Investigation of Mono-Crystalline Photovoltaic Active Cooling Thermal System for Hot Climate of Pakistan
Abstract
:1. Introduction
2. Methodology
Model Description
3. Numerical Approach
4. Results and Discussion
4.1. Irradiance Profile
4.2. Irradiance Distribution
4.3. Temperature Profile
4.4. Active Cooling at 2240 Re
4.5. Average Inlet Velocity and Coolant Outlet Temperature
4.6. PV Cell’s Layer Average Temperature and Temperature Uniformity
4.7. Electrical Efficiency and Power Output
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Acronyms | |
PV | Photovoltaic |
STC | Standard test conditions |
SSTA | Steady state thermal test analysis |
Symbols | |
Pmax | Peak power |
Vmp | Voltage at peak power |
Imp | Current at peak power |
Voc | Open circuit voltage |
Isc | Short circuit current |
Gon | Extraterrestrial radiation (W/m2) |
Gsc | Solar constant value (W/m2) |
Gcnb | Beam radiation (W/m2) |
Gcb | Beam horizontal component (W/m2) |
Gcnd | Diffuse radiation (W/m2) |
Gcd | Diffuse horizontal component (W/m2) |
Ib | Hourly beam radiation (W/m2) |
Id | Hourly diffuse radiation (W/m2) |
τd | Atmospheric transmittance for diffuse radiation |
It | Total irradiance (W/m2) |
Tuni | Temperature uniformity (°C) |
Tmax | Maximum temperature (°C) |
Tmin | Minimum temperature (°C) |
Apv | Surface area of PV module (m2) |
I | Current (A) |
k | Stephan Boltzmann constant, 1.3807 × 10−23 (J/K) |
n | Day of year |
A | Altitude |
T | Temperature (°C) |
Ts | Sky Temperature (°C) |
t | Time (s) |
Greek symbols | |
ηr | Rated electrical efficiency (%) |
ηie | Improved electrical efficiency (%) |
τ | Transmissivity |
α | Absorptivity |
ρ | Density (kg/m3) |
ϵ | Emissivity |
θ | Angle of Incidence |
θz | Zenith angle |
ω | Solar-hour angle |
ωs | Sunset-hour angle |
β | Slope of module |
δ | Declination angle |
γ | Surface azimuth angle |
σ | Stefan–Boltzmann constant (5.670 × 10−8 W/m2·K4) |
Subscript | |
max | Maximum |
min | Minimum |
uni | Uniform |
mp | Maximum power |
ie | Improved efficiency |
ref | Reference conditions |
oc | Open circuit |
sc | short circuit |
References
- Mostafaeipour, A.; Bidokhti, A.; Fakhrzad, M.-B.; Sadegheih, A.; Mehrjerdi, Y.Z. A new model for the use of renewable electricity to reduce carbon dioxide emissions. Energy 2021, 238, 121602. [Google Scholar] [CrossRef]
- Tian, J.; Yu, L.; Xue, R.; Zhuang, S.; Shan, Y. Global low-carbon energy transition in the post-COVID-19 era. Appl. Energy 2021, 307, 118205. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, K.R.; Shahbaz, M.; Zhang, J.; Irfan, M.; Alvarado, R. Analyze the environmental sustainability factors of China: The role of fossil fuel energy and renewable energy. Renew. Energy 2022, 187, 390–402. [Google Scholar] [CrossRef]
- Wang, X.; Yan, L. Driving factors and decoupling analysis of fossil fuel related-carbon dioxide emissions in China. Fuel 2022, 314, 122869. [Google Scholar] [CrossRef]
- Asim, M.; Usman, M.; Abbasi, M.S.; Ahmad, S.; Mujtaba, M.A.; Soudagar, M.E.M.; Mohamed, A. Estimating the Long-Term Effects of National and International Sustainable Transport Policies on Energy Consumption and Emissions of Road Transport Sector of Pakistan. Sustainability 2022, 14, 5732. [Google Scholar] [CrossRef]
- Pérez, J.C.; González, A.; Díaz, J.P.; Expósito, F.J.; Felipe, J. Climate change impact on future photovoltaic resource potential in an orographically complex archipelago, the Canary Islands. Renew. Energy 2018, 133, 749–759. [Google Scholar] [CrossRef]
- Asim, M.; Muhammad, S.; Amjad, M.; Abdullah, M.; Mujtaba, M.A.; Kalam, M.A.; Mousa, M.; Soudagar, M.E.M. Design and Parametric Optimization of the High-Speed Pico Waterwheel for Rural Electrification of Pakistan. Sustainability 2022, 14, 6930. [Google Scholar] [CrossRef]
- Tahir, Z.u.R.; Asim, M.; Azhar, M.; Moeenuddin, G.; Farooq, M. Correcting solar radiation from reanalysis and analysis datasets with systematic and seasonal variations. Case Stud. Therm. Eng. 2021, 25, 100933. [Google Scholar] [CrossRef]
- Tahir, Z.u.R.; Amjad, M.; Asim, M.; Azhar, M.; Farooq, M.; Ali, M.J.; Ahmad, S.U.; Amjad, G.M.; Hussain, A. Improving the accuracy of solar radiation estimation from reanalysis datasets using surface measurements. Sustain. Energy Technol. Assess. 2021, 47, 101485. [Google Scholar] [CrossRef]
- Tahir, Z.u.R.; Hafeez, S.; Asim, M.; Amjad, M.; Farooq, M.; Azhar, M.; Amjad, G.M. Estimation of daily diffuse solar radiation from clearness index, sunshine duration and meteorological parameters for different climatic conditions. Sustain. Energy Technol. Assess. 2021, 47, 101544. [Google Scholar] [CrossRef]
- Tahir, Z.; Ahmad, S.U.; Asim, M.; Hayat, N.; Azhar, M.; Hussain, A. Evaluation of solar radiation from MERRA, MERRA-2, ERA-Interim and CFSR reanalysis datasets against surface observations for Multan, Pakistan. In Proceedings of the ISES EuroSun 2018 Conference—12th International Conference on Solar Energy for Buildings and Industry, EuroSun 2018/ISES Conference, Rapperswil, Switzerland, 10–13 September 2018. [Google Scholar] [CrossRef]
- International Renewable Energy Agency. Renewable Capacity Highlights; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2021. [Google Scholar]
- Liu, L. Comment on “Recent progress in thermodynamics of radiation—Exergy of radiation, effective temperature of photon and entropy constant of photon”. Sci. China Ser. E Technol. Sci. 2009, 52, 1809–1810. [Google Scholar] [CrossRef]
- Shah, A.S.B.M.; Yokoyama, H.; Kakimoto, N. High-Precision Forecasting Model of Solar Irradiance Based on Grid Point Value Data Analysis for an Efficient Photovoltaic System. IEEE Trans. Sustain. Energy 2015, 6, 474–481. [Google Scholar] [CrossRef]
- Hasan, A.; Sarwar, J.; Shah, A.H. Concentrated photovoltaic: A review of thermal aspects, challenges and opportunities. Renew. Sustain. Energy Rev. 2018, 94, 835–852. [Google Scholar] [CrossRef]
- Allouhi, A.; Saadani, R.; Buker, M.; Kousksou, T.; Jamil, A.; Rahmoune, M. Energetic, economic and environmental (3E) analyses and LCOE estimation of three technologies of PV grid-connected systems under different climates. Sol. Energy 2018, 178, 25–36. [Google Scholar] [CrossRef]
- Jones, R.K.; Ermer, J.H.; Fetzer, C.M.; King, R.R. Evolution of Multijunction Solar Cell Technology for Concentrating Photovoltaics. Jpn. J. Appl. Phys. 2012, 51, 10ND01. [Google Scholar] [CrossRef]
- Cotal, H.; Fetzer, C.; Boisvert, J.; Kinsey, G.; King, R.; Hebert, P.; Yoon, H.; Karam, N. III–V multijunction solar cells for concentrating photovoltaics. Energy Environ. Sci. 2009, 2, 174–192. [Google Scholar] [CrossRef]
- Bagher, A.M.; Vahid, M.M.A.; Mohsen, M. Types of solar cells and application. Am. J. Opt. Photonics 2015, 3, 94–113. [Google Scholar] [CrossRef]
- Zhou, J.; Yi, Q.; Wang, Y.; Ye, Z. Temperature distribution of photovoltaic module based on finite element simulation. Sol. Energy 2015, 111, 97–103. [Google Scholar] [CrossRef]
- Kichou, S.; Wolf, P.; Silvestre, S.; Chouder, A. Analysis of the behaviour of cadmium telluride and crystalline silicon photovoltaic modules deployed outdoor under humid continental climate conditions. Sol. Energy 2018, 171, 681–691. [Google Scholar] [CrossRef]
- Jestin, Y. 1.26—Down-Shifting of the Incident Light for Photovoltaic Applications. In Comprehensive Renewable Energy; Sayigh, A., Ed.; Elsevier: Oxford, UK, 2012; pp. 563–585. [Google Scholar]
- Saleem, M.W.; Abbas, A.; Asim, M.; Uddin, G.M.; Chaudhary, T.N.; Ullah, A. Design and cost estimation of solar powered reverse osmosis desalination system. Adv. Mech. Eng. 2021, 13, 16878140211029090. [Google Scholar] [CrossRef]
- Ameur, A.; Berrada, A.; Loudiyi, K.; Adomatis, R. Chapter 6—Performance and energetic modeling of hybrid PV systems coupled with battery energy storage. In Hybrid Energy System Models; Berrada, A., El Mrabet, R., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 195–238. [Google Scholar]
- Dubey, S.; Sarvaiya, J.N.; Seshadri, B. Temperature Dependent Photovoltaic (PV) Efficiency and Its Effect on PV Production in the World—A Review. Energy Procedia 2013, 33, 311–321. [Google Scholar] [CrossRef]
- Mekhilef, S.; Saidur, R.; Kamalisarvestani, M. Effect of dust, humidity and air velocity on efficiency of photovoltaic cells. Renew. Sustain. Energy Rev. 2012, 16, 2920–2925. [Google Scholar] [CrossRef]
- Amelia, A.; Irwan, Y.M.; Leow, W.Z.; Irwanto, M.; Safwati, I.; Zhafarina, M. Investigation of the effect temperature on photovoltaic (PV) panel output performance. Int. J. Adv. Sci. Eng. Inf. Technol. 2016, 6, 682–688. [Google Scholar]
- Bora, B.; Kumar, R.; Sastry, O.S.; Prasad, B.; Mondal, S.; Tripathi, A.K. Energy rating estimation of PV module technologies for different climatic conditions. Sol. Energy 2018, 174, 901–911. [Google Scholar] [CrossRef]
- Mussard, M.; Amara, M. Performance of solar photovoltaic modules under arid climatic conditions: A review. Sol. Energy 2018, 174, 409–421. [Google Scholar] [CrossRef]
- Ameur, A.; Sekkat, A.; Loudiyi, K.; Aggour, M. Performance evaluation of different photovoltaic technologies in the region of Ifrane, Morocco. Energy Sustain. Dev. 2019, 52, 96–103. [Google Scholar] [CrossRef]
- Chakraborty, V.; Yadav, S.K.; Bajpai, U. Thermal Regulation of Solar Photovoltaic Modules by Incorporating Phase Change Materials to Enhance the Yield. In Proceedings of the Symposium on Power Electronic and Renewable Energy Systems Control; Springer: Singapore, 2021. [Google Scholar]
- Radziemska, E. The effect of temperature on the power drop in crystalline silicon solar cells. Renew. Energy 2003, 28, 1–12. [Google Scholar] [CrossRef]
- Congedo, P.M.; Malvoni, M.; Mele, M.; De Giorgi, M.G. Performance measurements of monocrystalline silicon PV modules in South-eastern Italy. Energy Convers. Manag. 2013, 68, 1–10. [Google Scholar] [CrossRef]
- Cañete, C.; Carretero, J.; Sidrach-De-Cardona, M. Energy performance of different photovoltaic module technologies under outdoor conditions. Energy 2014, 65, 295–302. [Google Scholar] [CrossRef]
- Chidubem, E.A.; Uhunmwangho, R.; Big-Alabo, A.; Omorogiuwa, E. Impact of ambient temperature on the power output of a photovoltaic module in Kaduna state, Nigeria. J. Eng. 2021, 18, 294–303. [Google Scholar]
- Idoko, L.; Anaya-Lara, O.; McDonald, A. Enhancing PV modules efficiency and power output using multi-concept cooling technique. Energy Rep. 2018, 4, 357–369. [Google Scholar] [CrossRef]
- Aly, S.P.; Ahzi, S.; Barth, N. Effect of physical and environmental factors on the performance of a photovoltaic panel. Sol. Energy Mater. Sol. Cells 2019, 200, 109948. [Google Scholar] [CrossRef]
- Tihane, A.; Boulaid, M.; Elfanaoui, A.; Nya, M.; Ihlal, A. Performance analysis of mono and poly-crystalline silicon photovoltaic modules under Agadir climatic conditions in Morocco. Mater. Today Proc. 2019, 24, 85–90. [Google Scholar] [CrossRef]
- Zdyb, A.; Gulkowski, S. Performance Assessment of Four Different Photovoltaic Technologies in Poland. Energies 2020, 13, 196. [Google Scholar] [CrossRef]
- Amar, S.; Bahich, M.; Bentahar, Y.; Afifi, M.; Barj, E. A Study of the Temperature Influence on Different Parameters of Mono-Crystalline Silicon Photovoltaic Module. J. Power Energy Eng. 2021, 9, 29–42. [Google Scholar] [CrossRef]
- Hadidi, A.; Blal, M.; Saba, D. The study of the arid climate effect on the performance of photovoltaic system. Energy Syst. 2021, 1–20. [Google Scholar] [CrossRef]
- Mustafa, R.J.; Gomaa, M.R.; Al-Dhaifallah, M.; Rezk, H. Environmental Impacts on the Performance of Solar Photovoltaic Systems. Sustainability 2020, 12, 608. [Google Scholar] [CrossRef]
- Gangopadhyay, U.; Jana, S.; Das, S. State of Art of Solar Photovoltaic Technology. Conf. Pap. Energy 2013, 2013, 764132. [Google Scholar] [CrossRef]
- Nader, N.; Al-Kouz, W.; Al-Dahidi, S. Assessment of Existing Photovoltaic System with Cooling and Cleaning System: Case Study at Al-Khobar City. Processes 2019, 8, 9. [Google Scholar] [CrossRef]
- Shukla, A.; Kant, K.; Sharma, A.; Biwole, P.H. Cooling methodologies of photovoltaic module for enhancing electrical efficiency: A review. Sol. Energy Mater. Sol. Cells 2017, 160, 275–286. [Google Scholar] [CrossRef]
- Siecker, J.; Kusakana, K.; Numbi, B. A review of solar photovoltaic systems cooling technologies. Renew. Sustain. Energy Rev. 2017, 79, 192–203. [Google Scholar] [CrossRef]
- Arifin, Z.; Tjahjana, D.D.D.P.; Hadi, S.; Rachmanto, R.A.; Setyohandoko, G.; Sutanto, B. Numerical and Experimental Investigation of Air Cooling for Photovoltaic Panels Using Aluminum Heat Sinks. Int. J. Photoenergy 2020, 2020, 1–9. [Google Scholar] [CrossRef]
- Chandra, S.; Agrawal, S.; Chauhan, D. Effect of ambient temperature and wind speed on performance ratio of polycrystalline solar photovoltaic module: An experimental analysis. Int. Energy J. 2018, 18, 2. [Google Scholar]
- Chandra, S.; Agrawal, S.; Chauhan, D. Soft computing based approach to evaluate the performance of solar PV module considering wind effect in laboratory condition. Energy Rep. 2018, 4, 252–259. [Google Scholar] [CrossRef]
- Jaszczur, M.; Hassan, Q.; Teneta, J.; Majewska, E.; Zych, M. An Analysis of Temperature Distribution in Solar Photovoltaic Module under Various Environmental Conditions. In MATEC Web of Conferences; EDP Sciences: Les Ulis, France, 2018. [Google Scholar]
- Nižetić, S.; Čoko, D.; Yadav, A.; Grubišić-Čabo, F. Water spray cooling technique applied on a photovoltaic panel: The performance response. Energy Convers. Manag. 2016, 108, 287–296. [Google Scholar] [CrossRef]
- Rahman, M.; Hasanuzzaman, M.; Rahim, N. Effects of various parameters on PV-module power and efficiency. Energy Convers. Manag. 2015, 103, 348–358. [Google Scholar] [CrossRef]
- Singh, K.; Singh, S.; Kandpal, D.C.; Kumar, R. Experimental performance study of photovoltaic solar panel with and without water circulation. Mater. Today Proc. 2021, 46, 6822–6827. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Rahimi, M.; Rahimi, A. An experimental study on using natural vaporization for cooling of a photovoltaic solar cell. Int. Commun. Heat Mass Transf. 2015, 65, 22–30. [Google Scholar] [CrossRef]
- Arcuri, N.; Reda, F.; De Simone, M. Energy and thermo-fluid-dynamics evaluations of photovoltaic panels cooled by water and air. Sol. Energy 2014, 105, 147–156. [Google Scholar] [CrossRef]
- Slimani, M.E.-A.; Amirat, M.; Kurucz, I.; Bahria, S.; Hamidat, A.; Chaouch, W.B. A detailed thermal-electrical model of three photovoltaic/thermal (PV/T) hybrid air collectors and photovoltaic (PV) module: Comparative study under Algiers climatic conditions. Energy Convers. Manag. 2017, 133, 458–476. [Google Scholar] [CrossRef]
- Khanjari, Y.; Pourfayaz, F.; Kasaeian, A. Numerical investigation on using of nanofluid in a water-cooled photovoltaic thermal system. Energy Convers. Manag. 2016, 122, 263–278. [Google Scholar] [CrossRef]
- Tahir, Z.u.R.; Asim, M.; Azhar, M.; Amjad, G.M.; Ali, M.J. Hourly global horizontal irradiance data of three stations in Punjab, Pakistan. Data Brief 2021, 38, 107371. [Google Scholar] [CrossRef] [PubMed]
- Tahir, Z.u.R.; Azhar, M.; Blanc, P.; Asim, M.; Imran, S.; Hayat, N.; Shahid, H.; Ali, H. The evaluation of reanalysis and analysis products of solar radiation for Sindh province, Pakistan. Renew. Energy 2020, 145, 347–362. [Google Scholar] [CrossRef]
- Duffie, J.A.; Beckman, W.A. Solar Engineering of Thermal Processes; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
Dimension | 560 mm × 350 mm × 25 mm |
Peak Power (Pmax) | 35 W |
Voltage at Pmax (Vmp) | 10 V |
Current at Pmax (Imp) | 3.5 A |
Open Circuit Voltage (Voc) | 12 V |
Short Circuit Current (Isc) | 3.85 A |
Working temperature | −40–85 °C |
Standard Test Conditions (STC) | 1000 W/m2, 1.5 a.m., 25 °C Cell temperature |
Material Layers | Thickness (mm) | Density (kg/m3) | Thermal Conductivity (W/m·K) | Heat Capacity (J/kg·K) |
---|---|---|---|---|
Top-glass | 3.20 | 3000 | 0.980 | 820 |
Front-EVA | 0.15 | 960 | 0.310 | 2090 |
PV-cell | 0.2 | 2330 | 150 | 712 |
Back-EVA | 0.15 | 960 | 0.31 | 2090 |
Aluminium-absorber | 1 | 2719 | 202.4 | 871 |
Aluminium-base | 6 | 2719 | 202.4 | 871 |
No. of Microchannels | Material | Dimensions (mm) | Working-Fluid | Thermal-Conductivity (W/m-K) | Density of Fluid (kg/m3) | Inlet Temperature (°C) |
---|---|---|---|---|---|---|
17 | Aluminium | 1.0 × 1.0 × 570 | Water | 0.6 | 2719 | 25 |
17 | Aluminium | 1.0 × 1.0 × 570 | Air | 0.0242 | 1.225 | 25 |
Component | Coefficient/Parameters | Values |
---|---|---|
Glass | Transmittivity | 0.9 |
Emissivity | 0.93 | |
Absorptivity | 0.1 | |
Solar Cell | Absorptivity | 0.9 |
Emissivity | 0.9 | |
Transmittivity | 0.02 | |
Aluminium Absorber Plate | Emissivity | 0.25 |
Absorptivity | 0.95 |
Climate-Type | r1 | r2 | rk |
---|---|---|---|
Tropical | 0.95 | 0.98 | 1.02 |
Midlatitude summer | 0.97 | 0.99 | 1.02 |
Subarctic summer | 0.99 | 0.99 | 1.01 |
Midlatitude winter | 1.03 | 1.01 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asim, M.; Milano, J.; Khan, H.I.; Hanzla Tahir, M.; Mujtaba, M.A.; Shamsuddin, A.H.; Abdullah, M.; Kalam, M.A. Investigation of Mono-Crystalline Photovoltaic Active Cooling Thermal System for Hot Climate of Pakistan. Sustainability 2022, 14, 10228. https://doi.org/10.3390/su141610228
Asim M, Milano J, Khan HI, Hanzla Tahir M, Mujtaba MA, Shamsuddin AH, Abdullah M, Kalam MA. Investigation of Mono-Crystalline Photovoltaic Active Cooling Thermal System for Hot Climate of Pakistan. Sustainability. 2022; 14(16):10228. https://doi.org/10.3390/su141610228
Chicago/Turabian StyleAsim, Muhammad, Jassinnee Milano, Hassan Izhar Khan, Muhammad Hanzla Tahir, M. A. Mujtaba, Abd Halim Shamsuddin, Muhammad Abdullah, and M. A. Kalam. 2022. "Investigation of Mono-Crystalline Photovoltaic Active Cooling Thermal System for Hot Climate of Pakistan" Sustainability 14, no. 16: 10228. https://doi.org/10.3390/su141610228