InVEST Soil Carbon Stock Modelling of Agricultural Landscapes as an Ecosystem Service Indicator
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Data Collection
2.3. Soil Carbon Stock Inventories
2.4. Statistical Analysis
2.5. InVEST Carbon Storage Modelling
3. Results
3.1. Data Summary
3.2. Carbon Stock Inventories
3.3. Carbon Stock Models
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Land-Use Land-Cover | Carbon Stock Range (Mg·ha−1) | |||||||
---|---|---|---|---|---|---|---|---|
0–20 | 20–40 | 40–60 | 60–80 | 80–100 | 100–120 | 120–140 | 140–160 | |
Hungary (Total) | ||||||||
Farmland | 8671 | 805,101 | 1,942,406 | 1,723,367 | 50,232 | 2230 | 11 | 1 |
Forest | 69,931 | 1,027,105 | 1,001,517 | 166,196 | 23,448 | 7022 | 59 | 0 |
Meadow | 7272 | 205,677 | 555,608 | 346,659 | 34,761 | 3410 | 11 | 0 |
Dunamenti plain mesoregion (north) | ||||||||
Farmland | 2 | 20,080 | 94,667 | 147,024 | 2676 | 4 | 0 | 0 |
Forest | 186 | 21,799 | 32,491 | 22,420 | 301 | 0 | 0 | |
Meadow | 3 | 16,345 | 30,704 | 24,632 | 1738 | 1 | 0 | |
Mecsek and Tolna-Baranya hills mesoregion (south) | ||||||||
Farmland | 0 | 96,171 | 85,379 | 19,065 | 768 | 10 | 0 | 0 |
Forest | 0 | 86,232 | 74,076 | 1803 | 54 | 0 | 0 | |
Meadow | 0 | 13,235 | 15,084 | 2839 | 283 | 8 | 0 |
Study Area | Total Soil Carbon Stored in Landscape (and Mg·ha−1) | ||||
---|---|---|---|---|---|
National Carbon Stock Data—Hungary | National Carbon Stock Data—Mesoregion | Sample Data | |||
Min. | Mean | Max. | |||
Vác-Pest-Danube Valley microregion (north) | 410,243 (49.8) | 450,878 (54.7) | 313,700 (38) | 420,928 (51) | 525,273 (63.7) |
South-Zselic microregion (south) | 2,488,350 (50) | 2,062,493 (41.5) | 1,639,510 (33) | 3,081,877 (62) | 4,783,027 (96.1) |
References
- Keenan, T.F.; Williams, C.A. The Terrestrial Carbon Sink. Annu. Rev. Environ. Resour. 2018, 43, 219–243. [Google Scholar] [CrossRef]
- European Environment Agency. Common International Classification of Ecosystem Services (CICES) for Integrated Environmental and Economic Accounting V5.1; European Environment Agency: Copenhagen, Denmark, 2018.
- Johnson, J.A.; Jones, S.K.; Wood, S.L.R.; Chaplin-Kramer, R.; Hawthorne, P.L.; Mulligan, M.; Pennington, D.; DeClerck, F.A. Mapping Ecosystem Services to Human Well-Being: A Toolkit to Support Integrated Landscape Management for the SDGs. Ecol. Appl. 2019, 29, e01985. [Google Scholar] [CrossRef]
- Wiesmeier, M.; Urbanski, L.; Hobley, E.; Lang, B.; von Lützow, M.; Marin-Spiotta, E.; van Wesemael, B.; Rabot, E.; Ließ, M.; Garcia-Franco, N.; et al. Soil Organic Carbon Storage as a Key Function of Soils-A Review of Drivers and Indicators at Various Scales. Geoderma 2019, 333, 149–162. [Google Scholar] [CrossRef]
- Pechanec, V.; Purkyt, J.; Benc, A.; Nwaogu, C.; Štěrbová, L.; Cudlín, P. Modelling of the Carbon Sequestration and Its Prediction under Climate Change. Ecol. Inform. 2018, 47, 50–54. [Google Scholar] [CrossRef]
- Lüthi, D.; Le Floch, M.; Bereiter, B.; Blunier, T.; Barnola, J.-M.; Siegenthaler, U.; Raynaud, D.; Jouzel, J.; Fischer, H.; Kawamura, K.; et al. High-Resolution Carbon Dioxide Concentration Record 650,000–800,000 Years before Present. Nature 2008, 453, 379–382. [Google Scholar] [CrossRef]
- Chen, S.; Arrouays, D.; Leatitia Mulder, V.; Poggio, L.; Minasny, B.; Roudier, P.; Libohova, Z.; Lagacherie, P.; Shi, Z.; Hannam, J.; et al. Digital Mapping of GlobalSoilMap Soil Properties at a Broad Scale: A Review. Geoderma 2022, 409, 115567. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Soil Organic Carbon Mapping Cookbook; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018. [Google Scholar]
- Grêt-Regamey, A.; Sirén, E.; Brunner, S.H.; Weibel, B. Review of Decision Support Tools to Operationalize the Ecosystem Services Concept. Ecosyst. Serv. 2017, 26, 306–315. [Google Scholar] [CrossRef] [Green Version]
- Harwell, M.C.; Jackson, C.A. Synthesis of Two Decades of US EPA’s Ecosystem Services Research to Inform Environmental, Community and Sustainability Decision Making. Sustainability 2021, 13, 8249. [Google Scholar] [CrossRef] [PubMed]
- Jovanović, M.; Kašćelan, L.; Despotović, A.; Kašćelan, V. The Impact of Agro-Economic Factors on GHG Emissions: Evidence from European Developing and Advanced Economies. Sustainability 2015, 7, 16290–16310. [Google Scholar] [CrossRef] [Green Version]
- Durigan, M.; Cherubin, M.; de Camargo, P.; Ferreira, J.; Berenguer, E.; Gardner, T.; Barlow, J.; Dias, C.; Signor, D.; Junior, R.; et al. Soil Organic Matter Responses to Anthropogenic Forest Disturbance and Land Use Change in the Eastern Brazilian Amazon. Sustainability 2017, 9, 379. [Google Scholar] [CrossRef] [Green Version]
- Winkler, K.; Fuchs, R.; Rounsevell, M.D.A.; Herold, M. HILDA+ Global Land Use Change between 1960 and 2019. 2020. [CrossRef]
- Richard, S.; James, D.; Stacie, W. (Eds.) InVEST 3.10.2.Post17+ug.G0e9e2ef User’s Guide; The Natural Capital Project; Stanford University; University of Minnesota; The Nature Conservancy and World Wildlife Fund: Stanford, CA, USA, 2020. [Google Scholar]
- Van Leeuwen, J.P.; Saby, N.P.A.; Jones, A.; Louwagie, G.; Micheli, E.; Rutgers, M.; Schulte, R.P.O.; Spiegel, H.; Toth, G.; Creamer, R.E. Gap Assessment in Current Soil Monitoring Networks across Europe for Measuring Soil Functions. Environ. Res. Lett. 2017, 12, 124007. [Google Scholar] [CrossRef]
- Tóth, G.; Hermann, T.; da Silva, M.R.; Montanarella, L. Monitoring Soil for Sustainable Development and Land Degradation Neutrality. Environ. Monit. Assess. 2018, 190, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winder, J. Soil Quality Monitoring Programs: A Literature Review; Alberta Environmentally Sustainable Agriculture, Alberta Agriculture, Food and Rural Development: Edmonton, AD, Canada, 2003; p. 77.
- Babbar, D.; Areendran, G.; Sahana, M.; Sarma, K.; Raj, K.; Sivadas, A. Assessment and Prediction of Carbon Sequestration Using Markov Chain and InVEST Model in Sariska Tiger Reserve, India. J. Clean. Prod. 2021, 278, 123333. [Google Scholar] [CrossRef]
- Bottalico, F.; Pesola, L.; Vizzarri, M.; Antonello, L.; Barbati, A.; Chirici, G.; Corona, P.; Cullotta, S.; Garfì, V.; Giannico, V.; et al. Modeling the Influence of Alternative Forest Management Scenarios on Wood Production and Carbon Storage: A Case Study in the Mediterranean Region. Environ. Res. 2016, 144, 72–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piyathilake, I.D.U.H.; Udayakumara, E.P.N.; Ranaweera, L.V.; Gunatilake, S.K. Modeling Predictive Assessment of Carbon Storage Using InVEST Model in Uva Province, Sri Lanka. Model. Earth Syst. Environ. 2021, 8, 2213–2223. [Google Scholar] [CrossRef]
- Kumar, K.V.G.R.; Barik, D.K. Assessment of Carbon Storage and Erosion Using InVest Model in Visakhapatnam District, Andhra Pradesh. J. Rural Dev. 2018, 37, 207–220. [Google Scholar] [CrossRef]
- Tang, L.; Ke, X.; Zhou, Q.; Wang, L.; Koomen, E. Projecting Future Impacts of Cropland Reclamation Policies on Carbon Storage. Ecol. Indic. 2020, 119, 106835. [Google Scholar] [CrossRef]
- Li, Y.; Qiu, J.; Li, Z.; Li, Y. Assessment of Blue Carbon Storage Loss in Coastal Wetlands under Rapid Reclamation. Sustainability 2018, 10, 2818. [Google Scholar] [CrossRef] [Green Version]
- Viana, C.M.; Girão, I.; Rocha, J. Long-Term Satellite Image Time-Series for Land Use/Land Cover Change Detection Using Refined Open Source Data in a Rural Region. Remote Sens. 2019, 11, 1104. [Google Scholar] [CrossRef] [Green Version]
- El Mahrad, B.; Newton, A.; Icely, J.D.; Kacimi, I.; Abalansa, S.; Snoussi, M. Contribution of Remote Sensing Technologies to a Holistic Coastal and Marine Environmental Management Framework: A Review. Remote Sens. 2020, 12, 2313. [Google Scholar] [CrossRef]
- Mäkipää, R.; Häkkinen, M.; Muukkonen, P.; Peltoniemi, M. The Costs of Monitoring Changes in Forest Soil Carbon Stocks. Boreal Environ. Res. 2008, 13, 120–130. [Google Scholar]
- Bellassen, V.; Angers, D.; Kowalczewski, T.; Olesen, A. Soil Carbon Is the Blind Spot of European National GHG Inventories. Nat. Clim. Chang. 2022, 12, 324–331. [Google Scholar] [CrossRef]
- Lokupitiya, E.; Paustian, K. Agricultural Soil Greenhouse Gas Emissions. J. Environ. Qual. 2006, 35, 1413–1427. [Google Scholar] [CrossRef]
- Calvo Buendia, E.; Tanabe, K.; Kranjc, A.; Baasansuren, J.; Fukuda, M.; Ngarize, S.; Osako, A.; Pyrozhenko, Y.; Shermanau, P.; Federici, S. (Eds.) 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; IPCC: Geneva, Switzerland, 2019; Volume 1, ISBN 978-4-88788-232-4. [Google Scholar]
- Petrokofsky, G.; Kanamaru, H.; Achard, F.; Goetz, S.J.; Joosten, H.; Holmgren, P.; Lehtonen, A.; Menton, M.C.; Pullin, A.S.; Wattenbach, M. Comparison of Methods for Measuring and Assessing Carbon Stocks and Carbon Stock Changes in Terrestrial Carbon Pools. How Do the Accuracy and Precision of Current Methods Compare? A Systematic Review Protocol. Environ. Evid. 2012, 1, 6. [Google Scholar] [CrossRef] [Green Version]
- Deluz, C.; Nussbaum, M.; Sauzet, O.; Gondret, K.; Boivin, P. Evaluation of the Potential for Soil Organic Carbon Content Monitoring With Farmers. Front. Environ. Sci. 2020, 8, 113. [Google Scholar] [CrossRef]
- Imran, M.; Din, N. ud Geospatially Mapping Carbon Stock for Mountainous Forest Classes Using InVEST Model and Sentinel-2 Data: A Case of Bagrote Valley in the Karakoram Range. Arab. J. Geosci. 2021, 14, 756. [Google Scholar] [CrossRef]
- Agrártudományi Kutatóközpont Hungary Agrotopographical Database. 1991. Available online: http://www.elkh-taki.hu/hu/osztalyok/kornyezetinformatikai-osztaly/agrotopo (accessed on 10 January 2022).
- Institute of Soil Science (Talajtani Intézet) DOSoReMI (Digital, Optimized, General Soil Maps and Spatial Information). Available online: https://dosoremi.hu/ (accessed on 8 June 2022).
- European Environment Agency. Corine Land Cover (CLC) 2018. 2019. Available online: https://land.copernicus.eu/pan-european/corine-land-cover/clc2018 (accessed on 10 January 2022).
- OpenStreetMap Contributors Datasets of Hungary. 2018. Available online: http://download.geofabrik.de/europe/hungary-latest-free.shp.zip (accessed on 17 March 2022).
- Sándor, S.; Pál, A.; László, Á.; József, G.; Ágoston, J.; Ferenc, K.; Sándor, M.; Gábor, M.; Kálmán, R.; Szilárd, J.; et al. Magyarország Kistájainak Katasztere I–II [Cadastre of the Small Regions of Hungary I–II]; Marosi, S., Somogyi, S., Eds.; Geographical Research Institute of the Hungarian Academy of Sciences: Budapest, Hungary, 1990; ISBN 978-963-7395-09-3. [Google Scholar]
- Csorba, P.; Lóczy, D.; Mezosi, G. Recent Landscape Research in Hungary. Belg. Rev. Belg. Géographie 2004, 2–3, 289–300. [Google Scholar] [CrossRef]
- Orosz, G.; Ónodi, G.; Sipos, B.; Molnár, D.; Váradi, I. Szentendre Eco Island in the Agglomeration of Budapest. In Proceedings of the 2nd International Conference on Agriculture in an Urbanizing Society Reconnecting Agriculture and Food Chains to Societal Needs, Rome, Italy, 14–17 September 2015; p. 183. [Google Scholar]
- Arrouays, D.; Poggio, L.; Salazar Guerrero, O.A.; Mulder, V.L. Digital Soil Mapping and GlobalSoilMap. Main Advances and Ways Forward. Geoderma Reg. 2020, 21, e00265. [Google Scholar] [CrossRef]
- Pásztor, L.; Laborczi, A.; Takács, K.; Illés, G.; Szabó, J.; Szatmári, G. Progress in the Elaboration of GSM Conform DSM Products and Their Functional Utilization in Hungary. Geoderma Reg. 2020, 21, e00269. [Google Scholar] [CrossRef]
- Várallyay, G. Talajtérképezés, talajtani adatbázisok (Soil mapping, soil databases). Agrokém. Talajt. 2012, 61, 249–267. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing; The R Foundation: Vienna, Austria, 2021. [Google Scholar]
- De Vos, B.; Cools, N.; Ilvesniemi, H.; Vesterdal, L.; Vanguelova, E.; Carnicelli, S. Benchmark Values for Forest Soil Carbon Stocks in Europe: Results from a Large Scale Forest Soil Survey. Geoderma 2015, 251–252, 33–46. [Google Scholar] [CrossRef]
- Caddeo, A.; Marras, S.; Sallustio, L.; Spano, D.; Sirca, C. Soil Organic Carbon in Italian Forests and Agroecosystems: Estimating Current Stock and Future Changes with a Spatial Modelling Approach. Agric. For. Meteorol. 2019, 278, 107654. [Google Scholar] [CrossRef]
- Yigini, Y.; Panagos, P. Assessment of Soil Organic Carbon Stocks under Future Climate and Land Cover Changes in Europe. Sci. Total Environ. 2016, 557–558, 838–850. [Google Scholar] [CrossRef] [PubMed]
- Vos, C.; Don, A.; Hobley, E.U.; Prietz, R.; Heidkamp, A.; Freibauer, A. Factors Controlling the Variation in Organic Carbon Stocks in Agricultural Soils of Germany. Eur. J. Soil Sci. 2019, 70, 550–564. [Google Scholar] [CrossRef]
- Zhang, F.; Zhan, J.; Zhang, Q.; Yao, L.; Liu, W. Impacts of Land Use/Cover Change on Terrestrial Carbon Stocks in Uganda. Phys. Chem. Earth Parts ABC 2017, 101, 195–203. [Google Scholar] [CrossRef]
- Minasny, B.; Malone, B.P.; McBratney, A.B.; Angers, D.A.; Arrouays, D.; Chambers, A.; Chaplot, V.; Chen, Z.-S.; Cheng, K.; Das, B.S.; et al. Soil Carbon 4 per Mille. Geoderma 2017, 292, 59–86. [Google Scholar] [CrossRef]
- Lal, R. Forest Soils and Carbon Sequestration. For. Ecol. Manag. 2005, 220, 242–258. [Google Scholar] [CrossRef]
- Balogh, L.; Réthy, K.; Balázs, B. Mapping Agroecology in Hungary; Agroecology Europe; Védegylet Egyesület; Environmental Social Science Research Group Hungary: Budapest, Hungary, 2020; p. 31. [Google Scholar]
- Ali, S.; Begum, F.; Hayat, R.; Bohannan, B.J.M. Variation in Soil Organic Carbon Stock in Different Land Uses and Altitudes in Bagrot Valley, Northern Karakoram. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2017, 67, 551–561. [Google Scholar] [CrossRef]
- Yost, J.L.; Hartemink, A.E. Chapter Four-Soil Organic Carbon in Sandy Soils: A Review. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2019; Volume 158, pp. 217–310. [Google Scholar]
- Hassink, J. The Capacity of Soils to Preserve Organic C and N by Their Association with Clay and Silt Particles. Plant Soil 1997, 191, 77–87. [Google Scholar] [CrossRef]
- Vanguelova, E.I.; Bonifacio, E.; De Vos, B.; Hoosbeek, M.R.; Berger, T.W.; Vesterdal, L.; Armolaitis, K.; Celi, L.; Dinca, L.; Kjønaas, O.J.; et al. Sources of Errors and Uncertainties in the Assessment of Forest Soil Carbon Stocks at Different Scales—Review and Recommendations. Environ. Monit. Assess. 2016, 188, 630. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; Lobsey, C.R.; Sharman, C.; Flick, P.; McLachlan, G. Novel Proximal Sensing for Monitoring Soil Organic C Stocks and Condition. Environ. Sci. Technol. 2017, 51, 5630–5641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, P.; Soussana, J.-F.; Angers, D.; Schipper, L.; Chenu, C.; Rasse, D.P.; Batjes, N.H.; van Egmond, F.; McNeill, S.; Kuhnert, M.; et al. How to Measure, Report and Verify Soil Carbon Change to Realize the Potential of Soil Carbon Sequestration for Atmospheric Greenhouse Gas Removal. Glob. Chang. Biol. 2020, 26, 219–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peralta, G.; Di Paolo, L.; Luotto, I.; Omuto, C.; Mainka, M.; Viatkin, K.; Yigini, Y. Global Soil Organic Carbon Sequestration Potential Map (GSOCseq v1.1)–Technical Manual; FAO: Rome, Italy, 2022; ISBN 978-92-5-133796-7. [Google Scholar]
- van Kooten, G.C.; Johnston, C.M.T. The Economics of Forest Carbon Offsets. Annu. Rev. Resour. Econ. 2016, 8, 227–246. [Google Scholar] [CrossRef]
- Badgery, W.; Murphy, B.; Cowie, A.; Orgill, S.; Rawson, A.; Simmons, A.; Crean, J.; Badgery, W.; Murphy, B.; Cowie, A.; et al. Soil Carbon Market-Based Instrument Pilot–the Sequestration of Soil Organic Carbon for the Purpose of Obtaining Carbon Credits. Soil Res. 2020, 59, 12–23. [Google Scholar] [CrossRef]
- Mulligan, M.; van Soesbergen, A.; Hole, D.G.; Brooks, T.M.; Burke, S.; Hutton, J. Mapping Nature’s Contribution to SDG 6 and Implications for Other SDGs at Policy Relevant Scales. Remote Sens. Environ. 2020, 239, 111671. [Google Scholar] [CrossRef]
- Montanarella, L.; Panagos, P. The Relevance of Sustainable Soil Management within the European Green Deal. Land Use Policy 2021, 100, 104950. [Google Scholar] [CrossRef]
- Sharps, K.; Masante, D.; Thomas, A.; Jackson, B.; Redhead, J.; May, L.; Prosser, H.; Cosby, B.; Emmett, B.; Jones, L. Comparing Strengths and Weaknesses of Three Ecosystem Services Modelling Tools in a Diverse UK River Catchment. Sci. Total Environ. 2017, 584–585, 118–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Soil Carbon Stock (Mg·ha−1) | ||||||
---|---|---|---|---|---|---|
Land-Use Land-Cover (LULC) Class | No. of Samples (n) | Min. | Mean | Max. | St. Dev. | Var. |
Farmland | 35 | 30.48 | 60.40 | 100.67 | 17.15 | 293.96 |
Forested areas | 20 | 39.72 | 64.21 | 91.44 | 14.15 | 200.29 |
Grasslands | 20 | 18.88 | 52.75 | 92.41 | 18.38 | 337.79 |
Vác-Pest-Danube Valley microregion (north) | ||||||
Farmland | 5 | 35.69 | 48.26 | 57.33 | 9.76 | 95.30 |
Forested areas | 5 | 56.04 | 63.91 | 67.18 | 4.62 | 21.37 |
Grasslands | 5 | 18.88 | 39.37 | 69.76 | 21.44 | 459.52 |
South-Zselic microregion (south) | ||||||
Farmland | 30 | 30.48 | 62.30 | 100.67 | 17.37 | 301.58 |
Forested areas | 15 | 39.72 | 64.32 | 91.44 | 16.45 | 270.70 |
Grasslands | 15 | 28.28 | 57.20 | 92.41 | 15.55 | 241.95 |
Datasets | Carbon Stock (Mg·ha−1)/LULC | ||
---|---|---|---|
Farmland | Forested Area | Grassland | |
(a) National Soil Data—Hungary | 54.45 | 41.87 | 53.58 |
North study area | |||
(b) National Soil Data—Danube plain mesoregion | 60.01 | 50.22 | 53.2 |
(c) Min. soil sample value | 35.69 | 56.04 | 18.88 |
(d) Mean of soil samples | 48.26 | 63.91 | 39.37 |
(e) Max. soil sample value | 57.33 | 67.18 | 69.76 |
South study area | |||
(b) National Soil Data—Mecsek and Tolna-Baranya hills mesoregion | 42.5 | 39.6 | 43.76 |
(c) Min. soil sample value | 30.48 | 39.72 | 28.28 |
(d) Mean of soil samples | 62.3 | 64.32 | 57.2 |
(e) Max. soil sample value | 100.67 | 91.44 | 92.41 |
National—Mesoregion | Samples Min. | Samples Mean | Samples Max. | |
---|---|---|---|---|
North | ||||
National—Hungary | −40,635 | 96,543 | −10,685 | −115,030 |
National—mesoregion | 137,178 | 29,950 | −74,395 | |
Samples min. | −107,228 | −211,573 | ||
Samples mean | −104,345 | |||
South | ||||
National—Hungary | 425,857 | 848,840 | −593,527 | −229,4677 |
National—mesoregion | 422,983 | −1,019,384 | −2,720,534 | |
Samples min. | −1,442,367 | −3,143,517 | ||
Samples mean | −1,701,150 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nel, L.; Boeni, A.F.; Prohászka, V.J.; Szilágyi, A.; Tormáné Kovács, E.; Pásztor, L.; Centeri, C. InVEST Soil Carbon Stock Modelling of Agricultural Landscapes as an Ecosystem Service Indicator. Sustainability 2022, 14, 9808. https://doi.org/10.3390/su14169808
Nel L, Boeni AF, Prohászka VJ, Szilágyi A, Tormáné Kovács E, Pásztor L, Centeri C. InVEST Soil Carbon Stock Modelling of Agricultural Landscapes as an Ecosystem Service Indicator. Sustainability. 2022; 14(16):9808. https://doi.org/10.3390/su14169808
Chicago/Turabian StyleNel, Lyndré, Ana Flávia Boeni, Viola Judit Prohászka, Alfréd Szilágyi, Eszter Tormáné Kovács, László Pásztor, and Csaba Centeri. 2022. "InVEST Soil Carbon Stock Modelling of Agricultural Landscapes as an Ecosystem Service Indicator" Sustainability 14, no. 16: 9808. https://doi.org/10.3390/su14169808