lag | 11.55 *** | 0.0031 |
Wald-error | 17.26 *** | 0.0017 |
Independent Variable | Geographical Weighting | Economic Weights | ||
---|---|---|---|---|
Estimated Coefficient | Statistical Values | Estimated Coefficient | Statistical Values | |
TFPT | −0.451 *** | (2.12) | −0.227 *** | 1.27 |
NTE | 1.046 ** | (2.05) | 1.021 | 1.54 |
RT | 0.117 ** | (1.99) | 0.001 *** | 2.71 |
RCFT | −0.002 | (−0.14) | −0.001 | −0.12 |
W*TFPT | 0.377 *** | (1.56) | 0.478 *** | 1.64 |
W*NTE | −1.497 | (−0.96) | 1.849 * | 1.65 |
W*RT | 0.07 | (1.55) | −0.001 | −0.24 |
W*RCFT | 0.09 | (−1.01) | 0.001 | 2.17 |
rho | 0.311 *** | (1.13) | 0.212 *** | 0.97 |
Independent Variable | Geographical Weighting | Economic Weights | ||||
---|---|---|---|---|---|---|
Total Effect | Direct Effect | Indirect Effects | Total Effect | Direct Effect | Indirect Effects | |
TFPT | 0.031 *** | 0.047 ** | −0.016 * | 0.043 *** | 0.029 ** | 0.014 *** |
(2.24) | (1.19) | (1.12) | (2.35) | (1.31) | (1.10) | |
NTE | −0.335 | −1.289 | 0.954 | 2.687 | 1.771 ** | 0.916 |
(−0.18) | (−0.68) | (2.22) | (2.24) | (1.71) | (1.58) | |
RT | 0.002 *** | 0.001 | 0.001 | 0.002 *** | 0.001 | 0.001 |
(2.69) | (1.34) | (1.57) | (2.70) | (0.43) | (0.67) | |
RCFT | 0.011 ** | 0.010 | 0.001 | 0.002 | 0.001 ** | 0.001 ** |
(0.09) | (1.03) | (0.98) | (0.08) | (2.06) | (1.98) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Chen, L.; Huang, C. Study on the Carbon Emission Spillover Effects of Transportation under Technological Advancements. Sustainability 2022, 14, 10608. https://doi.org/10.3390/su141710608
Liu Y, Chen L, Huang C. Study on the Carbon Emission Spillover Effects of Transportation under Technological Advancements. Sustainability. 2022; 14(17):10608. https://doi.org/10.3390/su141710608
Chicago/Turabian StyleLiu, Yunlong, Leiyu Chen, and Chengfeng Huang. 2022. "Study on the Carbon Emission Spillover Effects of Transportation under Technological Advancements" Sustainability 14, no. 17: 10608. https://doi.org/10.3390/su141710608