Does Agroforestry Adoption Affect Subjective Well-Being? Empirical Evidence from Smallholder Farmers in East Java, Indonesia
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Data
2.2. Data Analysis
2.2.1. Analysis of Factors Affecting Agroforestry Adoption
2.2.2. Impact Analysis of Agroforestry Adoption to Farmers’ Subjective Well-Being
3. Results and Discussion
3.1. Agroforestry in Bromo Tengger Semeru (BTS)
3.2. Descriptive Statistics
3.3. The Determinants of Agroforestry Adoption
3.4. The Impact of Agroforestry Adoption on Subjective Well-Being
4. Conclusions and Policy Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Desmiwati, D.; Veriasa, T.O.; Aminah, A.; Safitri, A.D.; Wisudayati, T.A.; Hendarto, K.A.; Royani, H.; Dewi, K.H.; Raharjo, S.N.I.; Sari, D.R. Contribution of agroforestry systems to farmer income in state forest areas: A case study of Parungpanjang, Indonesia. For. Soc. 2021, 5, 109–119. [Google Scholar] [CrossRef]
- Kassie, G.W. Agroforestry and farm income diversification: Synergy or trade-off? The case of Ethiopia. Environ. Syst. Res. 2018, 6, 8. [Google Scholar] [CrossRef]
- Miller, D.C.; Ordoñez, P.J.; Brown, S.E.; Forrest, S.; Nava, N.J.; Hughes, K.; Baylis, K. The impacts of agroforestry on agricultural productivity, ecosystem services, and human well-being in low-and middle-income countries: An evidence and gap map. Campbell Syst. Rev. 2020, 16, 1–35. [Google Scholar] [CrossRef]
- Rahman, S.A.; Jacobsen, J.B.; Healey, J.R.; Roshetko, J.M.; Sunderland, T. Finding alternatives to swidden agriculture: Does agroforestry improve livelihood options and reduce pressure on existing forest? Agrofor. Syst. 2017, 91, 185–199. [Google Scholar] [CrossRef]
- Franzen, M.; Borgerhoff Mulder, M. Ecological, economic and social perspectives on cocoa production worldwide. Biodivers. Conserv. 2007, 16, 3835–3849. [Google Scholar] [CrossRef]
- Smith, P.; Martino, D.; Cai, Z.; Gwary, D.; Janzen, H.; Kumar, P.; McCarl, B.; Ogle, S.; O’Mara, F.; Rice, C. Greenhouse gas mitigation in agriculture. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 789–813. [Google Scholar] [CrossRef]
- Somarriba, E.; Cerda, R.; Orozco, L.; Cifuentes, M.; Dávila, H.; Espin, T.; Mavisoy, H.; Ávila, G.; Alvarado, E.; Poveda, V.; et al. Carbon stocks in agroforestry systems with cocoa (Theobroma cacao L.) in Central America. Ecosyst. Environ. 2013, 173, 46–57. [Google Scholar] [CrossRef]
- Degrande, A.; Schreckenberg, K.; Mbosso, C.; Anegbeh, P.; Okafor, V.; Kanmegne, J. Farmers’ fruit tree-growing strategies in the humid forest zone of Cameroon and Nigeria. Agrofor. Syst. 2006, 67, 159–175. [Google Scholar] [CrossRef]
- Kiptot, E.; Franzel, S.; Degrande, A. Gender, agroforestry and food security in Africa. Curr. Opin. Environ. Sustain. 2014, 6, 104–109. [Google Scholar] [CrossRef]
- Maliki, R.; Cornet, D.; Floquet, A.; Sinsin, B. Agronomic and economic performance of yam-based systems with shrubby and herbaceous legumes adapted by smallholders. Outlook Agric. 2012, 41, 171–178. [Google Scholar] [CrossRef]
- Mbow, C.; Smith, P.; Skole, D.; Duguma, L.; Bustamante, M. Achieving mitigation and adaptation to climate change through sustainable agroforestry practices in Africa. Curr. Opin. Environ. Sustain. 2014, 6, 8–14. [Google Scholar] [CrossRef]
- Kandji, S.T.; Verchot, L.; Mackensen, J. Climate Change and Variability in the Sahel Region: Impacts and Adaptation Strategies in the Agricultural Sector. 2006. Available online: https://www.worldagroforestry.org/publication/climate-change-and-variability-sahel-region-impacts-and-adaptation-strategies (accessed on 3 March 2022).
- Smith, J. Agroforestry: Reconciling Production with Protection of the Environment. 2010. Available online: https://www.researchgate.net/publication/277754782_Agroforestry_Reconciling_Production_with_Protection_of_the_Environment_A_Synopsis_of_Research_Literature (accessed on 12 March 2022).
- Nöldeke, B.; Winter, E.; Laumonier, Y.; Simamora, T. Simulating agroforestry adoption in rural Indonesia: The potential of trees on farms for livelihoods and environment. Land 2021, 10, 385. [Google Scholar] [CrossRef]
- Kusters, K.; Ruiz Perez, M.; de Foresta, H.; Dietz, T.; Ros-Tonen, M.; Belcher, B.; Manalu, P.; Nawir, A.; Wollenberg, E. Will agroforests vanish? The case of Damar agroforests in Indonesia. Hum. Ecol. 2008, 36, 357–370. [Google Scholar] [CrossRef][Green Version]
- De Zoysa, M.; Inoue, M. Climate change impacts, agroforestry adaptation and policy environment in Sri Lanka. Open J. For. 2014, 4, 439. [Google Scholar] [CrossRef]
- Kay, S.; Rega, C.; Moreno, G.; den Herder, M.; Palma, J.H.; Borek, R.; Crous-Duran, J.; Freese, D.; Giannitsopoulos, M.; Graves, A. Agroforestry creates carbon sinks whilst enhancing the environment in agricultural landscapes in Europe. Land Use Policy 2019, 83, 581–593. [Google Scholar] [CrossRef]
- Castle, S.E.; Miller, D.C.; Merten, N.; Ordonez, P.J.; Baylis, K. Evidence for the impacts of agroforestry on ecosystem services and human well-being in high-income countries: A systematic map. Environ. Evid. 2022, 11, 10. [Google Scholar] [CrossRef]
- Cerda, R.; Deheuvels, O.; Calvache, D.; Niehaus, L.; Saenz, Y.; Kent, J.; Vilchez, S.; Villota, A.; Martinez, C.; Somarriba, E. Contribution of cocoa agroforestry systems to family income and domestic consumption: Looking toward intensification. Agrofor. Syst. 2014, 88, 957–981. [Google Scholar] [CrossRef]
- Fahmi, M.K.M.; Dafa-Alla, D.-A.M.; Kanninen, M.; Luukkanen, O. Impact of agroforestry parklands on crop yield and income generation: Case study of rainfed farming in the semi-arid zone of Sudan. Agrofor. Syst. 2018, 92, 785–800. [Google Scholar] [CrossRef]
- Jaya, A.; Antang, E.; Djaya, A.; Gunawan, H. Agroforestry farming system as peatland restoration efforts in Central Kalimantan, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2021, 694, 012016. [Google Scholar] [CrossRef]
- Staton, T.; Breeze, T.D.; Walters, R.J.; Smith, J.; Girling, R.D. Productivity, biodiversity trade-offs, and farm income in an agroforestry versus an arable system. Ecol. Econ. 2022, 191, 107214. [Google Scholar] [CrossRef]
- Rahman, M.S.; Andriatmoko, N.D.; Saeri, M.; Subagio, H.; Malik, A.; Triastono, J.; Oelviani, R.; Kilmanun, J.C.; da Silva, H.; Pesireron, M. Climate disasters and subjective well-being among urban and rural residents in Indonesia. Sustainability 2022, 14, 3383. [Google Scholar] [CrossRef]
- Rahman, M.S.; Toiba, H.; Huang, W.-C. The impact of climate change adaptation strategies on income and food security: Empirical evidence from small-scale fishers in Indonesia. Sustainability 2021, 13, 7905. [Google Scholar] [CrossRef]
- Rahman, M.S.; Huang, W.-C.; Toiba, H.; Efani, A. Does adaptation to climate change promote household food security? Insights from Indonesian fishermen. Int. J. Sustain. Dev. World Ecol. 2022, 1–14. [Google Scholar] [CrossRef]
- Toiba, H.; Nugroho, T.W.; Retnoningsih, D.; Rahman, M.S. Food system transformation and its impact on smallholder farmers’ income and food security in Indonesia. Cogent Econ. Financ. 2020, 8, 1854412. [Google Scholar] [CrossRef]
- Becerril, J.; Abdulai, A. The impact of improved maize varieties on poverty in Mexico: A propensity score-matching approach. World Dev. 2010, 38, 1024–1035. [Google Scholar] [CrossRef]
- Latiff, A. Plant Resources of South-East Asia. Auxiliary Plants; Bogors Press Fundation: Bogors, Indonesia, 1997. [Google Scholar]
- Jayaraj, R.S.C. Casuarina junghuhniana (Casuarinaceae) in India. Aust. J. Bot. 2010, 58, 149–156. [Google Scholar] [CrossRef]
- Hakim, L.; Soemarno, M.; Geosites. Biodiversity conservation, community development and geotourism development in Bromo-Tengger-Semeru-Arjuno biosphere reserve, East Java. Geoj. Tour. 2017, 20, 220–230. [Google Scholar]
- Batoro, J.; Indriyani, S.; Yanuwiadi, B. Ethno-ecology of Komplangan Field of the Bromo, Tengger, and Semeru Area in East Java: A qualitative approach. Biosaintifika J. Biol. Biol. Educ. 2017, 9, 41–48. [Google Scholar] [CrossRef]
- Syafrial; Toiba, H.; Rahman, M.S.; Retnoningsih, D. The Effects of Improved Cassava Variety Adoption on Farmers’ Technical Efficiency in Indonesia. Asian J. Agric. Rural Dev. 2021, 11, 269–278. [Google Scholar] [CrossRef]
- Adegbola, P.; Gardebroek, C. The effect of information sources on technology adoption and modification decisions. Agric. Econ. 2007, 37, 55–65. [Google Scholar] [CrossRef]
- Mwaura, F. Effect of farmer group membership on agricultural technology adoption and crop productivity in Uganda. Afr. Crop Sci. J. 2014, 22, 917–927. [Google Scholar]
- Wossen, T.; Alene, A.; Abdoulaye, T.; Feleke, S.; Rabbi, I.Y.; Manyong, V. Poverty reduction effects of agricultural technology adoption: The case of improved cassava varieties in Nigeria. J. Agric. Econ. 2019, 70, 392–407. [Google Scholar] [CrossRef]
- Zheng, H.; Ma, W. Click it and buy happiness: Does online shopping improve subjective well-being of rural residents in China? Appl. Econ. 2021, 53, 4192–4206. [Google Scholar] [CrossRef]
- Nugroho, T.W.; Hanani, N.; Toiba, H.; Sujarwo, S. Promoting Subjective Well-Being among Rural and Urban Residents in Indonesia: Does Social Capital Matter? Sustainability 2022, 14, 2375. [Google Scholar] [CrossRef]
Variable | Measurement | Mean | Std. |
---|---|---|---|
Agroforestry | Dummy, 1 if the farmer adopts the agroforestry system; 0 otherwise | 0.587 | 0.493 |
Terrace | Dummy, 1 if the farmer’s land is terraced; 0 otherwise | 0.505 | 0.501 |
Age | Age of farmers in years | 48.205 | 11.109 |
Education | Education of farmers in years | 7.020 | 4.142 |
Experience | Farming experience in years | 27.828 | 13.882 |
Off-farm work | Dummy, 1 if the farmer has an off-farm job; 0 otherwise | 0.356 | 0.480 |
Land status | Dummy, 1 for owning land; 0 otherwise | 0.766 | 0.424 |
Social Activity | Dummy, 1 if the farmer participates in a social activity; 0 otherwise | 0.469 | 0.500 |
Cooperative | Dummy, 1 if the farmer participates in a cooperative; 0 otherwise | 0.446 | 0.498 |
Farmers Group | Dummy, 1 if the farmer participates in a farmers’ group; 0 otherwise | 0.574 | 0.495 |
Location | Dummy, 1 if the farmer is located in Probolinggo; 0 otherwise | 0.528 | 0.500 |
Irrigation | Dummy, 1 if the farmer’s land has irrigation access; 0 otherwise | 0.677 | 0.469 |
Non-agri land | Number of non-agriculture land in Ha | 0.037 | 0.237 |
Life satisfaction | Life satisfaction level (1 for not satisfied at all to 5 very satisfied) | 2.611 | 1.287 |
Happiness | Happiness level (1 for very unhappy to 5 for very happy) | 2.337 | 1.165 |
Variable | Adopter | Non-Adopter | Different | t-Value |
---|---|---|---|---|
Terrace | 0.669 | 0.272 | 0.397 | 7.358 *** |
Age | 45.270 | 52.384 | −7.114 | −5.775 *** |
Education | 8.410 | 5.040 | 3.370 | 7.599 *** |
Experience | 25.298 | 31.432 | −6.134 | −3.874 *** |
Off-farm work | 0.230 | 0.536 | −0.306 | −5.742 *** |
Land status | 0.792 | 0.728 | 0.064 | 1.297 |
Social activity | 0.792 | 0.008 | 0.784 | 21.178 *** |
Cooperative | 0.685 | 0.104 | 0.581 | 12.220 *** |
Farmers’ Group | 0.798 | 0.256 | 0.542 | 11.113 *** |
Location | 0.567 | 0.472 | 0.095 | 1.640 * |
Irrigation | 0.713 | 0.624 | 0.089 | 1.641 * |
Non-agri land | 0.041 | 0.031 | 0.011 | 0.379 |
Life satisfaction | 2.927 | 2.160 | 0.767 | 5.335 *** |
Happiness | 2.652 | 1.888 | 0.764 | 5.928 *** |
Agroforestry | Coef. | Std. Err | z | p > |z| |
---|---|---|---|---|
Terrace | 1.436 | 0.491 | 2.920 | 0.003 *** |
Age | 0.045 | 0.026 | 1.760 | 0.079 * |
Education | 0.153 | 0.065 | 2.360 | 0.018 ** |
Experience | −0.012 | 0.018 | −0.690 | 0.491 |
Off-farm work | −1.210 | 0.424 | −2.850 | 0.004 *** |
Land status | 0.555 | 0.416 | 1.340 | 0.182 |
Social Activity | 3.980 | 0.689 | 5.780 | 0.000 *** |
Cooperative | 1.395 | 0.423 | 3.300 | 0.001 *** |
Farmers Group | 1.907 | 0.433 | 4.400 | 0.000 *** |
Location | −0.223 | 0.484 | −0.460 | 0.646 |
Irrigation | 0.419 | 0.484 | 0.870 | 0.386 |
Non-agri land | −0.098 | 1.457 | −0.070 | 0.946 |
_cons | −5.910 | 1.709 | −3.460 | 0.001 |
Number of obs | 303.000 | |||
Log-likelihood | −36.453 | |||
LR chi2 (12) | 337.820 | |||
Prob > chi2 | 0.000 | |||
Pseudo R2 | 0.823 |
Matching Algorithm | Outcome | Treated | Control | ATT | Std. Err | t-Value |
---|---|---|---|---|---|---|
Nearest neighbor matching | Life satisfaction | 178 | 13 | 1.787 | 0.441 | 4.048 *** |
Happiness | 178 | 13 | 1.556 | 0.413 | 3.766 *** | |
Kernel-based matching | Life satisfaction | 178 | 47 | 1.702 | 1.059 | 1.607 * |
Happiness | 178 | 47 | 1.507 | 0.513 | 2.937 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wijayanto, H.W.; Lo, K.-A.; Toiba, H.; Rahman, M.S. Does Agroforestry Adoption Affect Subjective Well-Being? Empirical Evidence from Smallholder Farmers in East Java, Indonesia. Sustainability 2022, 14, 10382. https://doi.org/10.3390/su141610382
Wijayanto HW, Lo K-A, Toiba H, Rahman MS. Does Agroforestry Adoption Affect Subjective Well-Being? Empirical Evidence from Smallholder Farmers in East Java, Indonesia. Sustainability. 2022; 14(16):10382. https://doi.org/10.3390/su141610382
Chicago/Turabian StyleWijayanto, Hari Wahyu, Kai-An Lo, Hery Toiba, and Moh Shadiqur Rahman. 2022. "Does Agroforestry Adoption Affect Subjective Well-Being? Empirical Evidence from Smallholder Farmers in East Java, Indonesia" Sustainability 14, no. 16: 10382. https://doi.org/10.3390/su141610382
APA StyleWijayanto, H. W., Lo, K.-A., Toiba, H., & Rahman, M. S. (2022). Does Agroforestry Adoption Affect Subjective Well-Being? Empirical Evidence from Smallholder Farmers in East Java, Indonesia. Sustainability, 14(16), 10382. https://doi.org/10.3390/su141610382