Evaluating the Influence of Different Layouts of Residential Buildings on the Urban Thermal Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology
2.2.1. ENVI-Met
2.2.2. Construction of Simulation Models
2.2.3. Thermal Environment Evaluation Index
3. Results
3.1. The Influence of Building Layouts on Air Temperature and PET in Summer
3.1.1. Variations in Air Temperature under Various Building Layout Scenarios
3.1.2. PET Layout Effect
3.2. The Influence of Building Layout on Air Temperature and PET in Winter
3.2.1. Variations in Air Temperature under Various Building Arrangement Scenarios
3.2.2. PET Layout Effect
4. Discussion
4.1. The Impact of Building Height on Air Temperature
4.2. The Impact of Vegetation Cover on Air Temperature in Building Layouts
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shi, X.; Yang, J. A material flow-based approach for diagnosing urban ecosystem health. J. Clean. Prod. 2014, 64, 437–446. [Google Scholar] [CrossRef]
- Hondula, D.M.; Barnett, A.G. Heat-related morbidity in Brisbane, Australia: Spatial variation and area-level predictors. Environ. Health Perspect. 2014, 122, 831–836. [Google Scholar] [CrossRef]
- Yu, B.; Liu, H.; Wu, J.; Lin, W.-M. Investigating impacts of urban morphology on spatio-temporal variations of solar radiation with airborne LIDAR data and a solar flux model: A case study of downtown Houston. Int. J. Remote Sens. 2009, 30, 4359–4385. [Google Scholar] [CrossRef]
- Wang, B.; Koh, W.S.; Liu, H.; Yik, J.; Bui, V.P. Simulation and validation of solar heat gain in real urban environments. Build. Environ. 2017, 123, 261–276. [Google Scholar] [CrossRef]
- Wu, Z.; Dou, P.; Chen, L. Comparative and combinative cooling effects of different spatial arrangements of buildings and trees on microclimate. Sustain. Cities Soc. 2019, 51, 101711. [Google Scholar] [CrossRef]
- Wollmann, C.A.; Hoppe, I.L.; Gobo, J.P.A.; Simioni, J.P.D.; Costa, I.T.; Baratto, J.; Shooshtarian, S. Thermo-hygrometric variability on waterfronts in negative radiation balance: A case study of balneário Camboriú/SC, Brazil. Atmosphere 2021, 12, 1453. [Google Scholar] [CrossRef]
- Britter, R.; Hanna, S. Flow and dispersion in urban areas. Annu. Rev. Fluid Mech. 2003, 35, 469–496. [Google Scholar] [CrossRef]
- Hang, J.; Sandberg, M.; Li, Y. Effect of urban morphology on wind condition in idealized city models. Atmos. Environ. 2009, 43, 869–878. [Google Scholar] [CrossRef]
- Gago, E.J.; Roldan, J.; Pacheco-Torres, R.; Ordóñez, J. The city and urban heat islands: A review of strategies to mitigate adverse effects. Renew. Sustain. Energy Rev. 2013, 25, 749–758. [Google Scholar] [CrossRef]
- Zhang, J. Study on the Influence of Underlying Surface Properties on the Thermal Environment of Lhasa Street and Its Design Strategy. Master’s Thesis, Southwest Jiaotong University, Chengdu, China, 2018. [Google Scholar]
- Mk, A.; Mss, B. The effect of height and orientation of buildings on thermal comfort. Sustain. Cities Soc. 2022, 79, 103720. [Google Scholar]
- Diao, Z. Influence of Block Scale Building Layout on Block Building Energy Consumption in Harbin Old City. Master’s Thesis, Harbin Engineering University, Harbin, China, 2018. [Google Scholar]
- Zhao, Q.; Sailor, D.J.; Wentz, E.A. Impact of tree locations and arrangements on outdoor microclimates and human thermal comfort in an urban residential environment. Urban For. Urban Green. 2018, 32, 81–91. [Google Scholar] [CrossRef]
- Chan, A. Effect of adjacent shading on the thermal performance of residential buildings in a subtropical region. Appl. Energy 2012, 92, 516–522. [Google Scholar] [CrossRef]
- Acero, J.A.; Koh, E.J.; Ruefenacht, L.A.; Norford, L.K. Modelling the influence of high-rise urban geometry on outdoor thermal comfort in Singapore. Urban Clim. 2021, 36, 100775. [Google Scholar] [CrossRef]
- Srivanit, M.; Jareemit, D. Modeling the influences of layouts of residential townhouses and tree-planting patterns on outdoor thermal comfort in Bangkok suburb. J. Build. Eng. 2020, 30, 101262. [Google Scholar] [CrossRef]
- Jiang, Y.; Wu, C.; Teng, M. Impact of Residential Building Layouts on Microclimate in a High Temperature and High Humidity Region. Sustainability 2020, 12, 1046. [Google Scholar] [CrossRef]
- Li, C.; Yang, X. Influence of community building arrangement on microclimate environment based on numerical simulation. Urban Build. 2021, 18, 56–59. [Google Scholar]
- Wang, W.; Yang, H.; Shao, Y.; Tang, S. Simulation of three-dimensional distribution characteristics of outdoor thermal environment in urban residential areas: A case study of Hangzhou. J. Zhejiang Univ. Eng. 2013, 47, 1178–1185. [Google Scholar]
- Zhang, W.; Hu, Z.; Ding, W. Research progress of outdoor thermal comfort index. J. Environ. Health 2015, 32, 836–841. [Google Scholar]
- Guo, S.; Yang, F.; Jiang, Z. Thermal environmental effects of vertical greening and building layout in open residential neighbourhood design: A case study in Shanghai. Archit. Sci. Rev. 2022, 65, 72–88. [Google Scholar] [CrossRef]
- Hppe, P.R. The physiological equivalent temperature—A universal index for the biometeorological assessment of the thermal environment. Int. J. Biometeorol. 1999, 43, 71–75. [Google Scholar] [CrossRef]
- Jamei, E.; Rajagopalan, P. Urban development and pedestrian thermal comfort in Melbourne. Sol. Energy 2017, 144, 681–698. [Google Scholar] [CrossRef]
- Wang, M.; Xu, H. The impact of building height on urban thermal environment in summer: A case study of Chinese megacities. PLoS ONE 2021, 16, e0247786. [Google Scholar] [CrossRef] [PubMed]
- Ignatius, M.; Wong, N.H.; Jusuf, S.K. Urban microclimate analysis with consideration of local ambient temperature, external heat gain, urban ventilation, and outdoor thermal comfort in the tropics. Sustain. Cities Soc. 2015, 19, 121–135. [Google Scholar] [CrossRef]
- Wilmers, F. Effects of vegetation on urban climate and buildings. Energy Build. 1990, 15, 507–514. [Google Scholar] [CrossRef]
- Zheng, Y.; Yin, J.; Wu, R.; Ye, D. Applicability of universal thermal climate index to thermal comfort forecast. J. Appl. Meteorol. 2010, 21, 709–715. [Google Scholar]
- Park, S.; Tuller, S.E.; Jo, M. Application of Universal Thermal Climate Index (UTCI) for microclimatic analysis in urban thermal environments. Landsc. Urban Plan. 2014, 125, 146–155. [Google Scholar] [CrossRef]
- Bröde, P.; Krüger, E.L.; Rossi, F.A.; Fiala, D. Predicting urban outdoor thermal comfort by the Universal Thermal Climate Index UTCI—A case study in Southern Brazil. Int. J. Biometeorol. 2012, 56, 471–480. [Google Scholar] [CrossRef]
Parameter | Values | |
---|---|---|
Initial parameter settings | Total simulation at time/(h) | 28 |
Number of nested grids | 10 | |
Start simulation at day | Summer: 10 August 2021 | |
Meteorological parameter settings | Start simulation at time | Winter: 7 January 2022 |
Min temperature of atmosphere/(°C) | Summer: 23 | |
Winter: −6 | ||
Max temperature of atmosphere/(°C) | Summer: 33 | |
Winter: 6 | ||
Wind speed measured at 10 m/(ms−1) | Summer: 2 | |
Winter: 2 | ||
Wind direction/(°) | Summer: 135 | |
Winter: 257 | ||
Relative humidity at 2 m height/(%) | Summer: 70 | |
Winter: 55 | ||
Specific humidity at model top (2500 m, g/kg) | 8 |
Air Temperature Level | Air Temperature (°C) | Relative Frequency (%) | |||||
---|---|---|---|---|---|---|---|
Case 1 | Case 2 | Case 3 | Case 4 | Case 5 | Case 6 | ||
High-air-temperature area | T ≥ 31.5 | 35.36 | 34.90 | 35.48 | 23.10 | 23.36 | 22.79 |
Medium-air-temperature area | 30.5 ≤ T < 31.5 | 56.67 | 56.67 | 56.01 | 52.41 | 53.02 | 52.81 |
Low-air-temperature area | T < 30.5 | 7.83 | 8.38 | 8.46 | 24.44 | 23.58 | 24.40 |
Air Temperature Level | Air Temperature (°C) | Relative Frequency (%) | |||||
---|---|---|---|---|---|---|---|
Case 1 | Case 2 | Case 3 | Case 4 | Case 5 | Case 6 | ||
High-air-temperature area | T ≥ 4.8 | 12.84 | 13.15 | 13.01 | 7.22 | 7.21 | 7.12 |
Medium-air-temperature area | 3.8 ≤ T < 4.8 | 29.22 | 29.24 | 27.11 | 27.85 | 26.20 | 28.28 |
Low-air-temperature area | T < 3.8 | 57.90 | 57.56 | 59.83 | 64.88 | 64.55 | 64.55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Chen, Q.; Cheng, Q.; Li, K.; Cao, B.; Huang, Y. Evaluating the Influence of Different Layouts of Residential Buildings on the Urban Thermal Environment. Sustainability 2022, 14, 10227. https://doi.org/10.3390/su141610227
Li Y, Chen Q, Cheng Q, Li K, Cao B, Huang Y. Evaluating the Influence of Different Layouts of Residential Buildings on the Urban Thermal Environment. Sustainability. 2022; 14(16):10227. https://doi.org/10.3390/su141610227
Chicago/Turabian StyleLi, Yuanyuan, Qiang Chen, Qianhao Cheng, Kangning Li, Beilei Cao, and Yixiao Huang. 2022. "Evaluating the Influence of Different Layouts of Residential Buildings on the Urban Thermal Environment" Sustainability 14, no. 16: 10227. https://doi.org/10.3390/su141610227