Pollution, Risk and Transfer of Heavy Metals in Soil and Rice: A Case Study in a Typical Industrialized Region in South China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection, Preparation and Analysis
2.2. Health Risk Assessment
2.3. Migrations of Heavy Metals from Soil to Rice
3. Results and Discussion
3.1. Heavy Metals in Soils and Rice
3.2. Health Risk Assessment
3.3. Transfer of Heavy Metals from Paddy Soil to Rice
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADI | Average Daily Intake |
BCF | Bioconcentration Factor |
DMA | Dimethylarsine |
GDP | Gross Domestic Product |
HI | Hazard Index |
HQ | Hazard Quotient |
ILCR | Incremental Lifetime Cancer Risk |
MMA | Monomethylarsine |
TOC | Total Organic Carbon |
QA | Quality Assurance |
QC | Quality Control |
USEPA | U.S. Environmental Protection Agency |
References
- Fazle Bari, A.S.M.; Lamb, D.; Choppala, G.; Seshadri, B.; Islam, M.R.; Sanderson, P.; Rahman, M.M. Arsenic bioaccessibility and fractionation in abandoned mine soils from selected sites in New South Wales, Australia and human health risk assessment. Ecotoxicol. Environ. Saf. 2021, 223, 112611. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.-M.; Fu, R.-B.; Liu, H.-Q.; Guo, X.-P. Current knowledge from heavy metal pollution in Chinese smelter contaminated soils, health risk implications and associated remediation progress in recent decades: A critical review. J. Clean. Prod. 2021, 286, 124989. [Google Scholar] [CrossRef]
- Liu, B.; Ai, S.; Zhang, W.; Huang, D.; Zhang, Y. Assessment of the bioavailability, bioaccessibility and transfer of heavy metals in the soil-grain-human systems near a mining and smelting area in NW China. Sci. Total Environ. 2017, 609, 822–829. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Chang, C.; Fei, Y.; Li, F.; Wang, Q.; Zhai, G.; Lei, J. Cadmium accumulation in edible flowering cabbages in the Pearl River Delta, China: Critical soil factors and enrichment models. Environ. Pollut. 2018, 233, 880–888. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Shao, S.; Fu, Z.; Li, Y.; Ni, H.; Chen, S.; Zhou, Y.; Jin, B.; Shi, Z. Identifying heavy metal pollution hot spots in soil-rice systems: A case study in South of Yangtze River Delta, China. Sci. Total Environ. 2019, 658, 614–625. [Google Scholar] [CrossRef]
- Ke, S.; Cheng, X.-Y.; Zhang, J.-Y.; Jia, W.-J.; Li, H.; Luo, H.-F.; Ge, P.-H.; Liu, Z.-M.; Wang, H.-M.; He, J.-S.; et al. Estimation of the benchmark dose of urinary cadmium as the reference level for renal dysfunction: A large sample study in five cadmium polluted areas in China. BMC Public Health 2015, 15, 656. [Google Scholar] [CrossRef]
- Dakeishi, M.; Murata, K.; Grandjean, P. Long-term consequences of arsenic poisoning during infancy due to contaminated milk powder. Environ. Health 2006, 5, 31. [Google Scholar] [CrossRef]
- Choong, T.S.Y.; Chuah, T.G.; Robiah, Y.; Gregory Koay, F.L.; Azni, I. Arsenic toxicity, health hazards and removal techniques from water: An overview. Desalination 2007, 217, 139–166. [Google Scholar] [CrossRef]
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic mechanisms of five heavy metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front. Pharmacol. 2021, 12, 643972. [Google Scholar] [CrossRef]
- Szkup-Jablonska, M.; Karakiewicz, B.; Grochans, E.; Jurczak, A.; Nowak-Starz, G.; Rotter, I.; Prokopowicz, A. Effects of blood lead and cadmium levels on the functioning of children with behaviour disorders in the family environment. Ann. Agric. Environ. Med. 2012, 19, 241–246. [Google Scholar]
- Muhammad, S.; Shah, M.T.; Khan, S. Health risk assessment of heavy metals and their source apportionment in drinking water of Kohistan region, northern Pakistan. Microchem. J. 2011, 98, 334–343. [Google Scholar] [CrossRef]
- Gu, Q.; Yu, T.; Yang, Z.; Ji, J.; Hou, Q.; Wang, L.; Wei, X.; Zhang, Q. Prediction and risk assessment of five heavy metals in maize and peanut: A case study of Guangxi, China. Environ. Toxicol. Pharmacol. 2019, 70, 103199. [Google Scholar] [CrossRef] [PubMed]
- Safari, Y.; Delavar, M.-A. The influence of soil pollution by heavy metals on the land suitability for irrigated wheat farming in Zanjan region, northwest Iran. Arab. J. Geosci. 2019, 12, 21. [Google Scholar] [CrossRef]
- Xue, P.; Zhao, Q.; Sun, H.; Geng, L.; Yang, Z.; Liu, W. Characteristics of heavy metals in soils and grains of wheat and maize from farmland irrigated with sewage. Environ. Sci. Pollut. Res. 2019, 26, 5554–5563. [Google Scholar] [CrossRef]
- Chen, L.; Wang, J.; Beiyuan, J.; Guo, X.; Wu, H.; Fang, L. Environmental and health risk assessment of potentially toxic trace elements in soils near uranium (U) mines: A global meta-analysis. Sci. Total Environ. 2022, 816, 151556. [Google Scholar] [CrossRef]
- Zhou, Y.; Jiang, D.; Ding, D.; Wu, Y.; Wei, J.; Kong, L.; Long, T.; Fan, T.; Deng, S. Ecological-health risks assessment and source apportionment of heavy metals in agricultural soils around a super-sized lead-zinc smelter with a long production history, in China. Environ. Pollut. 2022, 307, 119487. [Google Scholar] [CrossRef]
- Wu, S.; Peng, S.; Zhang, X.; Wu, D.; Luo, W.; Zhang, T.; Zhou, S.; Yang, G.; Wan, H.; Wu, L. Levels and health risk assessments of heavy metals in urban soils in Dongguan, China. J. Geochem. Explor. 2015, 148, 71–78. [Google Scholar] [CrossRef]
- Li, Y.; Dong, Z.; Feng, D.; Zhang, X.; Jia, Z.; Fan, Q.; Liu, K. Study on the risk of soil heavy metal pollution in typical developed cities in eastern China. Sci. Rep. 2022, 12, 3855. [Google Scholar] [CrossRef]
- Song, Y.; Wang, Y.; Mao, W.; Sui, H.; Yong, L.; Yang, D.; Jiang, D.; Zhang, L.; Gong, Y. Dietary cadmium exposure assessment among the Chinese population. PLoS ONE 2017, 12, e0177978. [Google Scholar] [CrossRef]
- Kong, X.; Liu, T.; Yu, Z.; Chen, Z.; Lei, D.; Wang, Z.; Zhang, H.; Li, Q.; Zhang, S. Heavy Metal Bioaccumulation in Rice from a High Geological Background Area in Guizhou Province, China. Int. J. Environ. Res. Public Health 2018, 15, 2281. [Google Scholar] [CrossRef]
- Qian, Y.; Chen, C.; Zhang, Q.; Li, Y.; Chen, Z.; Li, M. Concentrations of cadmium, lead, mercury and arsenic in Chinese market milled rice and associated population health risk. Food Control 2010, 21, 1757–1763. [Google Scholar] [CrossRef]
- Yu, G.; Zheng, W.; Wang, W.; Dai, F.; Zhang, Z.; Yuan, Y.; Wang, Q. Health risk assessment of Chinese consumers to Cadmium via dietary intake. J. Trace Elem. Med. Biol. 2017, 44, 137–145. [Google Scholar] [CrossRef]
- Zou, M.; Zhou, S.; Zhou, Y.; Jia, Z.; Guo, T.; Wang, J. Cadmium pollution of soil-rice ecosystems in rice cultivation dominated regions in China: A review. Environ. Pollut. 2021, 280, 116965. [Google Scholar] [CrossRef] [PubMed]
- Zeng, F.; Ali, S.; Zhang, H.; Ouyang, Y.; Qiu, B.; Wu, F.; Zhang, G. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environ. Pollut. 2011, 159, 84–91. [Google Scholar] [CrossRef]
- Li, H.; Luo, N.; Li, Y.W.; Cai, Q.Y.; Li, H.Y.; Mo, C.H.; Wong, M.H. Cadmium in rice: Transport mechanisms, influencing factors, and minimizing measures. Environ. Pollut. 2017, 224, 622–630. [Google Scholar] [CrossRef] [PubMed]
- Peijnenburg, W.J.; Zablotskaja, M.; Vijver, M.G. Monitoring metals in terrestrial environments within a bioavailability framework and a focus on soil extraction. Ecotoxicol. Environ. Saf. 2007, 67, 163–179. [Google Scholar] [CrossRef]
- Monterroso, C.; Rodríguez, F.; Chaves, R.; Diez, J.; Becerra-Castro, C.; Kidd, P.S.; Macías, F. Heavy metal distribution in mine-soils and plants growing in a Pb/Zn-mining area in NW Spain. Appl. Geochem. 2014, 44, 3–11. [Google Scholar] [CrossRef]
- Antoniadis, V.; Robinson, J.S.; Alloway, B.J. Effects of short-term pH fluctuations on cadmium, nickel, lead, and zinc availability to ryegrass in a sewage sludge-amended field. Chemosphere 2008, 71, 759–764. [Google Scholar] [CrossRef]
- Du Laing, G.; Rinklebe, J.; Vandecasteele, B.; Meers, E.; Tack, F.M.G. Trace metal behaviour in estuarine and riverine floodplain soils and sediments: A review. Sci. Total Environ. 2009, 407, 3972–3985. [Google Scholar] [CrossRef]
- Hu, B.; Xue, J.; Zhou, Y.; Shao, S.; Fu, Z.; Li, Y.; Chen, S.; Qi, L.; Shi, Z. Modelling bioaccumulation of heavy metals in soil-crop ecosystems and identifying its controlling factors using machine learning. Environ. Pollut. 2020, 262, 114308. [Google Scholar] [CrossRef]
- Wen, Y.; Li, W.; Yang, Z.; Zhuo, X.; Guan, D.-X.; Song, Y.; Guo, C.; Ji, J. Evaluation of various approaches to predict cadmium bioavailability to rice grown in soils with high geochemical background in the karst region, Southwestern China. Environ. Pollut. 2020, 258, 113645. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhao, C.; Yang, J.; Wang, J.; Li, Z.; Wan, X.; Guo, G.; Lei, M.; Chen, T. Discriminative algorithm approach to forecast Cd threshold exceedance probability for rice grain based on soil characteristics. Environ. Pollut. 2020, 261, 114211. [Google Scholar] [CrossRef] [PubMed]
- Yingtan Bureau of Natural Resources. Planning of Mineral Resources in Yingtan (2021–2025). Available online: http://zrzyj.yingtan.gov.cn/art/2021/9/29/art_867_1140881.html (accessed on 6 August 2022).
- Yingtan Ecology and Environment Bureau. Yingtan Annual Soil Pollution Key Supervision Unit Directory (2021). Available online: http://www.yingtan.gov.cn/art/2021/4/14/art_141_1120246.html (accessed on 6 August 2022).
- Rauret, G.; López-Sánchez, J.F.; Sahuquillo, A.; Rubio, R.; Davidson, C.; Ure, A.; Quevauviller, P. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J. Environ. Monit. 1999, 1, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Ahmadipour, F.; Bahramifar, N.; Mahmood Ghasempouri, S. Fractionation and mobility of cadmium and lead in soils of Amol area in Iran, using the modified BCR sequential extraction method. Chem. Speciat. Bioavailab. 2014, 26, 31–36. [Google Scholar] [CrossRef]
- Chu, D.B.; Duong, H.T.; Nguyet Luu, M.T.; Vu-Thi, H.-A.; Ly, B.-T.; Loi, V.D. Arsenic and heavy metals in Vietnamese rice: Assessment of human exposure to these elements through rice consumption. J. Anal. Methods Chem. 2021, 2021, 6661955. [Google Scholar] [CrossRef]
- Jia, X.; Yang, X.; Zhao, W.; Hu, Y.; Cheng, H. A method for rapid determination of arsenic species in vegetables using microwave-assisted extraction followed by detection with HPLC hyphenated to inductively coupled plasma-mass spectrometry. J. Sep. Sci. 2019, 42, 2957–2967. [Google Scholar] [CrossRef]
- SEPAC. Exposure Factors Handbook of Chinese Population; China Environmental Science Press: Beijing, China, 2013. [Google Scholar]
- Groenenberg, J.E.; Römkens, P.F.A.M.; Comans, R.N.J.; Luster, J.; Pampura, T.; Shotbolt, L.; Tipping, E.; de Vries, W. Transfer functions for solid-solution partitioning of cadmium, copper, nickel, lead and zinc in soils: Derivation of relationships for free metal ion activities and validation with independent data. Eur. J. Soil Sci. 2010, 61, 58–73. [Google Scholar] [CrossRef]
- Environmental Protection Bureau (EPB). Elemental Background Values of Soils in China; Environmental Science Press: Beijing, China, 1990. [Google Scholar]
- Ministry of Ecology and Environment. Soil Environmental Quality. Risk Control Standard for Soil Contamination of Agricultural Land (GB15618-2018); China Environmental Science Press: Beijing, China, 2018. [Google Scholar]
- Manceau, A.; Matynia, A. The nature of Cu bonding to natural organic matter. Geochim. Cosmochim. Acta 2010, 74, 2556–2580. [Google Scholar] [CrossRef]
- Sundaray, S.K.; Nayak, B.B.; Lin, S.; Bhatta, D. Geochemical speciation and risk assessment of heavy metals in the river estuarine sediments A case study: Mahanadi basin, India. J. Hazard. Mater. 2011, 186, 1837–1846. [Google Scholar] [CrossRef]
- Cui, X.; Geng, Y.; Sun, R.; Xie, M.; Feng, X.; Li, X.; Cui, Z. Distribution, speciation and ecological risk assessment of heavy metals in Jinan Iron & Steel Group soils from China. J. Clean. Prod. 2021, 295, 126504. [Google Scholar]
- Zeng, G.; Wan, J.; Huang, D.; Hu, L.; Huang, C.; Cheng, M.; Xue, W.; Gong, X.; Wang, R.; Jiang, D. Precipitation, adsorption and rhizosphere effect: The mechanisms for Phosphate-induced Pb immobilization in soils: A review. J. Hazard. Mater. 2017, 339, 354–367. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Min, X.; Ke, Y.; Lin, Z.; Yang, Z.; Wang, S.; Peng, N.; Yan, X.; Luo, S.; Wu, J.; et al. Recent progress in understanding the mechanism of heavy metals retention by iron (oxyhydr)oxides. Sci. Total Environ. 2021, 752, 141930. [Google Scholar] [CrossRef] [PubMed]
- Khaliq, M.A.; James, B.; Chen, Y.H.; Ahmed Saqib, H.S.; Li, H.H.; Jayasuriya, P.; Guo, W. Uptake, translocation, and accumulation of Cd and its interaction with mineral nutrients (Fe, Zn, Ni, Ca, Mg) in upland rice. Chemosphere 2019, 215, 916–924. [Google Scholar] [CrossRef]
- Liu, X.; Yu, T.; Yang, Z.; Hou, Q.; Yang, Q.; Li, C.; Ji, W.; Li, B.; Duan, Y.; Zhang, Q.; et al. Transfer mechanism and bioaccumulation risk of potentially toxic elements in soil rice systems comparing different soil parent materials. Ecotoxicol. Environ. Saf. 2021, 216, 112214. [Google Scholar] [CrossRef] [PubMed]
- National Health and Family Planning Commission of the People’s Republic of China. National Food Safety Standard GB 2762-2017: Limits of Contaminants in Food; State Food and Drug Administration: Beijing, China, 2017. [Google Scholar]
- Ministry of Agriculture of the People’s Republic of China. Agricultural Industry Standard of the People’s Republic of China NY 861-2004: Limits of Eight Elements in Cereals, Legume, Tubes and Its Products; Ministry of Agriculture of the People’s Republic of China: Beijing, China, 2005. [Google Scholar]
- Mu, T.; Wu, T.; Zhou, T.; Li, Z.; Ouyang, Y.; Jiang, J.; Zhu, D.; Hou, J.; Wang, Z.; Luo, Y. Geographical variation in arsenic, cadmium, and lead of soils and rice in the major rice producing regions of China. Sci. Total Environ. 2019, 677, 373–381. [Google Scholar] [CrossRef]
- Lin, K.; Lu, S.; Wang, J.; Yang, Y. The arsenic contamination of rice in Guangdong Province, the most economically dynamic provinces of China: Arsenic speciation and its potential health risk. Environ. Geochem. Health 2015, 37, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Ohno, K.; Yanase, T.; Matsuo, Y.; Kimura, T.; Rahman, M.H.; Magara, Y.; Matsui, Y. Arsenic intake via water and food by a population living in an arsenic-affected area of Bangladesh. Sci. Total Environ. 2007, 381, 68–76. [Google Scholar] [CrossRef]
- Mao, C.; Song, Y.; Chen, L.; Ji, J.; Li, J.; Yuan, X.; Yang, Z.; Ayoko, G.A.; Frost, R.L.; Theiss, F. Human health risks of heavy metals in paddy rice based on transfer characteristics of heavy metals from soil to rice. CATENA 2019, 175, 339–348. [Google Scholar] [CrossRef]
- Gu, Q.; Yang, Z.; Yu, T.; Yang, Q.; Hou, Q.; Zhang, Q. From soil to rice—A typical study of transfer and bioaccumulation of heavy metals in China. Acta Agric. Scand. Sect. B Soil Plant Sci. 2018, 68, 631–642. [Google Scholar] [CrossRef]
- Violante, A.; Pigna, M. Competitive Sorption of Arsenate and Phosphate on Different Clay Minerals and Soils. Soil Sci. Soc. Am. J. 2002, 66, 1788–1796. [Google Scholar] [CrossRef]
- Xie, Z.M.; Huang, C.Y. Control of arsenic toxicity in rice plants grown on an arsenic-polluted paddy soil. Commun. Soil Sci. Plant Anal. 1998, 29, 2471–2477. [Google Scholar] [CrossRef]
- Suda, A.; Makino, T. Functional effects of manganese and iron oxides on the dynamics of trace elements in soils with a special focus on arsenic and cadmium: A review. Geoderma 2016, 270, 68–75. [Google Scholar] [CrossRef]
- Masscheleyn, P.H.; Delaune, R.D.; Patrick, W.H., Jr. Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environ. Sci. Technol. 1991, 25, 1414–1419. [Google Scholar] [CrossRef]
- Gao, P.; Huang, J.; Wang, Y.; Li, L.; Sun, Y.; Zhang, T.; Peng, F. Effects of nearly four decades of long-term fertilization on the availability, fraction and environmental risk of cadmium and arsenic in red soils. J. Environ. Manag. 2021, 295, 113097. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.-P.; Wang, P.; Yan, H.-J.; Zhang, H.-M.; Cheng, W.-D.; Duan, G.-L.; Zhu, Y.-G. NH4H2PO4-extractable arsenic provides a reliable predictor for arsenic accumulation and speciation in pepper fruits (Capsicum annum L.). Environ. Pollut. 2019, 251, 651–658. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Zhang, H.-M.; Yao, B.-M.; Chen, S.-C.; Sun, G.-X.; Zhu, Y.-G. Bioavailable arsenic and amorphous iron oxides provide reliable predictions for arsenic transfer in soil-wheat system. J. Hazard. Mater. 2020, 383, 121160. [Google Scholar] [CrossRef]
- Yao, B.-M.; Chen, P.; Zhang, H.-M.; Sun, G.-X. A predictive model for arsenic accumulation in rice grains based on bioavailable arsenic and soil characteristics. J. Hazard. Mater. 2021, 412, 125131. [Google Scholar] [CrossRef]
- Redman, A.D.; Macalady, D.L.; Ahmann, D. Natural organic matter affects arsenic speciation and sorption onto hematite. Environ. Sci. Technol. 2002, 36, 2889–2896. [Google Scholar] [CrossRef]
- Fang, Y.; Bai, G.; Xiang, X.; He, Y.; Yang, X. The charateristics of grain consumption among Chinese urban and rural residents: 2010–2012. Acta Nutr. Sin. 2019, 1, 5–9. [Google Scholar]
- USEPA. Risk Assessment Guidance for Superfund: Volume I: Human Health Evaluation Manual (Part A); Office of Solid Waste and Emergency Response; US Environmental Protection Agency: Washington, DC, USA, 1989. [Google Scholar]
- USEPA. Exposure Factors Handbook (Final Report); US Environmental Protection Agency: Washington, DC, USA, 2011. [Google Scholar]
- USEPA. Risk Assessment Guidance for Superfund: Volume I: Human Health Evaluation Manual; Office of Superfund Remediation and Technology Innovation: Washington, DC, USA, 2004. [Google Scholar]
- USEPA. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites; US Environmental Protection Agency: Washington, DC, USA, 2002. [Google Scholar]
- Chabukdhara, M.; Nema, A.K. Heavy metals assessment in urban soil around industrial clusters in Ghaziabad, India: Probabilistic health risk approach. Ecotoxicol. Environ. Saf. 2013, 87, 57–64. [Google Scholar]
- Integrated Risk Information System, Nickel, Soluble Salts; CASRN Various; U.S. Environmental Protection Agency: Washington, DC, USA, 1987.
- Integrated Risk Information System, Chromium(III), Insoluble Salts; CASRN 16065-83-1; U.S. Environmental Protection Agency: Washington, DC, USA, 1987.
- Integrated Risk Information System, Cadmium; CASRN 7440-43-9; U.S. Environmental Protection Agency: Washington, DC, USA, 1987.
- Integrated Risk Information System, Copper; CASRN 7440-50-8; U.S. Environmental Protection Agency: Washington, DC, USA, 1988.
- Integrated Risk Information System Arsenic, Inorganic; CASRN 7440-38-2; USEPA: Washington, DC, USA, 1988.
- Integrated Risk Information System, Lead and Compounds (Inorganic); CASRN 7439-92-1; U.S. Environmental Protection Agency: Washington, DC, USA, 1998; pp. 13–15.
- U.S. Environmental Protection Agency. IRIS Toxicological Review of Inorganic Arsenic (Cancer) (2010 External Review Draft); EPA/635/R-10/001; U.S. Environmental Protection Agency: Washington, DC, USA, 2010. [Google Scholar]
Heavy Metal | Mean | STD | Max | Min | Background Value a | Risk Screening Value b | PSBV (%) c | PRCV (%) d | |||
---|---|---|---|---|---|---|---|---|---|---|---|
pH ≤ 5.5 | 5.5 < pH ≤ 6.5 | 6.5 < pH ≤ 7.5 | pH >7.5 | ||||||||
Cr | 53.1 | 41.5 | 181 | 8.22 | 48.0 | 250 | 250 | 300 | 350 | 41.5 | 0.00 |
Ni | 20.5 | 9.59 | 45.2 | 3.59 | 19.0 | 60 | 70 | 100 | 190 | 47.8 | 0.00 |
Cu | 27.9 | 11.1 | 63.6 | 8.00 | 20.8 | 50 | 50 | 100 | 100 | 70.2 | 4.39 |
As | 8.15 | 4.75 | 36.9 | 1.38 | 10.4 | 30 | 30 | 25 | 20 | 23.9 | 0.49 |
Cd | 0.335 | 0.121 | 0.816 | 0.066 | 0.100 | 0.3 | 0.4 | 0.6 | 0.8 | 98.5 | 57.1 |
Pb | 44.5 | 16.4 | 87.2 | 9.20 | 32.0 | 80 | 100 | 140 | 240 | 77.6 | 0.98 |
Mn | 182 | 136 | 1120 | 26.3 | 328 | - | - | - | 9.30 | - |
Heavy Metals | Mean | Std | Max | Min | Ratio a | Limitation Value | Pexc (%) d | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Grain | Husk | Grain | Husk | Grain | Husk | Grain | Husk | National Food Safety b | Agricultural Industry c | |||
Cr | 0.244 | 1.70 | 0.224 | 0.941 | 1.84 | 4.51 | 0.028 | 0.260 | 0.144 | 1.0 | 1.0 | 1.95 |
Ni | 0.809 | 2.23 | 0.521 | 1.23 | 2.93 | 6.37 | 0.094 | 0.409 | 0.363 | - | - | - |
Cu | 3.49 | 4.20 | 1.81 | 1.89 | 12.3 | 9.97 | 0.369 | 0.824 | 0.831 | - | 10.0 | 1.32 |
As | 0.188 | 1.11 | 0.099 | 0.729 | 0.533 | 3.10 | 0.032 | 0.107 | 0.169 | 0.26 (i-As) | 0.7 (total) | 23.4 |
Cd | 0.195 | 0.259 | 0.151 | 0.129 | 1.12 | 0.780 | 0.025 | 0.080 | 0.752 | 0.2 | 0.2 | 34.6 |
Pb | 0.131 | 2.15 | 0.101 | 0.533 | 1.02 | 2.97 | 0.017 | 0.598 | 0.061 | 0.2 | 0.4 | 15.6 |
Item | Exposure Pathway | Heavy Metal | Type of Cancer | ILCR-Adult | ILCR-Child |
---|---|---|---|---|---|
Rice | Oral ingestion | i-As | skin cancer | 1.00 × 10−3 | 1.23 × 10−3 |
i-As | bladder and lung cancer | 1.48 × 10−2 | 1.82 × 10−2 | ||
Pb | liver cancer | 6.27 × 10−6 | 7.73 × 10−6 | ||
Soil | Oral ingestion | i-As | skin cancer | 1.86 × 10−5 | 8.09 × 10−5 |
i-As | bladder and lung cancer | 2.74 × 10−4 | 1.19 × 10−3 | ||
Pb | liver cancer | 5.76 × 10−7 | 2.50 × 10−6 | ||
Dermal contact | i-As | skin cancer | 5.44 × 10−6 | 1.66 × 10−5 | |
Inhalation | i-As | lung cancer | 2.20 × 10−8 | 2.28 × 10−8 | |
Cd | lung and kidney cancer | 3.78 × 10−10 | 3.90 × 10−10 |
Impact Factor | Bioconcentration Factor | |||||
---|---|---|---|---|---|---|
Cr | Ni | Cu | As | Cd | Pb | |
F1 | 0.144 | −0.112 | −0.343 * | 0.258 | 0.394 * | 0.058 |
F1 + F2 | 0.386 ** | 0.260 * | 0.129 | 0.336 * | 0.485 ** | 0.408 ** |
F1 + F2 + F3 | 0.280 * | 0.023 | 0.208 | 0.422 ** | 0.483 ** | 0.351 * |
TOC | 0.008 | 0.056 | 0.329 * | 0.258 * | 0.202 | −0.089 |
pH | 0.023 | 0.16 | −0.251 * | −0.307 * | −0.344 * | −0.092 |
Al | −0.075 | −0.148 | −0.287 * | −0.287 * | 0.113 | 0.033 |
Mn | −0.172 | −0.397 ** | −0.139 | 0.014 | −0.423 ** | −0.480 ** |
Fe | −0.386 * | −0.141 | −0.068 | −0.115 | −0.306 * | −0.019 |
Heavy Metal | Fitted Equation | R2 | p-Value |
---|---|---|---|
Cr | Log(BCF) = −0.630 + log(CrF1) − 0.527 log(Fe) | 0.295 | <0.01 |
Ni | Log(BCF) = −0.655 + 0.292 log(NiF1) − 0.458 log(Mn) | 0.206 | <0.01 |
Cu | Log(BCF) = −0.664 + 0.671 log(TOC) − 0.236 log(Al) | 0.166 | <0.05 |
As | log(BCF) = −1.594 + 3.305 log(AsF1+F2+F3) − 1.902 log(pH) | 0.237 | <0.01 |
Cd | Log(BCF) = −1.868 + 1.841 log(CdF1) −1.483log(pH) − 0.482 log(Mn) | 0.435 | <0.01 |
Pb | log(BCF) = −2.426 + 0.397 log(PbF1) − 0.369 log(Mn) | 0.319 | <0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Cao, X.; Hu, Y.; Cheng, H. Pollution, Risk and Transfer of Heavy Metals in Soil and Rice: A Case Study in a Typical Industrialized Region in South China. Sustainability 2022, 14, 10225. https://doi.org/10.3390/su141610225
Liu Y, Cao X, Hu Y, Cheng H. Pollution, Risk and Transfer of Heavy Metals in Soil and Rice: A Case Study in a Typical Industrialized Region in South China. Sustainability. 2022; 14(16):10225. https://doi.org/10.3390/su141610225
Chicago/Turabian StyleLiu, Yaping, Xudong Cao, Yuanan Hu, and Hefa Cheng. 2022. "Pollution, Risk and Transfer of Heavy Metals in Soil and Rice: A Case Study in a Typical Industrialized Region in South China" Sustainability 14, no. 16: 10225. https://doi.org/10.3390/su141610225