Bibliometric Analysis of Municipal Solid Waste Management Research: Global and South African Trends
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Data Processsing
2.3. Data Analysis
3. Results and Discussion
3.1. Municipal Solid Waste Management in the World
3.2. Municipal Solid Waste Management in South Africa
3.3. Possible Solutions to Reduce MSW
3.4. Summary of the Literature Trends
4. Conclusions and Recommendations
- Role of MSWM in meeting sustainable development goals;
- Life-cycle assessment of MSW;
- Implementing integrated strategies for MSWM;
- Computer modelling, GIS, and location of disposal sites;
- Impacts of COVID-19-related waste streams;
- Role of MSWM in the CE.
5. Limitations of Study
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Minghua, Z.; Xiumin, F.; Rovetta, A.; Qichang, H.; Vicentini, F.; Bingkai, L.; Giusti, A.; Yi, L. Municipal solid waste management in Pudong New Area, China. Waste Manag. 2009, 29, 1227–1233. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Yadav, K.K.; Kumar, V. A review on current status of municipal solid waste management in India. J. Environ Sci. 2015, 37, 206–217. [Google Scholar] [CrossRef] [PubMed]
- Maphosa, V.; Maphosa, M. E-waste management in Sub-Saharan Africa: A systematic literature review. Cogent Bus. Manag. 2020, 7, 1814503. [Google Scholar] [CrossRef]
- Nanda, S.; Berruti, F. Municipal solid waste management and landfilling technologies: A review. Environ. Chem. Lett. 2021, 19, 1433–1456. [Google Scholar] [CrossRef]
- Kormaňáková, M.; Remešová, M.; Vančová, T. Food waste in municipal mixed waste produced at household level: Empirical evidence from the Czech Republic. J. Mater. Cycles Waste Manag. 2021, 23, 1348–1364. [Google Scholar] [CrossRef]
- World Bank. What a Waste 2.0. A Global Snapshot of Solid Waste Management to 2050. 2022. Available online: https://datatopics.worldbank.org/what-a-waste/trends_in_solid_waste_management.html (accessed on 6 June 2022).
- Rajkumar, J.; Ahmed, S. Status and challenges of municipal solid waste management in India: A review. Cogent Environ. Sci. 2016, 2, 1139434. [Google Scholar]
- Vergara, S.E.; Tchobanoglous, G. Municipal Solid Waste and the Environment: A Global Perspective. Annu. Rev. Environ. Resour. 2012, 37, 277–309. [Google Scholar] [CrossRef]
- Dlamini, B.R.; Rampedi, I.T.; Ifegbesan, A.P. Community resident’s opinions and perceptions on the effectiveness of waste management and recycling potential in the Umkhanyakude and Zululand District Municipalities in the KwaZulu-Natal Province of South Africa. Sustainability 2017, 9, 1835. [Google Scholar] [CrossRef]
- Bosman, C.; Alberts, R.; Roos, C. Waste. In Environmental Management in South Africa: Excerpts from the Third Edition; Strydom, H., King, N., Retief, F., Eds.; Juta: Cape Town, South Africa, 2018. [Google Scholar]
- Tsai, F.M.; Bui, T.; Tseng, M.; Lim, M.K.; Hu, J. Municipal solid waste management in a circular economy: A data-driven bibliometric analysis. J. Clean Prod. 2020, 275, 124132. [Google Scholar] [CrossRef]
- UN. Do You Know All 17 SDGs? 2015. Available online: https://sdgs.un.org/goals (accessed on 6 June 2022).
- Taherzadeh, M.J.; Rajendran, K. Factors affecting development of waste management. In Waste Management and Sustainable Consumption: Reflections on Consumer Waste; Routledge: London, UK, 2014; pp. 67–87. [Google Scholar]
- Iyamu, H.O.; Anda, M.; Ho, G. A review of municipal solid waste management in the BRIC and high-income countries: A thematic framework for low-income countries. Habitat Int. 2020, 95, 102097. [Google Scholar] [CrossRef]
- Bolton, K.; Rousta, K. Solid waste management toward zero landfill: A Swedish Model. In Sustainable Resource Recovery and Zero Waste Approaches; Taherzadeh, M.J., Bolton, K., Wong, J., Pandey, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 53–63. [Google Scholar]
- Rudra, S.; Tesfagaber, Y.K. Future district heating plant integrated with municipal solid waste (MSW) gasification for hydrogen production. Energy 2019, 180, 881–892. [Google Scholar] [CrossRef]
- Kubanza, S.N.; Simatele, M.D. Sustainable solid waste management in developing countries: A study of institutional strengthening for solid waste management in Johannesburg, South Africa. J. Environ. Plan Manag. 2020, 63, 175–188. [Google Scholar] [CrossRef]
- Godfrey, L.; Oelofse, S. Historical Review of Waste Management and Recycling in South Africa. Resources 2017, 6, 57. [Google Scholar] [CrossRef]
- Olukanni, D.O.; Akinyinka, O.O.; Ede, A.N.; Akinwumi, I.I.; Ajanaku, K.O. Appraisal of Municipal Solid Waste Management, Its Effect and Resource Potential in a Semi-Urban City: A Case Study. J. S. Afr. Bus. Res. 2014, 2014, 705695. [Google Scholar] [CrossRef]
- Sarquah, K.; Narra, S.; Beck, G.; Awafo, E.A.; Antwi, E. Bibliometric analysis; characteristics and trends of refuse derived fuel research. Sustainability 2022, 14, 1994. [Google Scholar] [CrossRef]
- Alemán-Nava, G.S.; Casiano-Flores, V.H.; Cárdenas-Chávez, D.L.; Díaz-Chavez, R.; Scarlat, N.; Mahlknecht, J.; Dallemand, J.-F.; Parra, R. Renewable Energy Research Progress in Mexico: A Review. Renew. Sustain. Energy Rev. 2014, 32, 140–153. [Google Scholar] [CrossRef]
- Mao, G.; Zou, H.; Chen, G.; Du, H.; Zuo, J. Past, Current and Future of Biomass Energy Research: A Bibliometric Analysis. Renew. Sustain. Energy Rev. 2015, 52, 1823–1833. [Google Scholar] [CrossRef]
- Zhou, W.; Kou, A.; Chen, J.; Ding, B. A Retrospective Analysis with Bibliometric of Energy Security. Energy Rep. 2018, 4, 724–732. [Google Scholar] [CrossRef]
- Obregón, L.; Orozco, C.; Camargo, J.; Duarte, J.; Valencia, G. Research Trend on Nuclear Energy from 2008 to 2018: A Bibliometric Analysis. Int. J. Energy Econ. Policy 2019, 9, 542–551. [Google Scholar] [CrossRef]
- Ferrari, G.; Pezzuolo, A.; Nizami, A.-S.; Marinello, F. Bibliometric Analysis of Trends in Biomass for Bioenergy Research. Energies 2020, 13, 3714. [Google Scholar] [CrossRef]
- Mao, G.; Hu, H.; Liu, X.; Crittenden, J.; Huang, N. A Bibliometric Analysis of Industrial Wastewater Treatments from 1998 to 2019. Environ. Pollut. 2020, 275, 115785. [Google Scholar] [CrossRef] [PubMed]
- Adedayo, H.B.; Adio, S.A.; Oboirien, B.O. Energy Research in Nigeria: A Bibliometric Analysis Energy Research in Nigeria: A Bibliometric Analysis. Energy Strateg. Rev. 2021, 34, 100629. [Google Scholar] [CrossRef]
- Borrelli, P.; Alewell, C.; Alvarez, P.; Anache, J.A.A.; Baartman, J.; Ballabio, C.; Bezak, N.; Biddoccu, M.; Cerda, A.; Chalise, D.; et al. Soil erosion modelling: A global review and statistical analysis. Sci. Total Environ. 2021, 780, 146494. [Google Scholar] [CrossRef] [PubMed]
- Bezak, N.; Mikoš, M.; Borrelli, P.; Alewell, C.; Alvarez, P.; Anache, J.A.A.; Baartman, J.; Ballabio, C.; Biddoccu, M.; Cerdà, A.; et al. Soil Erosion Modelling: A Bibliometric Analysis. Environ. Res. 2021, 197, 111087. [Google Scholar] [CrossRef] [PubMed]
- Cabeza, L.F.; Jim, L.; Norouzi, M.; Chàfer, M.; Boer, D. Circular Economy in the Building and Construction Sector: A Scientific Evolution Analysis. J. Build. Eng. 2021, 44, 102704. [Google Scholar]
- Sganzerla, W.G.; Ampese, L.C.; Mussatto, S.I.; Lyngby, K. A Bibliometric Analysis on Potential Uses of Brewer’s Spent Grains in a Biorefinery for the Circular Economy Transition of the Beer Industry. Biofuels Bioprod. Biorefin. 2021, 15, 1965–1988. [Google Scholar] [CrossRef]
- Concari, A.; Kok, G.; Martens, P. Recycling behaviour: Mapping knowledge domain through bibliometrics and text mining. J. Environ. Manag. 2022, 303, 114160. [Google Scholar] [CrossRef]
- Pires, A.; Martinho, G. Waste hierarchy index for circular economy in waste management. Waste Manag. 2019, 95, 298–305. [Google Scholar] [CrossRef]
- Jiao, W.; Boons, F. Toward a research agenda for policy intervention and facilitation to enhance industrial symbiosis based on a comprehensive literature review. J. Clean. Prod. 2014, 67, 14–25. [Google Scholar] [CrossRef]
- Van Ewijk, S.; Stegemann, J.A. Limitations of the waste hierarchy for achieving absolute reductions in material throughput. J. Clean Prod. 2016, 132, 122–128. [Google Scholar] [CrossRef]
- Fang, K.; Dong, L.; Ren, J.; Zhang, Q.; Han, L.; Fu, H. Carbon footprints of urban transition: Tracking circular economy promotions in Guiyang, China. Ecol. Model. 2017, 365, 30–44. [Google Scholar] [CrossRef]
- Geng, Y.; Tsuyoshi, F.; Chen, X. Evaluation of innovative municipal solid waste management through urban symbiosis: A case study of Kawasaki. J. Clean. Prod. 2010, 18, 993–1000. [Google Scholar] [CrossRef]
- Reike, D.; Vermeulen, W.J.; Witjes, S. The circular economy: New or refurbished as CE 3.0?—Exploring controversies in the conceptualization of the circular economy through a focus on history and resource value retention options. Resour. Conserv. Recycl. 2018, 135, 246–264. [Google Scholar] [CrossRef]
- Morales-Parragué, M.; Araya-Castillo, L.; Molina-Luque, F.; Moraga-Flores, H. Scientometric Analysis of research on corporate social responsibility. Sustainability 2022, 14, 2291. [Google Scholar] [CrossRef]
- Abedin, M.J.; Khandaker, M.U.; Uddin, M.R.; Karim, M.R.; Uddin Ahamad, M.S.; Islam, M.A.; Arif, A.M.; Minhaz Hossain, S.M.; Sulieman, A.; Idris, A.M. Amassing the Covid-19 driven PPE wastes in the dwelling environment of Chittagong Metropolis and associated implications. Chemosphere 2022, 297, 134022. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Jin, X.; Ji, A.; Aui, A.; Mba-Wright, M.; Yoo, C.J.; Choi, J.W.; Ha, J.M.; Kim, C.S.; Yoo, C.G.; et al. Catalytic conversion of waste corrugated cardboard into lactic acid using lanthanide triflates. Waste Manag. 2022, 1, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, S.; Ghosh, S.; Bhattacharya, S. Analytical hierarchy process tool in Google Earth Engine platform: A case study of a tropical landfill site suitability. Environ. Monit. Assess. 2022, 194, 276. [Google Scholar] [CrossRef]
- Fei, F.; Wen, Z.; Ri, S. Urban biowaste integrated management based on synergy mechanism and multi-objective optimization: A case study in Suzhou, China. Sci. Total Environ. 2022, 823, 153691. [Google Scholar] [CrossRef]
- Rodrigues, M.V.C.; Guimarães, D.V.; Galvão, R.B.; Patrick, E.; Fernandes, F. Urban watershed management prioritization using the rapid impact assessment matrix (RIAM-UWMAP), GIS and field survey. Environ. Impact Assess. Rev. 2022, 94, 106759. [Google Scholar] [CrossRef]
- Leeabai, N.; Areeprasert, C.; Siripaiboona, C.; Khaobang, C.; Congsomjit, D.; Takahashi, F. The effects of compost bin design on design preference, waste collection performance, and waste segregation behaviors for public participation. Waste Manag. 2022, 143, 35–45. [Google Scholar] [CrossRef]
- Liu, M.; Tan, Z.; Fan, X.; Chang, Y.; Wang, L.; Yin, X. Application of life cycle assessment for municipal solid waste management options in Hohhot, People’s Republic of China. Waste Manag. Res. 2021, 39, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela-Levi, N.; Araya-Córdova, P.J.; Dávila, S.; Vásquez, Ó.C. Promoting adoption of recycling by municipalities in developing countries: Increasing or redistributing existing resources? J. Mater. Cycles Waste Manag. 2021, 164, 105173. [Google Scholar] [CrossRef]
- Devadoss, P.S.M.; Agamuthu, P.; Mehran, S.B.; Santha, C.; Fauziah, S.H. Implications of municipal solid waste management on greenhouse gas emissions in Malaysia and the way forward. Waste Manag. 2021, 1, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.U.; Liu, Y.; Yousaf, B.; Wong, M.H.; Li, P.; Liu, G.; Wang, R.; Wei, Y.; Lu, M. Morphochemical investigation on the enrichment and transformation of hazardous elements in ash from waste incineration plants. Sci. Total Environ. 2022, 828, 154490. [Google Scholar] [CrossRef] [PubMed]
- Thuppahige, R.T.W.; Babel, S. Environmental impact assessment of organic fraction of municipal solid waste treatment by anaerobic digestion in Sri Lanka. Waste Manag. Res. 2022, 40, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Mao, M.; Lu, K.; Hu, Q.; Liu, W.; Lin, Z. One-step removal of high-concentration arsenic from wastewater to form Johnbaumite using arsenic-bearing gypsum. J. Hazard. Mater. 2022, 424, 127585. [Google Scholar] [CrossRef]
- Siddiqi, S.A.; Al-Mamun, A.; Baawain, M.S.; Sana, A. A critical review of the recently developed laboratory-scale municipal solid waste landfill leachate treatment technologies. Sustain. Energy Technol. Assess. 2022, 52, 102011. [Google Scholar] [CrossRef]
- Chaves, G.L.D.; Siman, R.R.; Chang, N.B. Policy analysis for sustainable refuse-derived fuel production in Espírito Santo, Brazil. J. Clean. Prod. 2021, 294, 126344. [Google Scholar] [CrossRef]
- Lu, W.; Huo, W.; Gulina, H.; Pan, C. Development of machine learning multi-city model for municipal solid waste generation prediction. Front. Environ. Sci. Eng. 2022, 16, 119. [Google Scholar] [CrossRef]
- Zhang, C.; Dong, H.; Geng, Y.; Liang, H.; Liu, X. Machine learning based prediction for China’s municipal solid waste under the shared socioeconomic pathways. J. Environ. Manag. 2022, 312, 114918. [Google Scholar] [CrossRef]
- Yang, L.; Yu, X.; Wu, X.; Wang, J.; Yan, X.; Jiang, S.; Chen, Z. Emergency response to the explosive growth of health care wastes during COVID-19 pandemic in Wuhan, China. Resour. Conserv. Recycl. 2021, 164, 105074. [Google Scholar] [CrossRef] [PubMed]
- Mondelli, G.; Silva, E.R.; Claro, I.C.M.; Augusto, M.R.; Duran, A.F.A.; Cabral, A.D.; Camillo, L.M.B.; dos Santos Oliveira, L.H.; de Freitas Bueno, R. First case of SARS-CoV-2 RNA detection in municipal solid waste leachate from Brazil. Sci. Total Environ. 2022, 824, 15392. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Zhang, L. Sustainable waste management and waste to energy: Valuation of energy potential of MSW in the Greater Bay Area of China. Energy Policy. 2022, 163, 112857. [Google Scholar] [CrossRef]
- Kang, Y.; Yang, Q.; Wang, L.; Chen, Y.; Lin, G.; Huang, J.; Yang, H.; Chen, H. China’s changing city-level greenhouse gas emissions from municipal solid waste treatment and driving factors. Resour. Conserv. Recycl. 2022, 180, 106168. [Google Scholar] [CrossRef]
- Fu, Z.; Lin, S.; Tian, H.; Hao, Y.; Wu, B.; Liu, S.; Luo, L.; Bai, X.; Guo, Z.; Lv, Y. A comprehensive emission inventory of hazardous air pollutants from municipal solid waste incineration in China. Sci. Total Environ. 2022, 826, 154212. [Google Scholar] [CrossRef]
- Liao, N.; Bolyard, S.C.; Lü, F.; Yang, N.; Zhang, H.; Shao, L.; He, P. Can waste management system be a Greenhouse Gas sink? Perspective from Shanghai, China. Resour. Conserv. Recycl. 2022, 180, 106170. [Google Scholar] [CrossRef]
- Guo, H.; Hobbs, B.F.; Lasater, M.E.; Parker, C.L.; Winch, P.J. System dynamics-based evaluation of interventions to promote appropriate waste disposal behaviors in low-income urban areas: A Baltimore case study. Waste Manag. 2016, 56, 547–560. [Google Scholar] [CrossRef]
- Yıldırım, Ü.; Güler, C. Identification of suitable future municipal solid waste disposal sites for the Metropolitan Mersin (SE Turkey) using AHP and GIS techniques. Environ. Earth Sci. 2016, 75, 101. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, W.; Xu, J.; Che, Y. A quantitative analysis of municipal solid waste disposal charges in China. Environ. Monit. Assess. 2015, 187, 60. [Google Scholar] [CrossRef]
- Couth, R.; Trois, C.; Vaughan-Jones, S. Modelling of greenhouse gas emissions from municipal solid waste disposal in Africa. Int. J. Greenh. Gas Control. 2011, 5, 1443–1453. [Google Scholar] [CrossRef]
- Naiker, Y.; Diab, R.D.; Zunckel, M.; Hayes, E.T. Introduction of local Air Quality Management in South Africa: Overview and challenges. Environ. Sci. Policy 2012, 17, 62–71. [Google Scholar] [CrossRef]
- Sohoo, I.; Ritzkowski, M.; Kuchta, K. Influence of moisture content and leachate recirculation on oxygen consumption and waste stabilization in post aeration phase of landfill operation. Sci. Total Environ. 2021, 773, 145584. [Google Scholar] [CrossRef] [PubMed]
- Plüg, B.D.; Cibati, A.; Trois, C. The use of organic wastes at different degrees of maturity as carbon sources for denitrification of landfill leachate. Waste Manag. 2015, 46, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Rosqvist, N.H.; Dollar, L.H.; Fourie, A.B. Preferential flow in municipal solid waste and implications for long-term leachate quality: Valuation of laboratory-scale experiments. Waste Manag. Res. 2005, 23, 367–380. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, E.; Trois, C. Greenhouse gases accounting and reporting for waste management—A South African perspective. Waste Manag. 2010, 30, 2347–2353. [Google Scholar] [CrossRef]
- Friedrich, E.; Trois, C. Current and future greenhouse gas (GHG) emissions from the management of municipal solid waste in the eThekwini Municipality—South Africa. J. Clean. Prod. 2016, 112, 4071–4083. [Google Scholar] [CrossRef]
- Dlamini, S.; Mulala, M.D.; Kubanza, S.N. Municipal solid waste management in South Africa: From waste to energy recovery through waste-to-energy technologies in Johannesburg. Local Environ. 2019, 3, 249–257. [Google Scholar] [CrossRef]
- Chidamba, L.; Cilliers, E.; Bezuidenhout, C.C. Spatial and temporal variations in pollution indicator bacteria in the lower vaal river, South Africa. Water Environ. Res. 2016, 88, 2142–2149. [Google Scholar] [CrossRef]
- Awomeso, J.A.; Taiwo, A.M.; Gbadebo, A.M.; Arimoro, A.A. Waste disposal and pollution management in urban areas: A workable remedy for the environment in developing countries. Am. J. Environ. Sci. 2010, 6, 26–32. [Google Scholar] [CrossRef]
- Oberholster, P.J.; Botha, A.M.; Hill, L.; Strydom, W.F. River catchment responses to anthropogenic acidification in relationship with sewage effluent: An ecotoxicology screening application. Chemosphere 2017, 189, 407–417. [Google Scholar] [CrossRef]
- Godfrey, L.; Muswema, A.; Strydom, W.; Mamafa, T.; Mapako, M. Co-operatives as a development mechanism to support job creation and sustainable waste management in South Africa. Sustain. Sci. 2017, 12, 799–812. [Google Scholar] [CrossRef]
- Mmereki, D.; Velempini, K.; Mosime-Serero, L. Status of municipal solid waste management policy implementation in developing countries: Insights from Botswana. J. Solid Waste Technol. Manag. 2021, 47, 46–55. [Google Scholar] [CrossRef]
- Snyman, J.; Vorster, K. Sustainability of composting as an alternative waste management option for developing countries: A case study of the City of Tshwane. Waste Manag. Res. 2011, 29, 1222–1231. [Google Scholar] [CrossRef] [PubMed]
- Owojori, O.; Edokpayi, J.N.; Mulaudzi, R.; Odiyo, J.O. Characterisation, recovery and recycling potential of solid waste in a university of a developing economy. Sustainability 2020, 12, 5111. [Google Scholar] [CrossRef]
- Blight, G.E.; Fourie, A.B.; Shamrock, J.; Mbande, C.; Morris, J.W.F. The effect of waste composition on leachate and gas quality: A study in South Africa. Waste Manag. Res. 1999, 17, 124–140. [Google Scholar] [CrossRef]
- Nell, C.; Schenck, C.; Blaauw, D.; Grobler, L.; Viljoen, K. A three-pronged approach to waste composition determination. J. Environ. Manag. 2022, 303, 114203. [Google Scholar] [CrossRef] [PubMed]
- Fei, F.; Kosajan, V.; Shen, N.; Luo, J. Promoting the source separation of household kitchen waste based on comprehensive evaluation and economic feasibility. J. Clean Prod. 2022, 342, 130970. [Google Scholar] [CrossRef]
- Song, J.; Feng, R.; Yue, C.; Shao, Y.; Han, J.; Xing, J.; Yang, W. Reinforced urban waste management for resource, energy and environmental benefits: China’s regional potentials. Resour. Conserv. Recycl. 2022, 178, 196083. [Google Scholar] [CrossRef]
- Tozlu, A.; Özahi, E.; Abuşoğlu, A. Waste to energy technologies for municipal solid waste management in Gaziantep. Renew. Sust. Energ. Rev. 2016, 54, 809–815. [Google Scholar] [CrossRef]
- Malav, L.C.; Yadav, K.K.; Gupta, N.; Kumar, S.; Sharma, G.K.; Krishnan, S.; Rezania, S.; Kamyab, H.; Pham, Q.B.; Yadav, S.; et al. A review on municipal solid waste as a renewable source for waste-to-energy project in India: Current practices, challenges, and future opportunities. J. Clean. Prod. 2020, 277, 123227. [Google Scholar] [CrossRef]
- Mbazima, S.J.; Masekameni, M.D.; Mmereki, D. Waste-to-energy in a developing country: The state of landfill gas to energy in the Republic of South Africa. Energy Explor. Exploit. 2022, 40, 1287–1312. [Google Scholar] [CrossRef]
- Franks, L.; Euston-Brown, M.; Ferry, A.; Giljova, S. Municipal Landfill Gas to Electricity: City of Johannesburg Project: Municipal Landfill Gas to Electricity Grid-Tied Project. 2015. Available online: https://www.cityenergy.org.za/uploads/resource_359.pdf (accessed on 12 July 2022).
- Adeleke, O.; Akinlabi, S.A.; Jen, T.C.; Dunmande, I. Sustainable utilization of energy from waste: A review of potentials and challenges of Waste-to-energy in South Africa. Int. J. Green Energy 2021, 18, 1550–1564. [Google Scholar] [CrossRef]
- Magazzino, C.; Mele, M.; Schneider, N.; Sarkodie, S.A. Waste generation, wealth and GHG emissions from the waste sector: Is Denmark on the path towards circular economy? Sci. Total Environ. 2021, 755, 142510. [Google Scholar] [CrossRef] [PubMed]
- Varotto, A.; Spagnolli, A. Psychological strategies to promote household recycling. A systematic review with meta-analysis of validated field interventions. J. Environ. Psychol. 2017, 51, 168–188. [Google Scholar] [CrossRef]
- Ong, C.; Fearnley, L.; Chia, S.B. The diversity of divestment in Singapore: Junk commodities, charity gifts, and recycling bins. Environ. Plan. E Nat. Space 2021, 4, 603–622. [Google Scholar] [CrossRef]
- Strydom, W.F. Barriers to household waste recycling: Empirical evidence from South Africa. Recycling 2018, 3, 41. [Google Scholar] [CrossRef]
- Schoeman, D.C.; Rampedi, I.T. Drivers of Household Recycling Behavior in the City of Johannesburg, South Africa. Int. J. Environ. Res. Public Health 2022, 19, 6229. [Google Scholar] [CrossRef]
- Bourtsalas, A.C.; Themelis, N.J. Materials and energy recovery at six European MBT plants. Waste Manag. 2022, 141, 79–91. [Google Scholar] [CrossRef]
- Franco, E.F.; Padrón Iglesia, W.; Pérez Teruel, K. Household Solid Waste Management in the Dominican Republic: Case of the Municipality of Puñal, Santiago. Sustainability 2022, 14, 3149. [Google Scholar] [CrossRef]
- Ngamsang, T.; Yuttitham, M. Vulnerability assessment of areas allocated for municipal solid waste disposal systems: A case study of sanitary landfill and incineration. Environ. Sci. Pollut. Res. 2019, 26, 27239–27258. [Google Scholar] [CrossRef]
- Khan, H.U.; Husain, T.; Khan, S.M. Solid Waste Management Practices in the Eastern Province of Saudi Arabia. Environ. Manag. 1987, 11, 729–734. [Google Scholar] [CrossRef]
- Kurker, C. Reducing emissions from refuse disposal. J. Air Pollut. Control Assoc. 1969, 19, 2–69. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Martínez, S.; Giro-Paloma, J.; Maldonado-Alameda, A.; Formosa, J.; Queralt, I.; Chimenos, J.M. Characterisation and partition of valuable metals from WEEE in weathered municipal solid waste incineration bottom ash, with a view to recovering. J. Clean. Prod. 2019, 218, 61–68. [Google Scholar] [CrossRef]
- Chowdhury, R.B.; Wijayasundara, M. Phosphorus circular economy of disposable baby nappy waste: Quantification, assess-ment of recycling technologies and plan for sustainability. Sci. Total Environ. 2021, 799, 149339. [Google Scholar] [CrossRef] [PubMed]
- Chew, Z.T.; Hoy, Z.X.; Woon, K.S.; Liew, P.Y. Integrating greenhouse gas reduction and waste policy targets to identify optimal waste treatment configurations via Carbon Emission Pinch Analysis. Process Saf. Environ. Prot. 2022, 160, 661–675. [Google Scholar] [CrossRef]
- Couth, R.; Trois, C. Carbon emissions reduction strategies in Africa from improved waste management: A review. Waste. Manag. 2010, 30, 2336–2346. [Google Scholar] [CrossRef]
- Govender, T.; Barnes, J.M.; Pieper, C.H. Impact of densification by means of informal shacks in the backyards of low-cost houses on the environment and service delivery in Cape Town, South Africa. Environ. Health Insights 2011, 5, 23–52. [Google Scholar] [CrossRef]
- Watson-Craik, I.A.; Senior, E. Studies on the co-disposal of o-cresol with municipal refuse. J. Chem. Technol. Biotechnol. 1996, 65, 72–80. [Google Scholar]
- Frank, R.R.; Davies, S.; Wagland, S.T.; Villa, R.; Trois, C.; Coulon, F. Evaluating leachate recirculation with cellulase addition to enhance waste biostabilisation and landfill gas production. Waste Manag. 2016, 55, 61–70. [Google Scholar] [CrossRef]
- Ayeleru, O.O.; Okonta, F.N.; Ntuli, F. Cost benefit analysis of a municipal solid waste recycling facility in Soweto, South Africa. Waste. Manag. 2021, 134, 263–269. [Google Scholar] [CrossRef]
- Couth, R.; Trois, C. Implementing separate waste collection and mechanical biological waste treatment in South Africa: A comparison with Austria and England. Waste. Manag. 2011, 30, 1457–1463. [Google Scholar]
- Bump, R.L. The use of electrostatic precipitators on municipal incinerators. J. Air Pollut. Control Assoc. 1968, 18, 803–809. [Google Scholar] [CrossRef] [PubMed]
- Watson-Craik, I.A.; Jones, L.R. Selected approaches for the investigation of microbial interactions in landfill sites. In Microbiology of Landfill Sites; CRC Press: Boca Raton, FL, USA, 2020; pp. 31–65. [Google Scholar]
- Fourie, A.B.; Morris, J.W.F. Measured gas emissions from four landfills in South Africa and some implications for landfill design and methane recovery in semi-arid climates. Waste. Manag. Res. 2004, 22, 440–453. [Google Scholar] [CrossRef] [PubMed]
Country | Articles | Citations |
---|---|---|
United States | 1004 | 35,206 |
China | 976 | 29,062 |
Italy | 593 | 20,200 |
India | 592 | 13,196 |
Spain | 434 | 17,323 |
Japan | 373 | 12,059 |
United Kingdom | 366 | 13,321 |
Canada | 359 | 10,043 |
Germany | 266 | 10,183 |
Brazil | 231 | 4262 |
France | 194 | 6941 |
Sweden | 182 | 8617 |
Iran | 179 | 4688 |
Australia | 175 | 5395 |
Institution | Number of Articles |
---|---|
University of KwaZulu-Natal | 19 |
University of the Witwatersrand | 13 |
University of Johannesburg | 10 |
University of Cape Town | 6 |
The Council for Scientific and Industrial Research | 5 |
Stellenbosch University | 3 |
Walter Sisulu University | 3 |
North-West University | 3 |
University of Venda | 3 |
Tshwane University of Technology | 2 |
University of the Witwatersrand Faculty of Health Sciences | 2 |
Environmentek | 1 |
Green House | 1 |
uMoya-NILU Consulting | 1 |
Country | Articles | Citations |
---|---|---|
South Africa | 60 | 995 |
United Kingdom | 6 | 118 |
Australia | 3 | 63 |
Botswana | 3 | 54 |
Ethiopia | 2 | 21 |
Canada | 2 | 18 |
China | 2 | 51 |
France | 2 | 22 |
Municipal Solid Waste Management Trends | World | SA |
---|---|---|
Total number of articles | 7374 | 60 |
Authors | 159 | 145 |
Affiliations | 168 | 61 |
Highest number of publications by author | 83 | 11 |
Least number of documents by author | 8 | 1 |
Highest number of papers since publications started in a given year | 626 | 7 |
Keywords | 37,276 | 1194 |
Emerging topics in the 2020s | 3 | 0 |
Keywords | Examples of Literature Sources |
---|---|
Municipal solid waste management | [2,4,11,14,16,37,46,48,54,59] |
Waste management | [13,33,58,61] |
Solid waste management | [15,95] |
Waste disposal | [62,63,64,96] |
Refuse disposal | [97,98] |
Solid waste (solid wastes) | [59,96] |
Land fill (landfill) | [68,96] |
Incineration | [56,60,96,99] |
Recycling | [100] |
Waste treatment | [59,101] |
Waste incineration | [56,99] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ndou, V.; Rampedi, I.T. Bibliometric Analysis of Municipal Solid Waste Management Research: Global and South African Trends. Sustainability 2022, 14, 10229. https://doi.org/10.3390/su141610229
Ndou V, Rampedi IT. Bibliometric Analysis of Municipal Solid Waste Management Research: Global and South African Trends. Sustainability. 2022; 14(16):10229. https://doi.org/10.3390/su141610229
Chicago/Turabian StyleNdou, Vhuthu, and Isaac Tebogo Rampedi. 2022. "Bibliometric Analysis of Municipal Solid Waste Management Research: Global and South African Trends" Sustainability 14, no. 16: 10229. https://doi.org/10.3390/su141610229