Poverty and Its Correlates among Kenyan Refugees during the COVID-19 Pandemic: A Random Effects Probit Regression Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Data
2.2. Estimated Models
3. Results
3.1. Descriptive Characteristics of Refugees’ Demographic Characteristics
3.2. Poverty Levels across Time and Refugees’ Demographic Characteristics
3.3. Determinants of Poverty
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Purvis, B.; Mao, Y.; Robinson, D. Three pillars of sustainability: In search of conceptual origins. Sustain. Sci. 2019, 14, 681–695. [Google Scholar] [CrossRef]
- United Nations High Commis’sioner for Refugees (UNHCR) (2021). Global Trends Forced Displacement in 2020. Available online: https://www.unhcr.org/60b638e37.pdf (accessed on 5 July 2022).
- Merry, L.; Pelaez, S.; Edwards, N.C. Refugees, asylum-seekers and undocumented migrants and the experience of parenthood: A synthesis of the qualitative literature. Glob. Health 2017, 13, 75. [Google Scholar]
- Batterham, P.J.; Christensen, H.; Calear, A.L. Anxiety symptoms as precursors of major depression and suicidal ideation. Depression Anxiety 2013, 30, 908–916. [Google Scholar]
- International Organization for Migration. IOM Reiterates Importance of Addressing Mental Health Impacts of COVID-19 on Displaced and Migrant Populations. International Organization for Migration. 2020. Available online: https://www.iom.int/news/iom-reiterates-importance-addressing-mental-health-impacts-covid-19-displaced-and-migrant (accessed on 22 July 2022).
- United Nations. Goal 1: End Poverty in All Its Forms Everywhere. Available online: https://www.un.org/sustainabledevelopment/poverty/ (accessed on 6 July 2022).
- United Nations. Poverty Eradication. Available online: https://sustainabledevelopment.un.org/topics/povertyeradication (accessed on 6 July 2022).
- Lakner, C.; Yonzan, N.; Mahler, D.G.; Aguilar, R.A.C.; Wu, H. Updated Estimates of the Impact of COVID-19 on Global Poverty: Looking Back at 2020 and the Outlook for 2021. 11 January 2021. Available online: https://blogs.worldbank.org/opendata/updated-estimates-impact-covid-19-global-poverty-looking-back-2020-and-outlook-2021 (accessed on 6 July 2022).
- Fox, L. Assessing Past and Future Strategies for Reducing Poverty in Africa. 2019. Available online: https://www.brookings.edu/blog/africa-in-focus/2019/10/21/assessing-past-and-future-strategies-for-reducing-poverty-in-africa/) (accessed on 5 July 2022).
- Griffith, M. Foreword from the Emergency Relief Coordinator. Available online: https://gho.unocha.org/intro/foreword-emergency-relief-coordinator (accessed on 31 July 2022).
- Global Humanitarian Overview (GHO). Global Humanitarian Overview 2022, May Update (Snapshot as of 31 May 2022). Available online: https://reliefweb.int/report/world/global-humanitarian-overview-2022-may-update-snapshot-31-may-2022 (accessed on 31 July 2022).
- Food and Agriculture Organization (FAO). The Impact of Disasters and Crises on Agriculture and Food Security; Food and Agriculture Organization of the United Nations: Rome, Italy, 2021; Available online: https://www.fao.org/3/cb3673en/cb3673en.pdf (accessed on 31 July 2022).
- Sanchez-Paramo, C.; Hill, R.; Mahler, D.G.; Narayan, A.; Yonzan, N. COVID-19 Leaves a Legacy of Rising Poverty and Widening Inequality. 7 October 2021. Available online: https://blogs.worldbank.org/developmenttalk/covid-19-leaves-legacy-rising-poverty-and-widening-inequality#:~:text=About%2097%20million%20more%20people,estimated%20to%20have%20been%20lost (accessed on 31 July 2022).
- Beltramo, T.; Pape, U. After Three Decades, How are Refugees in Kenya’s Kakuma Refugee Camp Faring? 19 April 2021. Available online: https://www.unhcr.org/blogs/after-three-decades-how-are-refugees-in-kenyas-kakuma-refugee-camp-faring/ (accessed on 4 July 2022).
- Allsopp, J.; Sigona, N.; Phillimore, J. Poverty among Refugees and Asylum Seekers in the UK An Evidence and Policy Review IRIS WORKING PAPER SERIES, NO. 1/2014. Available online: https://www.birmingham.ac.uk/documents/college-social-sciences/social-policy/iris/2014/working-paper-series/iris-wp-1-2014.pdf (accessed on 5 July 2022).
- Dang, H.H.; Verme, P. Estimating Poverty for Refugee Populations Can Cross-Survey Imputation Methods Substitute for Data Scarcity? Policy Research Working Paper 9076. 2019. Available online: https://documents1.worldbank.org/curated/en/271261575398109919/pdf/Estimating-Poverty-for-Refugee-Populations-Can-Cross-Survey-Imputation-Methods-Substitute-for-Data-Scarcity.pdf (accessed on 6 July 2022).
- Onur, A.; Stephen, O.; Aytuğ, Ş.; Zeynep, B.; Paola, C.; Matilda, J.; Aimee Kunze, F. Targeting Humanitarian Aid Using Administrative Data: Model Design and Validation. J. Dev. Econ. 2021, 148, 102564. [Google Scholar]
- Chaaban, J.M.; Seyfert, K.; Salti, N.I.; El Makkaoui, G.S. Poverty and Livelihoods Among Unhcr Registered Refugees in Lebanon. Refug. Surv. Q. 2013, 32, 24–49. [Google Scholar] [CrossRef]
- Verme, P.; Gigliarano, C.; Wieser, C.; Hedlund, K.; Petzoldt, M.; Santacroce, M. The Welfare of Syrian Refugees: Evidence from Jordan and Lebanon; The World Bank: Washington, DC, USA, 2015. [Google Scholar]
- Paolo, V.; Gigliarano, C. Optimal Targeting under Budget Constraints in a Humanitarian Context. World Dev. 2019, 119, 224–233. [Google Scholar]
- Sartorius, K.; Sartorius, B.; Tollman, S.; Schatz, E.; Kirsten, J.; Collinson, M. Rural Poverty Dynamics and Refugee Communities in South Africa: A Spatial–Temporal Model. Popul. Space Place 2013, 19, 103–123. [Google Scholar] [CrossRef]
- Khawaja, M. Migration and the Reproduction of Poverty: The Refugee Camps in Jordan. Int. Migr. 2003, 41, 27–57. [Google Scholar] [CrossRef]
- Hejoj, I. A Profile of Poverty for Palestinian Refugees in Jordan: The Case of Zarqa and Sukhneh Camps. J. Refug. Stud. 2007, 20, 120–145. [Google Scholar] [CrossRef]
- UNHCR. 3RP Regional Refugee & Resilience Plan 2016–2017 in Response to the Syria Crisis, Mid-Year Report. 2016. Available online: http://www.3rpsyriacrisis.org/wpcontent/uploads/2016/09/3RP-Mid-year-Report-Final.pdf (accessed on 5 July 2022).
- Alloush, M.; Gonzalez, E.; Gupta, A.; Rojas, I.R.; Taylor, J.E. Economic life in a refugee camp. 2016. Available online: http://migrationcluster.ucdavis.edu/events/seminars_2015-2016/alloush/paper_alloush.pdf (accessed on 7 July 2020).
- Jacobsen, K. The Economic Life of Refugees; Bloomfield, C.T., Ed.; Kumarian Press: Bloomfield, MI, USA, 2005. [Google Scholar]
- World Bank. Monitoring COVID-19 Impact on Households in Kenya. 9 June 2022. Available online: https://www.worldbank.org/en/country/kenya/brief/monitoring-covid-19-impact-on-households-and-firms-in-kenya (accessed on 7 July 2022).
- UNHCR. Socio-Economic Impact of COVID-19 on Refugees in Kenya-Panel-Anonymized for Licensed Use. 2021. Available online: https://microdata.unhcr.org (accessed on 7 July 2022).
- UNHCR. Microdata Library. Available online: https://microdata.unhcr.org/index.php/access_licensed/track/563 (accessed on 30 August 2021).
- UNHCR. Kenya-Socio-Economic Impact of COVID-19 on Refugees-Round 5, 2021 UNHCR Report. Available online: https://microdata.unhcr.org/index.php (accessed on 27 July 2022).
- Gibbons, R.D.; Bock, R.D. Trend in correlated proportions. Psychometrika 1987, 52, 113–124. [Google Scholar]
- World Bank. Kenya. Poverty & Equity Brief. 2020. Available online: https://databank.worldbank.org/data/download/poverty/33EF03BB-9722-4AE2-ABC7-AA2972D68AFE/Global_POVEQ_KEN.pdf (accessed on 22 June 2022).
- Foster, J.; Greer, J.; Thorbecke, E. The Foster-Greer-Thorbecke (FGT) Poverty Measures: Twenty-Five Years Later. Available online: https://www2.gwu.edu/~iiep/assets/docs/papers/Foster_IIEPWP2010-14.pdf (accessed on 7 July 2022).
- STATA. Xtprobit-Random-Effects and Population-Averaged Probit Models. Available online: https://www.stata.com/manuals13/xtxtprobit.pdf (accessed on 7 July 2022).
- Kenya National Bureau of Statistics; Kenya Ministry of Health; Kenya National AIDS Control Council; Kenya Medical Research Institute; Kenya National Council for Population and Development; The DHS Program, ICF International. Kenya Demographic and Health Survey 2014. Available online: https://dhsprogram.com/pubs/pdf/FR308/FR308.pdf (accessed on 1 August 2022).
- Kenya National Bureau of Statistics. 2019 Kenya Population and Housing Census Reports. Available online: https://housingfinanceafrica.org/documents/2019-kenya-population-and-housing-census-reports/ (accessed on 1 August 2022).
- Gakunga, M. Kenya Lauded for Achieving 75% Electricity Access Rate. Available online: https://www.comesa.int/kenya-lauded-for-achieving-75-electricity-access-rate/ (accessed on 1 August 2022).
- McLean, M. The Impact of COVID-19 On Poverty in Kenya. 25 June 2021. Available online: https://borgenproject.org/the-impact-of-covid-19-on-poverty-in-kenya/ (accessed on 8 July 2022).
- United Nations Development Programme UNDP. Accelerating Progress in Poverty Eradication Post COVID-19: The Case of Kenya. May 2021. Available online: https://www.un.org/development/desa/dspd/wp-content/uploads/sites/22/2021/05/Dhliwayo_Paper-_-The-Case-of-Kenya.pdf (accessed on 9 July 2022).
- World Bank. Kenya Economic Update: Navigating the Pandemic, November 2020|Edition No. 22, 2020. Available online: https://openknowledge.worldbank.org/bitstream/handle/10986/34819/Kenya-Economic-Update-Navigating-thePandemic.pdf?sequence=1&isAllowed=y (accessed on 5 July 2022).
- Yonzan, N.; Cojocaru, A.; Lakner, C.; Mahler, D.G.; Narayan, A. The Impact of COVID-19 on Poverty and Inequality: Evidence from Phone Surveys. 18 January 2022. Available online: https://blogs.worldbank.org/opendata/impact-covid-19-poverty-and-inequality-evidence-phone-surveys (accessed on 9 July 2022).
- World Bank. Poverty and Shared Prosperity 2020: Reversals of Fortune; The World Bank: Washington, DC, USA, 2020; Available online: https://www.worldbank.org/en/publication/poverty-and-shared-prosperity (accessed on 23 April 2021). [CrossRef]
- Betho, R.; Chelengo, M.; Jones, S.; Keller, M.; Mussagy, I.H.; van Seventer, D.; Tarp, F. The macroeconomic impact of COVID-19 in Mozambique: A social accounting matrix approach. J. Int. Dev. 2021, 34, 823–860. [Google Scholar]
- Barletta, G.; Castigo, F.; Egger, E.-M.; Keller, M.; Salvucci, V.; Tarp, F. The impact of COVID-19 on consumption poverty in Mozambique. J. Int. Dev. 2022, 34, 771–802. [Google Scholar]
- Chatterjee, A. Family Size and Family Welfare. Econ. Political Wkly. 1972, 7, 2155–2166. [Google Scholar]
- HM Government. An Evidence Review of the Drivers of Child Poverty for Families in Poverty Now and For Poor Children Growing Up to be Poor Adults. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/285389/Cm_8781_Child_Poverty_Evidence_Review_Print.pdf (accessed on 9 July 2022).
- Lacovou, M.; Berthoud, R. The economic Position of Large Families; Research Report 358; Department for Work and Pensions: London, UK, 2006. [Google Scholar]
- Smith, N.; Middleton, S. A Review of Poverty Dynamics Research in the UK; Joseph Rowntree Foundation: York, UK, 2007. [Google Scholar]
- Vegeris, S.; Perry, J. Families and Children 2001: Living Standards and the Children; Research Report No. 190; Department for Work and Pensions: London, UK, 2003. [Google Scholar]
- Barnes, M.; Conolly, A.; Tomaszewski, W. The Circumstances of Persistently Poor Families with Children: Evidence from the Families and Children Study (FACS); Working Paper No. 487; Department for Work and Pensions: London, UK, 2008. [Google Scholar]
- UNHCR. World Bank and UNHCR Launch Report on Understanding the Socioeconomic Conditions of Refugees in Kalobeyei, Kenya. Available online: https://www.unhcr.org/ke/17413-world-bank-and-unhcr-launch-report-on-understanding-the-socioeconomic-conditions-of-refugees-in-kalobeyei-kenya.html (accessed on 9 July 2022).
- UNHCR. Understanding the Socioeconomic Conditions of Refugees in Kakuma Camp, Kenya. Available online: https://www.unhcr.org/603904d14.pdf (accessed on 9 July 2022).
- UNHCR; World Bank. Understanding the Socioeconomic Conditions of Refugees in Kenya Volume A: Kalobeyei Settlement Results from the 2018 Kalobeyei Socioeconomic Survey. Available online: https://microdata.unhcr.org/index.php/catalog/232/download/1162 (accessed on 9 July 2022).
- UNICEF. Improving Social Protection for Migrants, Refugees and Asylum Seekers An Overview of International Practices. Available online: https://www.unicef.org/egypt/media/6876/file/Improving%20social%20protection%20for%20migrants,%20refugees%20and%20asylum%20seekers%20in%20Egypt%7C%20Report%20Highlights.pdf%20.pdf (accessed on 9 July 2022).
- World Bank. World Bank Predicts Sharpest Decline of Remittances in Recent History. Available online: https://www.worldbank.org/en/news/press-release/2020/04/22/world-bank-predicts-sharpest-decline-of-remittances-in-recent-history (accessed on 7 July 2022).
- Wang, X.; Feng, H.; Xia, Q.; Alkire, S. On the Relationship between Income Poverty and Multidimensional Poverty in China; OPHI Working Paper 101; University of Oxford: Oxford, UK, 2016. [Google Scholar]
- Wang, X. On the Relationship Between Income Poverty and Multidimensional Poverty in China. In Multidimensional Poverty Measurement; International Research on Poverty Reduction; Springer: Singapore, 2022. [Google Scholar] [CrossRef]
- McKay, A. Assets and Chronic Poverty: Background Paper; Working Paper No. 100; Chronic Poverty Research Centre, University of Sussex: Brighton, UK, 2009. [Google Scholar]
- Carter, M.R.; Barrett, C. The economics of poverty traps and persistent poverty: An asset-based approach. J. Dev. Stud. 2006, 42, 178–199. [Google Scholar]
- Carter, M.R. Learning from asset-based approaches to poverty. In Reducing Global Poverty: The Case of Asset Accumulation; Moses, C.O., Ed.; Brookings Institutions: Washington, DC, USA, 2007; pp. 51–61. [Google Scholar]
Variable | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|
Household-head age | 36.09036 | 11.92076 | 18 | 96 |
Urban resident (yes = 1, 0 otherwise) | 0.2402851 | 0.4272853 | 0 | 1 |
Household size | 5.067366 | 3.241683 | 1 | 15 |
Household-head’s Gender (Male = 1, 0 otherwise) | 0.5525077 | 0.4972687 | 0 | 1 |
Improved floor materials (yes = 1, 0 otherwise) | 0.4263816 | 0.4945839 | 0 | 1 |
Power-grid connection (yes = 1, 0 otherwise) | 0.4103805 | 0.4919359 | 0 | 1 |
Number of telephones | 1.497647 | 0.845932 | 1 | 10 |
Agric activity (yes = 1, 0 otherwise) | 0.0103536 | 0.1012315 | 0 | 1 |
Pastoral activity (yes = 1, 0 otherwise) | 0.0075299 | 0.0864536 | 0 | 1 |
Non-farm enterprises | 0.0746269 | 0.2881892 | 0 | 1 |
Amount of sold assets | 162.2722 | 1096.231 | 0 | 35,000 |
Received food (yes = 1, 0 otherwise) | 0.072341 | 0.2590691 | 0 | 1 |
Amount of loans | 443.9207 | 1999.125 | 0 | 60,000 |
Kakuma camp (yes = 1, 0 otherwise) | 0.2331585 | 0.4228708 | 0 | 1 |
Kalobeyei (yes = 1, 0 otherwise) | 0.1293532 | 0.3356131 | 0 | 1 |
Shona and other (yes = 1, 0 otherwise) | 0.4786876 | 0.4995792 | 0 | 1 |
Remittance recipient (yes = 1, 0 otherwise) | 0.0681727 | 0.2520589 | 0 | 1 |
Gift recipient (yes = 1, 0 otherwise) | 0.085115 | 0.2790715 | 0 | 1 |
Govt’s help recipient (yes = 1, 0 otherwise) | 0.0517682 | 0.2215736 | 0 | 1 |
NGO’s help recipient (yes = 1, 0 otherwise) | 0.1996773 | 0.3997846 | 0 | 1 |
Politician’s help recipient (yes = 1, 0 otherwise) | 0.0083367 | 0.0909302 | 0 | 1 |
Primary education (yes = 1, 0 otherwise) | 0.0514993 | 0.2210286 | 0 | 1 |
Secondary education (yes = 1, 0 otherwise) | 0.043566 | 0.204141 | 0 | 1 |
Tertiary education (yes = 1, 0 otherwise) | 0.0170768 | 0.1295663 | 0 | 1 |
Madrassa/Duksi trainings (yes = 1, 0 otherwise) | 0.0116983 | 0.1075313 | 0 | 1 |
National Poverty Line | FGT Poverty Line | ||||||||
---|---|---|---|---|---|---|---|---|---|
Variables | Non-Poor | Poor | Non-Poor | Poor | Total | ||||
Sector *** | Freq. | % | Freq. | % | Freq. | % | Freq. | % | Freq |
Rural | 1469 | 26.00 | 4181 | 74.00 | 2343 | 41.47 | 3307 | 58.53 | 5650 |
Urban | 536 | 29.99 | 1251 | 70.01 | 1188 | 66.48 | 599 | 33.52 | 1787 |
Household Size *** | |||||||||
1 | 845 | 60.66 | 548 | 39.34 | 1093 | 78.46 | 300 | 21.54 | 1393 |
2 | 287 | 46.07 | 336 | 53.93 | 458 | 73.52 | 165 | 26.48 | 623 |
3 | 208 | 31.56 | 451 | 68.44 | 399 | 60.55 | 260 | 39.45 | 659 |
4 | 219 | 26.39 | 611 | 73.61 | 440 | 53.01 | 390 | 46.99 | 830 |
5 | 140 | 17.50 | 660 | 82.50 | 346 | 43.25 | 454 | 56.75 | 800 |
6 | 127 | 15.17 | 710 | 84.83 | 285 | 34.05 | 552 | 65.95 | 837 |
7 | 69 | 11.79 | 516 | 88.21 | 181 | 30.94 | 404 | 69.06 | 585 |
8 | 46 | 8.63 | 487 | 91.37 | 130 | 24.39 | 403 | 75.61 | 533 |
9 | 24 | 5.83 | 388 | 94.17 | 78 | 18.93 | 334 | 81.07 | 412 |
10 | 13 | 4.28 | 291 | 95.72 | 52 | 17.11 | 252 | 82.89 | 304 |
11 | 9 | 4.74 | 181 | 95.26 | 28 | 14.74 | 162 | 85.26 | 190 |
12 | 9 | 8.04 | 103 | 91.96 | 16 | 14.29 | 96 | 85.71 | 112 |
13 | 6 | 6.59 | 85 | 93.41 | 18 | 19.78 | 73 | 80.22 | 91 |
14 | 0 | 0.00 | 16 | 100.00 | 1 | 6.25 | 15 | 93.75 | 16 |
15 | 3 | 5.77 | 49 | 94.23 | 6 | 11.54 | 46 | 88.46 | 52 |
Gender ** | |||||||||
Female | 888 | 26.68 | 2440 | 73.32 | 1519 | 45.64 | 1809 | 54.36 | 3328 |
Male | 1117 | 27.18 | 2992 | 72.82 | 2012 | 48.97 | 2097 | 51.03 | 4109 |
Refugee Camp *** | |||||||||
Dadaab | 395 | 33.45 | 786 | 66.55 | 602 | 50.97 | 579 | 49.03 | 1181 |
Kakuma | 293 | 16.90 | 1441 | 83.10 | 514 | 29.64 | 1220 | 70.36 | 1734 |
Kalobeyei | 101 | 10.50 | 861 | 89.50 | 221 | 22.97 | 741 | 77.03 | 962 |
Shona | 1216 | 34.16 | 2344 | 65.84 | 2194 | 61.63 | 1366 | 38.37 | 3560 |
Education Level *** | |||||||||
No education | 1780 | 27.32 | 4736 | 72.68 | 3160 | 48.50 | 3356 | 51.50 | 6516 |
Primary | 103 | 26.89 | 280 | 73.11 | 164 | 42.82 | 219 | 57.18 | 383 |
Secondary | 73 | 22.53 | 251 | 77.47 | 120 | 37.04 | 204 | 62.96 | 324 |
Tertiary | 27 | 21.26 | 100 | 78.74 | 51 | 40.16 | 76 | 59.84 | 127 |
Madrassa/Duksi | 22 | 25.29 | 65 | 74.71 | 36 | 41.38 | 51 | 58.62 | 87 |
Total | 2005 | 26.96 | 5432 | 73.04 | 3531 | 47.48 | 3906 | 52.52 | 7437 |
National Poverty Lines—Absolute Poverty | FGT Poverty Line—Relative Poverty | |||||
---|---|---|---|---|---|---|
Variables | Coeff. | Std. Error | Z-Stat | Coeff. | Std. Erro | Z-Stat |
Household-head age | −0005962 | 0.0016641 | −0.36 | −0.0008124 | 0.0015416 | −0.53 |
Urban resident | 0.5304689 *** | 0.0575498 | 9.22 | −0.0621043 | 0.0559765 | −1.11 |
Household size | 0.2539462 *** | 0.0091534 | 27.74 | 0.221153 *** | 0.0073963 | 29.90 |
Household-head’s Gender | 0.097118 | 0.0404006 | 0.49 | −0.0584858 | 0.037108 | −1.58 |
Improved floor materials | −2904145 *** | 0.0541267 | −5.37 | −0.2066656 *** | 0.0498143 | −4.15 |
Power-grid connection | −0.5864182 *** | 0.0493093 | −11.89 | −0.5533266 *** | 0.0462329 | −11.97 |
Number of telephones | −0.0902328 *** | 0.0258999 | −3.48 | −0.0982884 *** | 0.0226127 | −4.35 |
Agricultural activities | −0.3174728 | 0.1836556 | −1.73 | −0.6509349 *** | 0.1825093 | −3.57 |
Pastoral activities | −0.2578319 | 0.2070714 | −1.25 | −0.1562656 | 0.2020669 | −0.77 |
Non-farm enterprises | 0.2038178 ** | 0.0694801 | 2.93 | 0.2104616 *** | 0.0606683 | 3.47 |
Amount of sold assets | −0.0000846*** | 0.0000177 | −4.78 | −0.0001195 *** | 0.0000222 | −5.38 |
Received food | −0.7197434 *** | 0.0706498 | −10.19 | −0.7337994 *** | 0.0771994 | −9.51 |
Amount of loans | −0.0000643 *** | 9.80 × 10−6 | −6.56 | −0.0000936 *** | 0.0000124 | −7.58 |
Kakuma camp | 0.321264 *** | 0.065773 | 4.88 | 0.3445892 *** | 0.0592771 | 5.81 |
Kalobeyei | 0.8357634 *** | 0.0857262 | 9.75 | 0.7322573 *** | 0.0723144 | 10.13 |
Shona and other | 0.1555248 ** | 0.0654397 | 2.38 | 0.1258085 ** | 0.0612393 | 2.05 |
Remittance recipient | −0.4317669 *** | 0.0780547 | −5.53 | −0.3401173*** | 0.0815461 | −4.17 |
Gift recipient | −0.3082336 *** | 0.0707499 | −4.36 | −0.4623711 *** | 0.0755273 | −6.12 |
Govt’s help recipient | −0.0453486 | 0.0856754 | −0.53 | 0.0140349 | 0.0823195 | 0.17 |
NGO’s help recipient | 0.0508706 | 0.0486549 | 1.05 | 0.0200612 | 0.0449748 | 0.45 |
Politician’s help recipient | 0.1223808 | 0.2064259 | 0.59 | −0.1444377 | 0.1979488 | −0.73 |
Primary | −0.0352822 | 0.0860857 | -0.41 | 0.1836341 *** | 0.0802406 | 2.29 |
Secondary | 0.1232455 | 0.0967543 | 1.27 | 0.3807447 *** | 0.088656 | 4.29 |
Tertiary | 0.2053135 | 0.1529911 | 1.34 | 0.3643535 *** | 0.1338196 | 2.72 |
Madrassa/Duksi | 0.0986097 | 0.1789524 | 0.55 | 0.2288418 | 0.1646444 | 1.39 |
Constant | −0.1293588 | 0.0881372 | −1.47 | −0.5856023 *** | 0.083026 | −7.05 |
/lnsig2u | −2.422676 | 0.3341362 | −2.520044 | 0.3203641 | ||
sigma_u | 0.2977986 | 0.0497526 | 0.2836478 | 0.0454353 | ||
Rho | 0.0814598 | 0.0250014 | 0.0744649 | 0.0220795 | ||
Log likelihood | −3138.8213 | −3702.1233 | ||||
Wald chi2(25) | 1241.59 *** | 1608.80 *** | ||||
LR test of rho = 0: | 11.70 *** | 12.52 *** | ||||
No of observations | 7437 | 7437 | ||||
VIF | 1.42 | 1.42 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oyekale, A.S. Poverty and Its Correlates among Kenyan Refugees during the COVID-19 Pandemic: A Random Effects Probit Regression Model. Sustainability 2022, 14, 10270. https://doi.org/10.3390/su141610270
Oyekale AS. Poverty and Its Correlates among Kenyan Refugees during the COVID-19 Pandemic: A Random Effects Probit Regression Model. Sustainability. 2022; 14(16):10270. https://doi.org/10.3390/su141610270
Chicago/Turabian StyleOyekale, Abayomi Samuel. 2022. "Poverty and Its Correlates among Kenyan Refugees during the COVID-19 Pandemic: A Random Effects Probit Regression Model" Sustainability 14, no. 16: 10270. https://doi.org/10.3390/su141610270
APA StyleOyekale, A. S. (2022). Poverty and Its Correlates among Kenyan Refugees during the COVID-19 Pandemic: A Random Effects Probit Regression Model. Sustainability, 14(16), 10270. https://doi.org/10.3390/su141610270