# Research on Recycling Strategies for New Energy Vehicle Waste Power Batteries Based on Consumer Responsibility Awareness

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. The Pricing Model of the Reverse Supply Chain of Waste Power Batteries

#### 2.1. Problem Description

#### 2.2. Model Assumptions

#### 2.3. Single-Channel Recycling Decision Model for New Energy Manufacturers

#### 2.3.1. Decentralized Decision Model

#### 2.3.2. Centralized Decision-Making Model

**Proposition**

**1.**

#### 2.4. Single-Channel Recycling Model for Third-Party Recycling Enterprises

#### 2.4.1. Decentralized Decision-Making Model

#### 2.4.2. Centralized Decision Model

**Proposition**

**2.**

## 3. Model Analysis

#### 3.1. Analysis of Recycling Pricing, ${p}_{1}$

#### 3.2. Analysis of the Recycling Rate, r

#### 3.3. Analysis of Consumer Profits

#### 3.4. Analysis of Profit of the Supply Chain

_{sc}. At the same time, when $\omega $ is small, the profits of the supply chain, ${\pi}_{sc}$, increase with the increase in $\beta $, but the increase is gentle at first and then rises sharply. When the value of $\omega $ increases to a certain value, the profit of the reverse supply chain ${\pi}_{sc}$ decreases with the increase in $\beta $, and after $\beta $ reaches a minimum value, ${\pi}_{sc}$ increases as an increase in $\beta $. It can be seen from Figure 7b that the cost coefficient ${d}_{m}$ has little effect on ${\pi}_{sc}$. From Figure 7c, it can be seen that ${\pi}_{sc}$ increases with the increase in sales volume, Q, and its curve shape is similar to $\omega $. According to Figure 7d,e, at first, ${\pi}_{sc}$ decreases with the increase in ${p}_{2}$; when ${p}_{2}=\frac{(1-\beta )\left[Q(\omega +\Delta \epsilon )-\beta {d}_{m}\right]}{\beta Q}$, ${\pi}_{sc}$ reaches the lowest value, and then it increases with the increase in ${p}_{2}$.

#### 3.5. Analysis of the Influencing Factors of Consumer Environmental Protection Responsibility Awareness, $\beta $

## 4. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Li, Z. Why is 90% of the battery missing? How to break the cascade utilization of battery recycling? Resour. Recycl.
**2020**, 8, 33–36. [Google Scholar] - China Merchants Securities. In-Depth Report on Power Battery Recycling and Gradient Utilization Industry. Available online: http://chuneng.bjx.com.cn/news/20190801/996967.shtml (accessed on 12 March 2020).
- Lyu, X.; Xu, Y.; Sun, D. An Evolutionary Game Research on Cooperation Mode of the NEV Power Battery Recycling and Gradient Utilization Alliance in the Context of China’s NEV Power Battery Retired Tide. Sustainability
**2021**, 13, 4165. [Google Scholar] [CrossRef] - Ma, X.M.; Ma, Y.; Zhou, J.P. The Recycling of Spent Power Battery: Economic Benefits and Policy Suggestions. IOP Conf. Ser. Earth Environ. Sci.
**2018**, 159, 012017. [Google Scholar] [CrossRef] - Zhao, S.; Xu, N.; Qiao, Y.; Yang, B. Suggestions on speeding up recycling of power battery for new energy vehicles in China. Chin. J. Eng. Sci.
**2018**, 20, 144. [Google Scholar] [CrossRef] - Power Battery Recycling in Europe and America Has Become a System. When Will China’s Recycling System Take Shape? Available online: https://www.chuandong.com/news/news209836.html (accessed on 29 July 2022).
- General Office of the State Council. Implementation Plan of Extended Producer Responsibility System (EB/OL). 25 December 2016. Available online: http://www.gov.cn/zhengce/content/2017-01/03/content_5156043.htm (accessed on 6 April 2022).
- Yang, Y.K.; Zhang, B.; Liang, Y.L.; Lu, Q. Analysis on the current situation of waste power battery recycling policy and technology. Automob. Accessories
**2021**, 1, 50–51. [Google Scholar] - National Development and Reform Commission. Development Plan of Circular Economy in the 14th Five Year Plan (EB/OL). 1 July 2021. Available online: https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/202107/t20210707_1285527.html?code=&state=123 (accessed on 6 April 2022).
- Wang, F. “Internet + second-hand”, power battery recycling welcome good policy. 21st Century Economic Report, 23 July 2021. [Google Scholar]
- Hao, S.S.; Dong, Q.Y.; Li, J.H. Analysis and tendency on the recycling mode of used EV batteries based on cost accounting. Environ. Sci. China
**2021**, 41, 4745–4755. [Google Scholar] - Shen, H.; Liu, J.; Zhao, X.G.; Liu, Q. Research on new energy vehicle battery recycling strategy in the post-subsidy era. J. Xi’an Technol. Univ.
**2020**, 40, 455–463. [Google Scholar] - Xie, J.Y.; Le, W.; Guo, B.H. Pareto equilibrium of new energy vehicle power battery recycling based on extended producer responsibility. Manag. Sci. China
**2022**. [Google Scholar] [CrossRef] - Mu, D.; Yang, J.; Li, X. The influence of enterprise cooperation within closed-loop supply chain on power battery recovery and recycling of new energy vehicles. Supply Chain Manag.
**2021**, 1, 54–67. [Google Scholar] - Li, X.; Mu, D. Mu Recycling price decision and coordinated mechanism of electrical vehicle battery closed-loop supply chain. Soft Sci.
**2018**, 32, 124–129. [Google Scholar] - Heydari, J.; Govindan, K.; Jafari, A. Reverse and Closed Loop Supply Chain Coordination by Considering Government Role. Transp. Res. Part D Transp. Environ.
**2017**, 52, 379–398. [Google Scholar] [CrossRef] - Lu, C.; Zhao, M.Y.; Tao, J.; Liu, C.; Yu, J. Pricing strategy and coordination mechanism of power battery recycling under the dual risks from demand and quality. Oper. Res. Manag. Sci.
**2020**, 29, 195–203. [Google Scholar] - Choi, Y.; Rhee, S.W. Current status and perspectives on recycling of end-of-life battery of electric vehicle in Korea (Republic of). Waste Manag.
**2020**, 106, 261–270. [Google Scholar] [CrossRef] [PubMed] - Qiu, Z.G.; Zheng, Y.; Xu, Y.Q. Closed-loop supply chain recycling subsidy strategy of new energy vehicle power battery: An analysis based on evolutionary games. Bus. Res.
**2020**, 8, 28–36. [Google Scholar] - Natkunarajah, N.; Scharf, M.; Scharf, P. Scenarios for the return of lithium-ion batteries out of electric cars for recycling. Procedia Cirp
**2015**, 29, 740–745. [Google Scholar] [CrossRef] - Liu, K.; Wang, C. The impacts of subsidy policies and channel encroachment on the power battery recycling of new energy vehicles. Int. J. Low-Carbon Technol.
**2021**, 16, 770–789. [Google Scholar] [CrossRef] - Xiong, Z.K.; Liang, X.P. Study on recycling mode of closed-loop supply chain considering consumer environmental awareness. Soft Sci.
**2014**, 28, 61–66. [Google Scholar] - Jia, Y.L.; Li, C.B. Recycling Modes of Power Batteries of New Energy Vehicles Based on Principal Behavior; IEEE: Toronto, ON, Canada, 2018. [Google Scholar]
- Savaskan, R.C.; Bhattacharya, S.; Van Wassenhove, L.N. Closed-loop supply chain models with product manufacturing. Manag. Sci.
**2004**, 50, 239–252. [Google Scholar] [CrossRef] - Savaskan, R.C.; Van Wassenhove, L.N. Reverse channel design: The case of competing retailers. Manag. Sci.
**2006**, 52, 1–14. [Google Scholar] [CrossRef] - Sun, J.Y.; Teng, C.X.; Chen, Z.B. Channel selection model of remanufacturing closed-loop supply chain based on buy-back price and sale quantity. Syst. Eng. Theory Pract.
**2013**, 33, 3079–3086. [Google Scholar] - Hong, X.; Xu, L.; Du, P.; Wang, W. Joint advertising, pricing and collection decisions in a closed-loop supply chain. Int. J. Prod. Econ.
**2015**, 167, 12–22. [Google Scholar] [CrossRef] - Li, X.J.; Ai, X.Z.; Tang, X.W. Research on recycling channels of remanufactured products under competitive supply chain. J. Manag. Eng.
**2016**, 30, 90–98. [Google Scholar] - Chen, J.; Tian, D.G. Selection of the Recycling Mode Based on Closed-loop Supply Chain Model. Chin. J. Manag. Sci.
**2017**, 25, 88–97. [Google Scholar] - Zhou, X.; Xiong, H.; Chen, X. Reverse channel selection in closed-loop supply chain based on quality of recycled products. Control Decis.
**2017**, 32, 193–202. [Google Scholar] - Zhang, C.; Lyu, R.; Li, Z.; MacMillen, S.J. Who should lead raw materials collection considering regulatory pressure and technological innovation? J. Clean. Prod.
**2021**, 298, 126762. [Google Scholar] [CrossRef] - Chen, J.; Mei, J.; Cao, J. Decision making of hybrid recycling channels selection for closed-loop supply chain with dominant retailer. Comput. Integr. Manuf. Syst.
**2021**, 27, 954–964. [Google Scholar] - Gong, B.; Gao, Y.; Liu, Z.; Cheng, Y.; Zheng, X. Selection of recycling channels in thepower battery closed-loop supply chain under government fund policy. Comput. Integr. Manuf. Syst.
**2021**. Available online: http://kns.cnki.net.ez.zust.edu.cn/kcms/detail/11.5946.tp.20210911.1259.004.html (accessed on 29 July 2022). - Ding, X.; Ma, Y. Multiple attribute decision making problem in power battery recycling mode selection. Tongji Daxue Xuebao/J. Tongji Univ.
**2018**, 46, 1312–1318. [Google Scholar] - Yao, Y.; Jiang, Q. Recovery mode analysis of vehicle spent power battery. Trends Overv.
**2019**, 12, 91–94. [Google Scholar] - Ma, L.; Liu, Y.J.; Zhu, H. Design of dual-channel recycling contract for new energy vehicle batteries from the perspective of closed-loop supply chain. Sci. Technol. Manag. Res.
**2021**, 40, 184–192. [Google Scholar]

**Figure 2.**Influence of parameter $\beta ,\text{}\omega ,\text{}{d}_{m},\text{}Q,\text{}{p}_{2}$ on the recycling price, ${p}_{1}$. (

**a**) Influence of parameter β and ω on the recycling price, p

_{1}. (

**b**) Influence of parameter β and d

_{m}on the recycling price, p

_{1}. (

**c**) Influence of parameter β and Q on the recycling price, p

_{1}. (

**d**) Influence of parameter β and p

_{2}on the recycling price, p

_{1}.

**Figure 4.**Influence of parameter $\beta ,\text{}\omega ,\text{}{d}_{m},\text{}Q,\text{}{p}_{2}$ on the recycling rate, r. (

**a**) Influence of parameter β and ω on the recycling rate, r. (

**b**) Influence of parameter β and d

_{m}on the recycling rate, r. (

**c**) Influence of parameter β and p

_{2}on the recycling rate, r. (

**d**) Influence of parameter β and Q on the recycling rate, r.

**Figure 5.**The effect of parameter $\beta ,\text{}{d}_{m},\text{}Q,\text{}{p}_{2}$ on the consumer expected profit, ${\pi}_{k}$. (

**a**) The effect of parameter β and ω on the consumer expected profit, π

_{k}. (

**b**) The effect of parameter β and d

_{m}on the consumer expected profit, π

_{k}. (c) The effect of parameter β and Q on the consumer expected profit, π

_{k}. (

**d**) The effect of parameter β and p

_{2}on the consumer expected profit, π

_{k}. (e) The effect of parameter p

_{2}on the consumer expected profit, π

_{k}.

**Figure 7.**Impact of parameter $\beta ,\text{}\omega ,\text{}{d}_{m},\text{}Q,\text{}{p}_{2}$ on the ${\pi}_{sc}$ of the reverse supply chain. (

**a**) Impact of parameter β and ω on the π

_{sc}. of the reverse supply chain. (

**b**) Impact of parameter β and d

_{m}on the π

_{sc}of the reverse supply chain. (

**c**) Impact of parameter β and Q on the π

_{sc}of the reverse supply chain. (

**d**) Impact of parameter β and p

_{2}on the π

_{sc}of the reverse supply chain. (

**e**) Impact of parameter p

_{2}on the π

_{sc}of the reverse supply chain.

**Figure 9.**The relationship between $\beta $ and some parameters. (

**a**) The relationship between β and Q. (

**b**) The relationship between β and ω. (

**c**) The relationship between β and d

_{m}. (

**d**) The relationship between β and p

_{2}.

Modes | ${\mathit{p}}_{1}$ | ${\mathit{\pi}}_{\mathit{m}}$ | ${\mathit{\pi}}_{\mathit{r}}$ | ${\mathit{\pi}}_{\mathit{s}\mathit{c}}$ | ${\mathit{\pi}}_{\mathit{k}}$ |
---|---|---|---|---|---|

Manufacturer recycling (decentralized decision-making) | $\frac{{p}_{2}[Q{k}_{1}+\beta Q{p}_{2}-2\beta {k}_{2}]}{2(1-\beta ){k}_{2}}$ | $\frac{{Q}^{2}{\left({k}_{1}+\beta {p}_{2}\right)}^{2}}{8{k}_{2}\left(1-\beta \right)}$ | $\frac{{Q}^{2}{\left({k}_{1}+\beta {p}_{2}\right)}^{2}}{4{k}_{2}\left(1-\beta \right)}$ | $\frac{3{Q}^{2}{\left({k}_{1}+\beta {p}_{2}\right)}^{2}}{8{k}_{2}\left(1-\beta \right)}$ | $\frac{Q{p}_{2}\left({k}_{1}+\beta {p}_{2}\right)\left(Q{k}_{1}-2\beta {k}_{2}+Q\beta {p}_{2}\right)}{4\left(1-\beta \right){k}_{2}^{2}}+\frac{\left(2{k}_{2}-Q{k}_{1}-4Q\beta {p}_{2}\right)}{2{k}_{2}}\left({p}_{2}-t\delta \right)$ |

Manufacturer recycling (centralized decision-making) | $\frac{{p}_{2}\left[Q{k}_{1}+\beta Q{p}_{2}-\beta {k}_{2}\right]}{\left(1-\beta \right){k}_{2}}$ | $\frac{{Q}^{2}{\left({k}_{1}+\beta {p}_{2}\right)}^{2}}{2{k}_{2}\left(1-\beta \right)}$ | $\frac{Q{p}_{2}\left({k}_{1}+\beta {p}_{2}\right)\left(Q{k}_{1}+Q\beta {p}_{2}-\beta {k}_{2}\right)}{\left(1-\beta \right){k}_{2}^{2}}+\frac{\left({k}_{2}-Q{k}_{1}-Q\beta {p}_{2}\right)}{{k}_{2}}\left({p}_{2}-t\delta \right)$ | ||

Third-party recycling (decentralized decision-making) | $\frac{{p}_{2}\left[Q{k}_{3}-\beta \left({k}_{4}-Q{p}_{2}\right)\right]}{\left(1-\beta \right){k}_{4}}$ | ${Q}^{2}\Delta \epsilon \frac{\left({k}_{3}+{p}_{2}\beta \right)}{{k}_{4}}$ | $\frac{{Q}^{2}{\left({k}_{3}+\beta {p}_{2}\right)}^{2}}{2{k}_{4}\left(1-\beta \right)}$ | $\frac{{Q}^{2}\left({k}_{3}+\beta {p}_{2}\right)\left({k}_{1}+\left(1-\beta \right)\Delta \epsilon +\beta {p}_{2}\right)}{2{k}_{4}\left(1-\beta \right)}$ | $\frac{Q{p}_{2}\left({k}_{3}+\beta {p}_{2}\right)\left(Q{k}_{3}+Q\beta {p}_{2}-\beta {k}_{4}\right)}{\left(1-\beta \right){k}_{4}^{2}}+\frac{\left({k}_{4}-Q{k}_{3}-Q\beta {p}_{2}\right)}{{k}_{4}}\left({p}_{2}-t\delta \right)$ |

Third-party recycling (centralized decision-making) | $\frac{{p}_{2}\left[Q{k}_{1}-\beta {k}_{4}+\beta Q{p}_{2}\right]}{\left(1-\beta \right){k}_{4}}$ | $\frac{{Q}^{2}{\left({k}_{1}+\beta {p}_{2}\right)}^{2}}{2{k}_{4}\left(1-\beta \right)}$ |

Recycling Mode | $\mathit{\beta}$ |
---|---|

Manufacturer recycling (decentralized/centralized decision-making) | $\frac{\left[-2Q{\left(\omega +\Delta \epsilon \right)}^{2}+4Q{p}_{2}\left(\omega +\Delta \epsilon \right)-2Q{{p}_{2}}^{2}+2\left(\omega +\Delta \epsilon \right){d}_{m}-{d}_{m}{p}_{2}\right]}{2\left[-Q{\left(\omega +\Delta \epsilon \right)}^{2}+2Q{p}_{2}\left(\omega +\Delta \epsilon \right)-Q{{p}_{2}}^{2}+\left(\omega +\Delta \epsilon \right){d}_{m}-{d}_{m}{p}_{2}\right]}+\frac{\sqrt{4{Q}^{2}{{p}_{2}}^{4}+{{d}_{m}}^{2}{{p}_{2}}^{2}+8{Q}^{2}{{p}_{2}}^{3}+4{Q}^{2}{{p}_{2}}^{2}{\left(\omega +\Delta \epsilon \right)}^{2}-4Q{{p}_{2}}^{2}{d}_{m}\left(\omega +\Delta \epsilon \right)+4Q{d}_{m}{{p}_{2}}^{3}}}{2\left[-Q{\left(\omega +\Delta \epsilon \right)}^{2}+2Q{p}_{2}\left(\omega +\Delta \epsilon \right)-Q{{p}_{2}}^{2}+\left(\omega +\Delta \epsilon \right){d}_{m}-{d}_{m}{p}_{2}\right]}$ |

Third-party recycling (decentralized decision-making) | $\begin{array}{l}\frac{\left[-4Q\left(\omega +\Delta \epsilon \right)\omega -4Q\omega \Delta \epsilon +4Q{p}_{2}\omega +4Q\left(\omega +\Delta \epsilon \right)-4Q{{p}_{2}}^{2}+2{d}_{r}{p}_{2}+3\omega {d}_{r}+4\Delta \epsilon {d}_{r}\right]}{2\left[-2Q\left(\omega +\Delta \epsilon \right)\omega -2Q\omega \Delta \epsilon +4Q{p}_{2}\omega +2Q\left(\omega +\Delta \epsilon \right)+6Q{{p}_{2}}^{2}+2{d}_{r}{p}_{2}+3\omega {d}_{r}+2\Delta \epsilon {d}_{r}\right]}\\ +\frac{\sqrt{16{Q}^{2}{{p}_{2}}^{4}+4{{d}_{r}}^{2}{{p}_{2}}^{2}+9{\omega}^{2}{{d}_{r}}^{2}+32{Q}^{2}{{p}_{2}}^{3}\omega +40Q{{p}_{2}}^{2}\omega {d}_{r}+24{\omega}^{2}Q{p}_{2}{d}_{r}+16Q{{p}_{2}}^{3}{d}_{r}+12{p}_{2}\omega {{d}_{r}}^{2}+32{Q}^{2}\omega {{p}_{2}}^{2}\left(\omega +\Delta \epsilon \right)-16{Q}^{2}{{p}_{2}}^{2}\left(\omega +\Delta \epsilon \right)-16Q{{p}_{2}}^{2}\Delta \epsilon {d}_{r}}}{2\left[-2Q\left(\omega +\Delta \epsilon \right)\omega -2Q\omega \Delta \epsilon +4Q{p}_{2}\omega +2Q\left(\omega +\Delta \epsilon \right)+6Q{{p}_{2}}^{2}+2{d}_{r}{p}_{2}+3\omega {d}_{r}+2\Delta \epsilon {d}_{r}\right]}\end{array}$ |

Third-party recycling (centralized decision-making) | $\frac{\left[-2Q{\left(\omega +\Delta \epsilon \right)}^{2}+4Q{p}_{2}\left(\omega +\Delta \epsilon \right)-2Q{{p}_{2}}^{2}+2\left(\omega +\Delta \epsilon \right){d}_{r}-{d}_{r}{p}_{2}\right]}{2\left[-Q{\left(\omega +\Delta \epsilon \right)}^{2}+2Q{p}_{2}\left(\omega +\Delta \epsilon \right)-Q{{p}_{2}}^{2}+\left(\omega +\Delta \epsilon \right){d}_{r}-{d}_{r}{p}_{2}\right]}+\frac{\sqrt{4{Q}^{2}{{p}_{2}}^{4}+{{d}_{r}}^{2}{{p}_{2}}^{2}+8{Q}^{2}{{p}_{2}}^{3}+4{Q}^{2}{{p}_{2}}^{2}{\left(\omega +\Delta \epsilon \right)}^{2}-4Q{{p}_{2}}^{2}{d}_{r}\left(\omega +\Delta \epsilon \right)+4Q{d}_{r}{{p}_{2}}^{3}}}{2\left[-Q{\left(\omega +\Delta \epsilon \right)}^{2}+2Q{p}_{2}\left(\omega +\Delta \epsilon \right)-Q{{p}_{2}}^{2}+\left(\omega +\Delta \epsilon \right){d}_{r}-{d}_{r}{p}_{2}\right]}$ |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Fan, J.; Teng, H.; Wang, Y.
Research on Recycling Strategies for New Energy Vehicle Waste Power Batteries Based on Consumer Responsibility Awareness. *Sustainability* **2022**, *14*, 10016.
https://doi.org/10.3390/su141610016

**AMA Style**

Fan J, Teng H, Wang Y.
Research on Recycling Strategies for New Energy Vehicle Waste Power Batteries Based on Consumer Responsibility Awareness. *Sustainability*. 2022; 14(16):10016.
https://doi.org/10.3390/su141610016

**Chicago/Turabian Style**

Fan, Jiajing, Hao Teng, and Yibo Wang.
2022. "Research on Recycling Strategies for New Energy Vehicle Waste Power Batteries Based on Consumer Responsibility Awareness" *Sustainability* 14, no. 16: 10016.
https://doi.org/10.3390/su141610016