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Abstract: Regional transportation emissions reduction is the key to realizing deep emission reduction
and the neutralization of transportation. Transportation development is accompanied by technologi-
cal progress, and inter-regional transportation technological progress and carbon emission spillover
effects are issues worthy of study. Based on the 2011–2020 provincial data of 30 provinces and cities
in China, a spatial Durbin model was constructed to explore the impact of technological progress
on regional spillovers of carbon emissions and the driving effect of emissions reduction. The con-
clusions show that the “community effect” causes direct interactions between transportation carbon
emissions reduction practices in various provinces; the “acquired effect” and “leakage effect” drive
technological progress between regions and cause indirect interactions between transportation carbon
emissions reduction practices; transportation technology progress is more likely to occur between
regions with similar transportation development. Finally, some suggestions are put forward in terms
of establishing a mechanism for the coordinated reduction of regional carbon emissions, strengthen-
ing the interactions and economic connections between inter-regional transportation technologies,
optimizing the spatial layout of transportation infrastructure, and building a low-carbon transporta-
tion system, so as to lay a solid foundation for the coordinated reduction of regional transportation
carbon emissions.

Keywords: synergistic reduction; technological progress; spillover effect; Durbin model

1. Introduction

Climate change is the greatest environmental challenge affecting human communities,
natural resources, and biodiversity in the 21st century [1]. Transportation is one of the three
largest emitting sectors [2–4] and transportation carbon emissions are characterized by their
large contribution and rapid growth rate [5]. Carbon emissions from the transportation
sector not only put great pressure on resources and the environment and have high social
costs, but also affect the efficiency of social and economic operations [6]. However, the
environmental effects of technological advances have aroused the attention of scholars [7],
and the inhibitory effect of energy efficiency on carbon emissions in the transportation
sector increases with the improvement of energy efficiency (Wei et al., 2021) [8]. New
technologies play an important role in the low-carbon transition of energy systems, climate
governance and sustainable development pathways [9], and the use of new technologies
can achieve the synergistic benefits of carbon reduction and air pollution control [10,11],
but the cross-regional effects of technological advances on transportation have been less
studied. In this paper, we consider the impact of technological advances and establish a
spatial Durbin model using panel data on 31 provinces across China from 2012 to 2020 to
analyze the impact of the diffusion of transportation technological advances on the regional
association of transportation carbon emissions, and examine the spatial spillover effects
of transportation technological advances that contribute to carbon emission abatement in
transportation using different weighting matrices. Cross-regional traffic emissions require
cross-regional collaborative governance.
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2. Literature Review
2.1. Transportation Carbon Emission Influencing Factors

Many scholars have found that there are many factors that contribute to increases in
transportation carbon emissions, such as economic growth [12–14], urbanization [15–17],
energy intensity [18–20] and transportation mileage [21,22]. In recent years, many scholars
have started to study the impact of technological progress on transportation carbon emis-
sions. Authors such as [23] have pointed out that R&D investment has a positive impact on
transportation CO2, and the impact of technological progress channels on carbon emissions
in different industries all show spatial correlation and variability. Authors such as [24] have
analyzed total transportation productivity and total transportation productivity through
dynamic and cross-regional comparisons of total transportation. Authors such as [25]
have analyzed the direct impact of technological progress on carbon efficiency and the
interaction between technological progress and energy intensity on carbon efficiency, and
then evaluated the carbon efficiency of 59 countries during 1998–2016 using the super
SBM model. Authors such as [26] have used panel data from 30 Chinese provinces from
2009–2018 to construct a dynamic spatial panel data model based on the spatial Durbin
model (SDM) for specific technological progress to analyze the impact of new energy
vehicle industrial policies on carbon emissions in China’s transportation industry. It can
be seen that technological progress is an important factor leading to the differentiation of
regional transportation carbon emissions.

2.2. The Direct and Indirect Nature of Cross-Regional Spillover Effects

In the current study, the spillover effects of carbon emissions included direct and
indirect effects [27]. First are direct effects; scholars such as [28] studied the assessment
of climate action in three small cities in British Columbia and identified similarities in air
pollution in neighboring cities. The reduction of transportation carbon emissions in a region
serves as a reference for reductions in carbon emissions in surrounding areas, and this effect
is called the “cluster effect” [29,30]. The transportation and economic development, emis-
sion status and emission reduction potential of adjacent areas were found to be similar [31].
Generally, geographically adjacent areas are subject to the same environmental regulation
by the central government in terms of regional development [32]. As a result, neighboring
regions will follow each other’s lead and make similar decisions about emissions and
emissions reduction [33]. Second are indirect effects; transportation has cross-regional
mobility, and technological progress leads to indirect interactions between transportation
carbon emission reduction processes between regions. Technology is an important tool
for transportation carbon emissions reduction. Technologically advanced areas will drive
surrounding areas that have backward technology [34]. This “acquisition effect” promotes
coordinated emissions reduction for regional transportation [35,36]. Resources, equipment
and technical methods are radiated to surrounding areas, resulting in a “leakage effect”.
The spillover effect of technological progress is more significant in adjacent regions because
adjacent regions have convenient transportation and close economic relations, thus bring-
ing about economic and environmental competition between regions [37,38]. In summary,
the theoretical framework of this paper is shown in Figure 1.

2.3. Spatial Overflow Model

Transportation infrastructure and traffic flows have spatial properties, many of which
are cross-regional and have spatial spillover effects [39,40]. Therefore, CO2 emissions
from transport in each province are likely to be spatially interrelated rather than spatially
independent. That is, the transport CO2 emissions of a province depend not only on
local influences but also on those of neighboring provinces, which means that the spatial
spillover effects of factors affecting transport carbon emissions cannot be ignored. Many
scholars have studied the spatial spillover models of carbon emissions—for example, in [41],
the authors used a tri-regional model of spillover and feedback effects (SFE) to calculate
the interactions and relationships between regional and sectoral carbon emissions and
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pointed out that transportation has higher intra- and inter-regional emission multipliers
because of its higher carbon emissions per unit of output. Authors such as [42] have
used an adapted three-dimensional ecological footprint model (EF3D) to assess regional
sustainable development and combined the STIRPAT model and spatial econometric model
with transportation networks to provide insight into the drivers and spatial impacts of
transportation networks on EF. Authors such as [43] have used an ε-based metric with a
poor output data envelopment analysis model to estimate TSCDEE for 30 Chinese provinces
from 2010 to 2016 and also analyzed its influencing factors using a spatial Durbin model,
which indicated that factors such as traffic structure, level of transportation infrastructure
and technological progress had a significant, positive impact on TSCDEE, while both
urbanization level and urban population density had a significantly negative impact on
TSCDEE. Authors such as [44] have used a three-region input–output model to analyze the
emission spillover-feedback effects in the eastern, central, and western regions of China,
stating that interregional trade has important spillover effects (SEs) on emissions in each
region—especially in the central and western regions—but fewer feedback effects.
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3. Research Methods and Data Sources
3.1. Calculation of Transportation Carbon Emissions

Two types of carbon emission measurements have been studied—one based on miles
traveled via transportation [45,46] and the other based on energy consumption [47,48].
Considering the availability of the data, the second method was chosen in this paper to
calculate the transportation carbon emissions of 30 provinces and cities. Motor vehicle
emissions include direct and indirect emissions, with direct emissions coming from tailpipe
emissions from the combustion of internal combustion engine vehicle fuels such as gasoline
and diesel, and indirect emissions coming from emissions caused by the consumption of
electric energy by electric vehicles. The calculation formula is as follows:

CT = EC× EF +
9

∑
i=1

ALCi × FCi ×Ci × Ri ×
44
12

(1)

where CT denotes the total provincial transportation carbon emissions, kgCO2; i denotes
fuel type; EC denotes electricity consumption, kg; EF denotes the electricity carbon emis-
sion factor, kgCO2/kWh; ALC denotes the average energy low calorific value, kJ/kg FC
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denotes fossil fuel consumption, kg; C denotes carbon content, t/TJ; and R denotes the
carbon oxidation rate, %. In this paper, the standard values of different carbon emission
factors were used for calculations; their values are shown in Tables 1 and 2. The data were
obtained from the China Energy Statistical Yearbook 2011–2020.

Table 1. Table of parameter values.

Fuel Type
i

Raw
Coal Coke Crude

Oil Gasoline Kerosene Diesel Fuel
Oil

Liquefied
Gas

Natural
Gas

Average low calorific
value of energy
(ALC; kJ/kg)

20,908 28,435 41,816 43,070 43,070 42,652 41,816 44,200 38,931

Carbon content
(C; t/TJ) 26.37 29.42 20.08 18.90 19.60 20.20 21.10 17.20 15.32

Carbon oxidation rate
(R) 0.94 0.93 0.98 0.98 0.98 0.98 0.98 0.98 0.99

Table 2. Carbon emission factors of electricity by province.

Province

Fujian, Anhui,
Zhejiang,
Shanghai,
Jiangsu

Shanxi, Beijing,
Tianjin, Shandong,

Hebei, Inner
Mongolia

Heilong
jiang,
Jilin,

Liaoning

Sichuan,
Chongqing,

Hunan, Hubei,
Henan, Jiangxi

Gansu,
Shaanxi,
Qinghai,
Ningxia,
Xinjiang

Yunnan,
Guizhou,

Guangdong,
Guangxi

Hainan

Electricity carbon
emission factors

(EF; kgCO2/kWh)
0.928 1.246 1.096 0.801 0.977 0.714 0.917

The carbon emission factors for electricity production and fuel consumption are
influenced by the amount of fuel; the carbon emission factors for electricity production
and fuel consumption are relatively stable in the short term as they are influenced by the
amount of fuel and the level of technology used for consumption. Since there are no annual
data on carbon emission factors for electricity production and fuel consumption in China,
this study used carbon emission factors. Standard values of carbon emission coefficients
were used in this study. The carbon content of fossil fuels, the carbon content of carbon
and the carbon content of fuel consumption in China were calculated using the standard
values of carbon emission factors. The carbon content of fossil fuels, carbon oxidation rate
(Table 1) and carbon emission factor of electricity (Table 2) were obtained from the Guide to
Provincial Greenhouse Gas Inventories (Trial) [49], and the data on fossil fuel consumption,
electricity consumption and average low calorific value of energy were obtained from the
China Energy Statistical Yearbook [50–59].

3.2. Measurement of Traffic Technology Progress

The current development of transportation technology is characterized by the “inte-
grated development of multiple technologies” and the intelligent and informative evolution
formed by the integration of various technologies. For example, the concept of sharing,
additive manufacturing technology to promote changes in the supply and demand model,
reducing the scale of transport system development, artificial intelligence technologies to
improve the efficiency and safety of transport and big data technology can improve the level
of transport services, etc. These technologies improve the efficiency of the flow of goods
and capital, promote urbanization and transport development and make urban and rural
communication easier, but also change the demand for transport industry practitioners. In
addition, these technological advances drive the transportation economy and also change
transportation emissions. The level of technological progress in transportation was mea-
sured by the data envelopment analysis method [60]. Freight turnover, passenger turnover
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and the number of employees in the transportation industry were selected as the three
input indicators, the added value of transportation was used as the desired output and
the carbon emission of transportation was used as the undesired output. The Malmquist
productivity index method was used for cumulative transformation to find the level of
technological progress in transportation.

The data envelopment analysis method was selected to measure the level of traffic
technology and the indicators were selected in Table 3.

Table 3. Input and output indicators.

Indicator Type Indicators Data Source

Input Indicators
Freight turnover

China Statistical Yearbook 2011–2020 and
the statistical yearbooks of each province

Passenger turnover
Number of employees in the transportation industry

Output Indicators Transportation value added
Transportation carbon emissions

3.3. Spatial Correlation Test

The overall and local regional associations of transportation carbon emissions were ex-
amined using the global spatial Moran index and the local spatial Moran index. The Moran
index is widely used to study the spatial autocorrelation of transportation carbon emissions
and the formula used here refers to the literature [61]. The Moran index is in the range of
[−1, 1]; when its value is greater than 0, the variables are positively correlated spatially
and there is spatial aggregation; when its value is less than 0, the variables are negatively
correlated spatially; when its value is close to 0, the variables are randomly distributed.

3.4. Transportation Technology Spillover Channels
3.4.1. Geographical Distance

Regional transportation technology spillover is influenced by geographical location—
the closer the geographical location between regions, the more transportation technology
spillover; therefore, a spatial matrix of geographical distance is established.

ωijg =

{
−1/d2 (i 6= j)
0 (i = j)

(2)

3.4.2. Economic Distance

Regional economic linkages affect transportation technology spillovers and greater
economic distances inhibit the exchange of technological knowledge for transportation,
thus creating a spatial matrix of economic distances.

ωije

 1
n

n
∑

m=1

1
|TAVi− TAVj| (i 6= j)

0 (i = j)
(3)

3.5. Spatial Durbin Model

Considering the econometric model to include the lagged terms of the spatially depen-
dent variables, the lagged terms of the spatially independent variables were also included.
Therefore, the spatial Durbin model was chosen.

ln(ynt) = τnα + ρω ln(ynt) + β ln(xnt) + θω ln(xnt) + µn + υt + εnt
εnt ∼ N(0, σ2 In)

(4)

where ρ, β, θ is the coefficient to be estimated, ynt, xnt denote the independent and de-
pendent variables, respectively, and the model variables are shown in Table 4; τn is the
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n × 1 unit matrix, εnt denotes the random perturbation factor, and µn and υt denote the
individual and time fixed effects, respectively.

Table 4. Model variables.

Variable Type Name Indicators Connotation Data Source

Dependent
variable Car Total carbon emissions Traffic pollution level

Indirect calculation through
electricity consumption and

fuel consumption

Independent
variable

TFPT Transportation total factor
productivity

Level of technological
progress in transportation

Data envelopment
analysis method

NTE Number of traffic employees Labor input level
Provinces 2011–2020
Statistical YearbookRT Passenger turnover Traffic and travel level

RVFT Freight turnover Transport production level

4. Empirical Analysis
4.1. Provincial Distribution Characteristics of the Total and Intensity of the Transportation
Carbon Emissions

As shown in Figure 2, the transportation carbon emissions were higher in coastal
cities such as Liaoning, Shanghai, Jiangsu, Beijing and Guangdong, which had a higher
level of transportation development and a large added transportation value—the annual
average share of added transportation value in the five provinces was 26% of the national
transportation value added from 2011–2020—while Tianjin, Jilin, Sichuan and Guizhou
mainly developed primary industries and had large agricultural production; thus, the
total amount of transportation carbon emissions was low. The regions with a higher
transportation carbon emission intensity were Heilongjiang, Liaoning, Beijing, Shanghai
and other provinces and cities, and the provinces and cities with lower transportation
carbon emission intensities were Zhejiang, Fujian, Jiangsu and other provinces and cities,
which shows the regional characteristics of high total transportation carbon emissions and
low carbon emission intensity in the east and west, respectively. And from Figure 3, we
can know that the standard deviation of total transportation carbon emissions between
provinces in 2011–2020 is increasing year by year, while the standard deviation of carbon
emission intensity in each province is decreasing year by year.
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4.2. Testing the Spatial Effects of Transportation Carbon Emissions

As shown in Table 5, the global Moran indices of traffic carbon emissions from 2011 to
2020 were all positive, indicating that traffic carbon emissions showed a positive correlation
between regions. The p-value is less than 0.05, which passes the 95% confidence test,
indicating that traffic carbon emissions showed a significant spatial clustering characteristic.
The global Moran index increased from 0.119 in 2011 to 0.168 in 2020, indicating that the
spatial correlation of traffic carbon emissions gradually increased with time.

Table 5. Transportation Carbon Emissions Global Moran Index.

Year Moran Index Statistical Values p-Value

2011 0.119 *** 2.508 0.020
2012 0.123 *** 2.513 0.016
2013 0.142 *** 2.431 0.008
2014 0.138 *** 2.311 0.010
2015 0.139 *** 2.312 0.010
2016 0.138 ** 2.207 0.014
2017 0.153 *** 2.384 0.009
2018 0.155 *** 2.412 0.008
2019 0.158 *** 2.426 0.008
2020 0.168 *** 2.869 0.002

Note: “***”and ”**” indicate significant at the 1% and 5% levels, respectively.

The local Moran index was calculated to explore the characteristics of local agglom-
eration of transportation carbon emissions. As shown in the scatter plots of Figure 4 the
traffic carbon emissions showed the characteristics of high values adjacent to high values
and low values adjacent to low values, and the number of provinces with positive spatial
correlations increased from four in 2011 to seven in 2020. With the implementation of
China’s integrated regional transportation development strategy, the cross-regional effect
of transportation carbon emissions became more obvious as inter-regional transportation
collaboration continued to deepen. Provinces and cities such as Shanghai, Jiangsu, Zhejiang,
Hubei and Guangdong are adjacent and had higher transportation carbon emissions, while
provinces and cities such as Guizhou, Yunnan, Gansu, Qinghai and Ningxia are adjacent
and had lower transportation carbon emissions.
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lia, 6—Liaoning, 7—Jilin, 8—Heilongjiang, 9—Shanghai, 10—Jiangsu, 11—Zhejiang, 12—Anhui,
13—Fujian, 14—Jiangxi, 15—Shandong, 16—Henan, 17—Hubei, 18—Hunan, 19—Guangdong,
20—Guangxi, 21—Hainan, 22—Chongqing, 23—Sichuan, 24—Guizhou, 25—Yunnan, 26—Shaanxi,
27—Gansu, 28—Qinghai, 29—Ningxia, 30—Xinjiang.

4.3. Analysis of the Cross-Regional Effects of Transportation Technology Progress

First, the Hausman test was used to determine whether the spatial Durbin model was
a fixed-effect or random-effect model, and the results showed that the test value was 10.31
with a p-value of zero at the 5% significance level; so, the original hypothesis was rejected
and the fixed-effect model was chosen. Next, the LR test and Wald test were carried out;
the test results were as follows.

From Table 6, the results of the two tests rejected the original hypothesis at the 5%
significance level, wherein the spatial Durbin model cannot be transformed into a spatial
lag model with a spatial error model; therefore, the individual fixed-effect spatial Durbin
model was selected.

Table 6. Wald test and LR test results.

Inspection Method Statistical Values p-Value

LR-lag 15.53 *** 0.0012
LR-error 10.93 *** 0.0042
Wald-lag 11.55 *** 0.0031

Wald-error 17.26 *** 0.0017
Note: “***” indicates significant at the 1% level.

From Table 7, the spatial regression coefficients and the spatial lag coefficients of
the level of transportation technology progress were positive and significant for both the
distance matrix and the economic matrix of the model. The positive value of the spatial
regression coefficient indicates that there was a “cluster effect” of transportation carbon
emissions between regions, and the behavior of transportation carbon emissions was similar
in regions with a close geographical distance and close transportation economic develop-
ment level. The estimated coefficient of the total factor productivity of transportation was
negative, which indicates the “acquisition effect” and “leakage effect” of inter-regional
transportation carbon emissions—indicating that the technological progress of transporta-
tion in one region leads to the reduction of transportation carbon emissions in neighboring
regions. The spatial autoregressive coefficient was 0.311 when the distance matrix was
used, which is larger than the spatial autoregressive coefficient when the economic matrix
was used.
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Table 7. Estimation results of the spatial Durbin model.

Independent Variable
Geographical Weighting Economic Weights

Estimated Coefficient Statistical Values Estimated Coefficient Statistical Values

TFPT −0.451 *** (2.12) −0.227 *** 1.27
NTE 1.046 ** (2.05) 1.021 1.54
RT 0.117 ** (1.99) 0.001 *** 2.71

RCFT −0.002 (−0.14) −0.001 −0.12
W*TFPT 0.377 *** (1.56) 0.478 *** 1.64
W*NTE −1.497 (−0.96) 1.849 * 1.65
W*RT 0.07 (1.55) −0.001 −0.24

W*RCFT 0.09 (−1.01) 0.001 2.17
rho 0.311 *** (1.13) 0.212 *** 0.97

Note: “***”, “**”, and “*” indicate significant at the 1%, 5%, and 10% levels, respectively.

For the spatial effect of transportation technology progress, the estimated spatial
coefficient of transportation technology progress was 0.101—higher under the effect of
economic weight than under the effect of geographical weight—and the value of the
statistic increased by 0.08. This is because, on the one hand, with the improvement of
regional transportation infrastructure and the development of information technology, the
spillover effect of interregional geographical distance on transportation technology and
the spillover effect of economic distance on regional transportation technology gradually
weaken. On the other hand, regions with different levels of transportation economy
have different absorption capacities for transportation technology, and regions with close
transportation economies are more conducive to learning from each other and spreading
advanced technologies.

To further explore the relationship between the independent and dependent variables
of the spatial Durbin model, the spatial effects were decomposed, and the results are shown
in Table 8.

Table 8. Results of spatial effect decomposition.

Independent
Variable

Geographical Weighting Economic Weights

Total Effect Direct Effect Indirect Effects Total Effect Direct Effect Indirect Effects

TFPT
0.031 *** 0.047 ** −0.016 * 0.043 *** 0.029 ** 0.014 ***

(2.24) (1.19) (1.12) (2.35) (1.31) (1.10)

NTE
−0.335 −1.289 0.954 2.687 1.771 ** 0.916
(−0.18) (−0.68) (2.22) (2.24) (1.71) (1.58)

RT
0.002 *** 0.001 0.001 0.002 *** 0.001 0.001

(2.69) (1.34) (1.57) (2.70) (0.43) (0.67)

RCFT
0.011 ** 0.010 0.001 0.002 0.001 ** 0.001 **
(0.09) (1.03) (0.98) (0.08) (2.06) (1.98)

Note: “***”, “**”, and “*” indicate significant at the 1%, 5%, and 10% levels, respectively.

As seen in Table 8, both the direct and indirect effects of transportation technology
progress passed the 5% significance test, with positive direct effects and negative indirect
effects, indicating that transportation technology progress has positive and negative ex-
ternalities. On the one hand, transportation technology progress promotes transportation
development, increases transportation demand and increases carbon emissions; on the
other hand, technology progress makes transportation travel greener and more efficient,
reducing carbon emissions to a certain extent.

The total effect and direct effect of transportation labor input level were not significant,
but the indirect effect was significant under economic weights—indicating that the regional
association of transportation carbon emissions is related to transportation labor transfer
and that labor transfer is influenced by transportation economic development. The total
effect, direct effect and indirect effect of traffic travel levels and transportation production
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levels all passed the 1% significance test, indicating that traffic travel and transportation
production are constrained by geography and economy and all have significant spatial
effects. As the traffic travel and transportation production levels of a region increase, the
areas geographically close to it or close to its economic level also increase accordingly; thus,
their traffic carbon emissions increase at the same time.

5. Conclusions and Recommendations
5.1. Conclusions

This paper constructed a spatial Durbin model to explore the impact of technological
progress on carbon emission regional spillover and the driving effects of emission abatement.
The conclusions show that (1) the behavior of transportation carbon emissions is similar
among regions with a close geographical distance and close transportation economic de-
velopment level. The regions with a higher transportation carbon emission intensity were
Heilongjiang, Liaoning, Beijing, Shanghai and other provinces and cities and the provinces
and cities with lower transportation carbon emission intensities were Zhejiang, Fujian,
Jiangsu and other provinces and cities; the total transportation carbon emission and carbon
emission intensity showed the regional characteristics of being high in the east and low
in the west. In other words, the emission decision of a region is not only influenced by its
own transportation and economic development status and emission reduction potential,
but is also influenced by the emission decisions of neighboring regions and regions with
similar transportation and economic development levels, so that the emission behavior of
each region is relatively similar. The “cluster effect” is more pronounced among geograph-
ically proximate regions than among economically proximate regions. (2) Inter-regional
transportation carbon emissions have an “acquisition effect” and “leakage effect”. With
the improvement of regional transportation infrastructure and the development of infor-
mation technology, the spillover effect of regional geographical distance on transportation
technology gradually weakens, while the spillover effect of economic distance on regional
transportation technology gradually strengthens, and the “leakage effect” becomes promi-
nent. (3) The progress of transportation technology has positive and negative externalities,
and the regional association of transportation carbon emissions is related to the transfer
of transportation labor; transportation travel and transportation production are subject to
geographical and economic constraints, which have obvious spatial effects. Traffic travel
and transportation production are constrained by geography and economy, and there are
obvious spatial effects. When the level of traffic travel and transportation production in
a region increases, the areas near or close to that region’s economic level also increase
accordingly; thus, their transportation carbon emissions increase at the same time.

5.2. Suggestions

First, establish a mechanism for regional carbon emission synergy reduction and
improve mechanisms for the promotion of the green development of transportation. Sec-
ond, promote the application of new technologies, strengthen the interactive exchange
of transportation technologies and economic ties between regions, build a low-carbon
transportation system, give full play to the radiation effect and learning effect between
regions and achieve the maximum emission reduction in the field of transportation. Third,
promote changes in the spatial layout of transportation infrastructure, the construction
of green transportation infrastructure, the strengthening of inter-regional transportation
technology cooperation and the realization of inter-regional synergistic emission reduction.
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