Pyrolysis of Biosolids to Produce Biochars: A Review
Abstract
:1. Introduction
1.1. Background
1.2. What Constitutes a Biosolid/Biosludge and Why Should It Be Treated?
- (i)
- Land application technologies: composting, direct agricultural use, forestry enhancement and land reclamation [27],
- (ii)
- Energy source production/recovery: incineration, gasification, pyrolysis, anaerobic digestion, bioethanol production, direct/hydrothermal liquefaction, and hydrogen production [28]; and thirdly,
- (iii)
- Materials applications: water treatment absorbents, adsorbents, filtration media, composites, cement, construction, and asphalt manufacturing [29].
1.3. Application of Pyrolysis as a Thermochemical Treatment Process and Biochar Production Technology
1.3.1. Pyrolysis Technologies
Slow Pyrolysis
Fast Pyrolysis
Flash Pyrolysis
1.3.2. Benefits of Pyrolysis
1.3.3. Limitations of the Pyrolysis Process
2. Treatment of Sludge Prior to Pyrolysis
3. Pyrolysis Methods for Sewage Sludge
3.1. Summary of Pyrolysis Methods and Conditions
3.2. Critical Discussion of Previous Work
3.2.1. Effect of Process Conditions and the Type of Pyrolysis Method
3.2.2. Effect of the Type of Feedstock on Biochar Yield
3.2.3. Comparison between the Properties of Biosolids-Based Biochar and Other Feedstocks
4. The Potential for Energy Recovery from the Pyrolysis Bio-Oil and Biogas
5. Benefits of Biosolids-Derived Biochars
6. Conclusions and Recommendations for Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- United Nations, Department of Economic and Social Affairs. World Population Prospects: The 2017 Revision, Key Findings and Advance Tables. 2017. Available online: https://population.un.org/wpp/publications/files/wpp2017_keyfindings.pdf (accessed on 8 May 2022).
- Islam, M.K.; Wang, H.; Rehman, S.; Dong, C.; Hsu, H.Y.; Lin, C.S.K.; Leu, S.Y. Sustainability Metrics of Pretreatment Processes in a Waste Derived Lignocellulosic Biomass Biorefinery. Bioresour. Technol. 2020, 298, 122558. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, M.C.C.; Machado, M.C.; Jabbour, C.J.C.; de Sousa Jabbour, A.B.L. Paving the Way for the Circular Economy and More Sustainable Supply Chains: Shedding Light on Formal and Informal Governance Instruments Used to Induce Green Networks. Manag. Environ. Qual. Int. J. 2019, 30, 1095–1113. [Google Scholar] [CrossRef]
- Chacón Vargas, J.R.; Moreno Mantilla, C.E.; de Sousa Jabbour, A.B.L. Enablers of Sustainable Supply Chain Management and Its Effect on Competitive Advantage in the Colombian Context. Resour. Conserv. Recycl. 2018, 139, 237–250. [Google Scholar] [CrossRef]
- Luthra, S.; Mangla, S.K. Evaluating Challenges to Industry 4.0 Initiatives for Supply Chain Sustainability in Emerging Economies. Process Saf. Environ. Prot. 2018, 117, 168–179. [Google Scholar] [CrossRef]
- Walter, R. Stahel Circular Economy: A New Relationship with Our Goods and Materials Would Save Resources and Energy and Create Local Jobs. Nature 2016, 531, 435–439. [Google Scholar] [CrossRef] [Green Version]
- Jin, C.; Archer, G.; Parker, W. Current Status of Sludge Processing and Biosolids Disposition in Ontario. Resour. Conserv. Recycl. 2018, 137, 21–31. [Google Scholar] [CrossRef]
- Zhou, G.; Gu, Y.; Yuan, H.; Gong, Y.; Wu, Y. Selecting Sustainable Technologies for Disposal of Municipal Sewage Sludge Using a Multi-Criterion Decision-Making Method: A Case Study from China. Resour. Conserv. Recycl. 2020, 161, 104881. [Google Scholar] [CrossRef]
- Govindan, K.; Hasanagic, M. A Systematic Review on Drivers, Barriers, and Practices towards Circular Economy: A Supply Chain Perspective. Int. J. Prod. Res. 2018, 56, 278–311. [Google Scholar] [CrossRef]
- AlNouss, A.; Mckay, G.; Al-Ansari, T. Optimum Utilization of Biomass for the Production of Power and Fuels Using Gasification. In Computer Aided Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2018; Volume 43, pp. 1481–1486. ISBN 978-0-444-64235-6. Available online: https://www.sciencedirect.com/science/article/abs/pii/B9780444642356502588 (accessed on 14 May 2022).
- AlNouss, A.; Namany, S.; McKay, G.; Al-Ansari, T. Applying a Sustainability Metric in Energy, Water and Food Nexus Applications; A Biomass Utilization Case Study to Improve Investment Decisions. Comput. Aided Chem. Eng. 2019, 46, 205–210. [Google Scholar] [CrossRef]
- Shahbaz, M.; AlNouss, A.; Parthasarathy, P.; Abdelaal, A.H.; Mackey, H.; McKay, G.; Al-Ansari, T. Investigation of Biomass Components on the Slow Pyrolysis Products Yield Using Aspen Plus for Techno-Economic Analysis. Biomass Convers. Biorefin. 2022, 12, 669–681. [Google Scholar] [CrossRef]
- Parthasarathy, P.; Al-Ansari, T.; Mackey, H.M.; McKay, G. Effect of Heating Rate on the Pyrolysis of Camel Manure. Biomass Convers. Biorefin. 2021, 2021, 1–13. [Google Scholar] [CrossRef]
- Onwudili, J.A.; Radhakrishnan, P.; Williams, P.T. Application of Hydrothermal Oxidation and Alkaline Hydrothermal Gasification for the Treatment of Sewage Sludge and Pharmaceutical Wastewaters. Environ. Technol. 2013, 34, 529–537. [Google Scholar] [CrossRef]
- Ozdemir, S.; Nuhoglu, N.N.; Dede, O.H.; Yetilmezsoy, K. Mitigation of Soil Loss from Turfgrass Cultivation by Utilizing Poultry Abattoir Sludge Compost and Biochar on Low-Organic Matter Soil. Environ. Technol. 2020, 41, 466–477. [Google Scholar] [CrossRef] [PubMed]
- Pahija, E.; Hui, C.W. A Practical Approach for Modelling the Growth of Microalgae with Population Balance Equation. New Biotechnol. 2021, 62, 40–48. [Google Scholar] [CrossRef]
- Silva, T.A.; de Castro, J.S.; Ribeiro, V.J.; Ribeiro Júnior, J.I.; Tavares, G.P.; Calijuri, M.L. Microalgae Biomass as a Renewable Biostimulant: Meat Processing Industry Effluent Treatment, Soil Health Improvement, and Plant Growth. Environ. Technol. 2021, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Minakshi, M.; Higley, S.; Baur, C.; Mitchell, D.R.G.; Jones, R.T.; Fichtner, M. Calcined Chicken Eggshell Electrode for Battery and Supercapacitor Applications. RSC Adv. 2019, 9, 26981–26995. [Google Scholar] [CrossRef] [Green Version]
- Wickramaarachchi, W.A.M.K.P.; Minakshi, M.; Gao, X.; Dabare, R.; Wong, K.W. Hierarchical Porous Carbon from Mango Seed Husk for Electro-Chemical Energy Storage. Chem. Eng. J. Adv. 2021, 8, 100158. [Google Scholar] [CrossRef]
- Wang, W.; Kang, R.; Yin, Y.; Tu, S.; Ye, L. Two-Step Pyrolysis Biochar Derived from Agro-Waste for Antibiotics Removal: Mechanisms and Stability. Chemosphere 2022, 292, 133454. [Google Scholar] [CrossRef]
- González-Lucas, M.; Peinado, M.; Vaquero, J.J.; Nozal, L.; Aguirre, J.L.; González-Egido, S. Microwave-Assisted Pyrolysis of Leather Waste. Energies 2022, 15, 1273. [Google Scholar] [CrossRef]
- Paz-Ferreiro, J.; Nieto, A.; Méndez, A.; Askeland, M.P.J.; Gascó, G. Biochar from Biosolids Pyrolysis: A Review. Int. J. Environ. Res. Public Health 2018, 15, 956. [Google Scholar] [CrossRef] [Green Version]
- Syed-Hassan, S.S.A.; Wang, Y.; Hu, S.; Su, S.; Xiang, J. Thermochemical Processing of Sewage Sludge to Energy and Fuel: Fundamentals, Challenges and Considerations. Renew. Sustain. Energy Rev. 2017, 80, 888–913. [Google Scholar] [CrossRef]
- European Communities. Disposal and Recycling Routes for Sewage Sludge Part 3—Scientific and Technical Report; Office for Official Publications of the European Communities: Luxembourg, 2001; ISBN 92-894-1800-1. [Google Scholar]
- Chang, Z.; Long, G.; Zhou, J.L.; Ma, C. Valorization of Sewage Sludge in the Fabrication of Construction and Building Materials: A Review. Resour. Conserv. Recycl. 2020, 154, 104606. [Google Scholar] [CrossRef]
- Faubert, P.; Barnabé, S.; Bouchard, S.; Côté, R.; Villeneuve, C. Pulp and Paper Mill Sludge Management Practices: What Are the Challenges to Assess the Impacts on Greenhouse Gas Emissions? Resour. Conserv. Recycl. 2016, 108, 107–133. [Google Scholar] [CrossRef] [Green Version]
- Al-Rumaihi, A.; McKay, G.; Mackey, H.R.; Al-Ansari, T. Environmental Impact Assessment of Food Waste Management Using Two Composting Techniques. Sustainability 2020, 12, 1595. [Google Scholar] [CrossRef] [Green Version]
- Bishoge, O.K.; Huang, X.; Zhang, L.; Ma, H.; Danyo, C. The Adaptation of Waste-to-Energy Technologies: Towards the Conversion of Municipal Solid Waste into a Renewable Energy Resource. Environ. Rev. 2019, 27, 435–446. [Google Scholar] [CrossRef]
- Navarathna, C.M.; Bombuwala Dewage, N.; Keeton, C.; Pennisson, J.; Henderson, R.; Lashley, B.; Zhang, X.; Hassan, E.B.; Perez, F.; Mohan, D.; et al. Biochar Adsorbents with Enhanced Hydrophobicity for Oil Spill Removal. ACS Appl. Mater. Interfaces 2020, 12, 9248–9260. [Google Scholar] [CrossRef]
- Boavida-Dias, R.; Silva, J.R.; Santos, A.D.; Martins, R.C.; Castro, L.M.; Quinta-Ferreira, R.M. A Comparison of Biosolids Production and System Efficiency between Activated Sludge, Moving Bed Biofilm Reactor, and Sequencing Batch Moving Bed Biofilm Reactor in the Dairy Wastewater Treatment. Sustainability 2022, 14, 2702. [Google Scholar] [CrossRef]
- Liu, Z.; Singer, S.; Tong, Y.; Kimbell, L.; Anderson, E.; Hughes, M.; Zitomer, D.; McNamara, P. Characteristics and Applications of Biochars Derived from Wastewater Solids. Renew. Sustain. Energy Rev. 2018, 90, 650–664. [Google Scholar] [CrossRef]
- McClellan, K.; Halden, R.U. Pharmaceuticals and Personal Care Products in Archived U.S. Biosolids from the 2001 EPA National Sewage Sludge Survey. Water Res. 2010, 44, 658–668. [Google Scholar] [CrossRef] [Green Version]
- Farzaneh, H.; Loganathan, K.; Saththasivam, J.; McKay, G. Ozone and Ozone/Hydrogen Peroxide Treatment to Remove Gemfibrozil and Ibuprofen from Treated Sewage Effluent: Factors Influencing Bromate Formation. Emerg. Contam. 2020, 6, 225–234. [Google Scholar] [CrossRef]
- Xu, Z.X.; Deng, X.Q.; Zhang, S.; Shen, Y.F.; Shan, Y.Q.; Zhang, Z.M.; Luque, R.; Luque, R.; Duan, P.G.; Hu, X. Benign-by-Design N-Doped Carbonaceous Materials Obtained from the Hydrothermal Carbonization of Sewage Sludge for Supercapacitor Applications. Green Chem. 2020, 22, 3885–3895. [Google Scholar] [CrossRef]
- Panwar, N.L.; Kothari, R.; Tyagi, V.V. Thermo Chemical Conversion of Biomass-Eco Friendly Energy Routes. Renew. Sustain. Energy Rev. 2012, 16, 1801–1816. [Google Scholar] [CrossRef]
- White, J.E.; Catallo, W.J.; Legendre, B.L. Biomass Pyrolysis Kinetics: A Comparative Critical Review with Relevant Agricultural Residue Case Studies. J. Anal. Appl. Pyrolysis 2011, 91, 1–33. [Google Scholar] [CrossRef]
- Lehmann, J. A Handful of Carbon. Nature 2007, 447, 143–144. [Google Scholar] [CrossRef]
- Laird, D.A.; Brown, R.C.; Amonette, J.E.; Lehmann, J. Review of the Pyrolysis Platform for Coproducing Bio-Oil and Biochar. Biofuels Bioprod. Biorefin. 2009, 3, 547–562. [Google Scholar] [CrossRef]
- Tripathi, M.; Sahu, J.N.; Ganesan, P. Effect of Process Parameters on Production of Biochar from Biomass Waste through Pyrolysis: A Review. Renew. Sustain. Energy Rev. 2016, 55, 467–481. [Google Scholar] [CrossRef]
- Elkhalifa, S.; Al-Ansari, T.; Mackey, H.R.; McKay, G. Food Waste to Biochars through Pyrolysis: A Review. Resour. Conserv. Recycl. 2019, 144, 310–320. [Google Scholar] [CrossRef]
- Demirbaş, A.; Arin, G. An Overview of Biomass Pyrolysis. Energy Sources 2002, 24, 471–482. [Google Scholar] [CrossRef]
- Chowdhury, Z.Z.; Pal, K.; Yehye, W.A.; Sagadevan, S.; Shah, S.T.; Adebisi, G.A.; Marliana, E.; Rafique, R.F.; Bin Johan, R. Pyrolysis: A Sustainable Way to Generate Energy from Waste. In Pyrolysis; IntechOpen: London, UK, 2017; pp. 3–36. [Google Scholar] [CrossRef] [Green Version]
- Czajczyńska, D.; Anguilano, L.; Ghazal, H.; Krzyżyńska, R.; Reynolds, A.J.; Spencer, N.; Jouhara, H. Potential of Pyrolysis Processes in the Waste Management Sector. Therm. Sci. Eng. Prog. 2017, 3, 171–197. [Google Scholar] [CrossRef]
- Roy, P.; Dias, G. Prospects for Pyrolysis Technologies in the Bioenergy Sector: A Review. Renew. Sustain. Energy Rev. 2017, 77, 59–69. [Google Scholar] [CrossRef]
- Bridgwater, A.V. Renewable Fuels and Chemicals by Thermal Processing of Biomass. Chem. Eng. J. 2003, 91, 87–102. [Google Scholar] [CrossRef]
- Mohan, D.; Pittman, C.U.; Steele, P.H. Pyrolysis of Wood/Biomass for Bio-Oil: A Critical Review. Energy Fuels 2006, 20, 848–889. [Google Scholar] [CrossRef]
- Marshall, A.J. Commercial Application of Pyrolysis Technology in Agriculture. 2013. Available online: https://ofa.on.ca/wp-content/uploads/2017/11/Pyrolysis-Report-Final.pdf (accessed on 8 May 2022).
- Amutio, M.; Lopez, G.; Artetxe, M.; Elordi, G.; Olazar, M.; Bilbao, J. Influence of Temperature on Biomass Pyrolysis in a Conical Spouted Bed Reactor. Resour. Conserv. Recycl. 2012, 59, 23–31. [Google Scholar] [CrossRef]
- Bridgwater, A.V.; Peacocke, G.V.C. Fast Pyrolysis Processes for Biomass. Renew. Sustain. Energy Rev. 2000, 4, 1–73. [Google Scholar] [CrossRef]
- Bridgwater, A.V.; Meier, D.; Radlein, D. An Overview of Fast Pyrolysis of Biomass. Org. Geochem. 1999, 30, 1479–1493. [Google Scholar] [CrossRef]
- Huber, G.W.; Iborra, S.; Corma, A. Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering. Chem. Rev. 2006, 106, 4044–4098. [Google Scholar] [CrossRef] [Green Version]
- Jo, J.H.; Kim, S.S.; Shim, J.W.; Lee, Y.E.; Yoo, Y.S. Pyrolysis Characteristics and Kinetics of Food Wastes. Energies 2017, 10, 1191. [Google Scholar] [CrossRef] [Green Version]
- Delmiro, T.M.; Wilson, R.R.Y.O.V.; Melo, D.M.A.; Viana, G.A.C.M.; Mendes, L.B.B.; Braga, R.M. Catalytic Flash Pyrolysis of Monoraphidium Sp. before and after Lipid Extraction. Algal Res. 2021, 54, 102199. [Google Scholar] [CrossRef]
- Foust, T.D.; Aden, A.; Dutta, A.; Phillips, S. An Economic and Environmental Comparison of a Biochemical and a Thermochemical Lignocellulosic Ethanol Conversion Processes. Cellulose 2009, 16, 547–565. [Google Scholar] [CrossRef]
- Vakalis, S.; Sotiropoulos, A.; Moustakas, K.; Malamis, D.; Vekkos, K.; Baratieri, M. Thermochemical Valorization and Characterization of Household Biowaste. J. Environ. Manag. 2017, 203, 648–654. [Google Scholar] [CrossRef]
- Li, J.; Li, L.; Suvarna, M.; Pan, L.; Tabatabaei, M.; Ok, Y.S.; Wang, X. Wet Wastes to Bioenergy and Biochar: A Critical Review with Future Perspectives. Sci. Total Environ. 2022, 817, 152921. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Chang, F.; Meng, F.; Wang, C.; Meng, Y.; Liu, X.; Wu, J.; Zuo, J.; Wang, K. Sustainable Pyrolytic Sludge-Char Preparation on Improvement of Closed-Loop Sewage Sludge Treatment: Characterization and Combined in-Situ Application. Chemosphere 2017, 184, 1043–1053. [Google Scholar] [CrossRef] [PubMed]
- Tomasi Morgano, M.; Leibold, H.; Richter, F.; Stapf, D.; Seifert, H. Screw Pyrolysis Technology for Sewage Sludge Treatment. Waste Manag. 2018, 73, 487–495. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Gao, Z.; Ao, W.; Li, J.; Liu, G.; Fu, J.; Ran, C.; Mao, X.; Kang, Q.; Liu, Y.; et al. Microwave Pyrolysis of Textile Dyeing Sludge in a Continuously Operated Auger Reactor: Char Characterization and Analysis. J. Hazard. Mater. 2017, 334, 112–120. [Google Scholar] [CrossRef]
- Zielińska, A.; Oleszczuk, P. Evaluation of Sewage Sludge and Slow Pyrolyzed Sewage Sludge-Derived Biochar for Adsorption of Phenanthrene and Pyrene. Bioresour. Technol. 2015, 192, 618–626. [Google Scholar] [CrossRef]
- Jin, J.; Wang, M.; Cao, Y.; Wu, S.; Liang, P.; Li, Y.; Zhang, J.; Zhang, J.; Wong, M.H.; Shan, S.; et al. Cumulative Effects of Bamboo Sawdust Addition on Pyrolysis of Sewage Sludge: Biochar Properties and Environmental Risk from Metals. Bioresour. Technol. 2017, 228, 218–226. [Google Scholar] [CrossRef]
- Li, W.; Lin, H.; Yang, Y.; Shang, Z.; Li, Q.; Ma, Y.; Liu, A.; Jiang, M. Enhanced Separation of Oil and Solids in Oily Sludge by Froth Flotation at Normal Temperature. Processes 2021, 9, 2163. [Google Scholar] [CrossRef]
- Shie, J.L.; Chang, C.Y.; Lin, J.P.; Lee, D.J.; Wu, C.H. Use of Inexpensive Additives in Pyrolysis of Oil Sludge. Energy Fuels 2002, 16, 102–108. [Google Scholar] [CrossRef]
- de Figueiredo, C.C.; Pinheiro, T.D.; de Oliveira, L.E.Z.; de Araujo, A.S.; Coser, T.R.; Paz-Ferreiro, J. Direct and Residual Effect of Biochar Derived from Biosolids on Soil Phosphorus Pools: A Four-Year Field Assessment. Sci. Total Environ. 2020, 739, 140013. [Google Scholar] [CrossRef]
- Stylianou, M.; Christou, A.; Dalias, P.; Polycarpou, P.; Michael, C.; Agapiou, A.; Papanastasiou, P.; Fatta-Kassinos, D. Physicochemical and Structural Characterization of Biochar Derived from the Pyrolysis of Biosolids, Cattle Manure and Spent Coffee Grounds. J. Energy Inst. 2020, 93, 2063–2073. [Google Scholar] [CrossRef]
- Antunes, E.; Jacob, M.V.; Brodie, G.; Schneider, P.A. Microwave Pyrolysis of Sewage Biosolids: Dielectric Properties, Microwave Susceptor Role and Its Impact on Biochar Properties. J. Anal. Appl. Pyrolysis 2018, 129, 93–100. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, S.; Zhou, N.; Fan, L.; Zhang, Y.; Peng, P.; Anderson, E.; Ding, K.; Wang, Y.; Liu, Y.; et al. Development and Application of a Continuous Fast Microwave Pyrolysis System for Sewage Sludge Utilization. Bioresour. Technol. 2018, 256, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Bhatta Kaudal, B.; Aponte, C.; Brodie, G. Biochar from Biosolids Microwaved-Pyrolysis: Characteristics and Potential for Use as Growing Media Amendment. J. Anal. Appl. Pyrolysis 2018, 130, 181–189. [Google Scholar] [CrossRef]
- Antunes, E.; Schumann, J.; Brodie, G.; Jacob, M.V.; Schneider, P.A. Biochar Produced from Biosolids Using a Single-Mode Microwave: Characterisation and Its Potential for Phosphorus Removal. J. Environ. Manag. 2017, 196, 119–126. [Google Scholar] [CrossRef]
- Roberts, D.A.; Cole, A.J.; Whelan, A.; de Nys, R.; Paul, N.A. Slow Pyrolysis Enhances the Recovery and Reuse of Phosphorus and Reduces Metal Leaching from Biosolids. Waste Manag. 2017, 64, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Gómez, N.; Quispe, V.; Ábrego, J.; Atienza-Martínez, M.; Murillo, M.B.; Gea, G. Co-Pyrolysis of Sewage Sludge and Manure. Waste Manag. 2017, 59, 211–221. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, J.; Amutio, M.; Lopez, G.; Barbarias, I.; Bilbao, J.; Olazar, M. Sewage Sludge Valorization by Flash Pyrolysis in a Conical Spouted Bed Reactor. Chem. Eng. J. 2015, 273, 173–183. [Google Scholar] [CrossRef]
- Zielińska, A.; Oleszczuk, P.; Charmas, B.; Skubiszewska-Zięba, J.; Pasieczna-Patkowska, S. Effect of Sewage Sludge Properties on the Biochar Characteristic. J. Anal. Appl. Pyrolysis 2015, 112, 201–213. [Google Scholar] [CrossRef]
- Tan, C.; Yaxin, Z.; Hongtao, W.; Wenjing, L.; Zeyu, Z.; Yuancheng, Z.; Lulu, R. Influence of Pyrolysis Temperature on Characteristics and Heavy Metal Adsorptive Performance of Biochar Derived from Municipal Sewage Sludge. Bioresour. Technol. 2014, 164, 47–54. [Google Scholar] [CrossRef]
- Hossain, M.K.; Strezov Vladimir, V.; Chan, K.Y.; Ziolkowski, A.; Nelson, P.F. Influence of Pyrolysis Temperature on Production and Nutrient Properties of Wastewater Sludge Biochar. J. Environ. Manag. 2011, 92, 223–228. [Google Scholar] [CrossRef]
- Gao, N.; Quan, C.; Liu, B.; Li, Z.; Wu, C.; Li, A. Continuous Pyrolysis of Sewage Sludge in a Screw-Feeding Reactor: Products Characterization and Ecological Risk Assessment of Heavy Metals. Energy Fuels 2017, 31, 5063–5072. [Google Scholar] [CrossRef]
- Atienza-Martínez, M.; Fonts, I.; Lázaro, L.; Ceamanos, J.; Gea, G. Fast Pyrolysis of Torrefied Sewage Sludge in a Fluidized Bed Reactor. Chem. Eng. J. 2015, 259, 467–480. [Google Scholar] [CrossRef]
- Lin, K.H.; Lai, N.; Zeng, J.Y.; Chiang, H.L. Temperature Influence on Product Distribution and Characteristics of Derived Residue and Oil in Wet Sludge Pyrolysis Using Microwave Heating. Sci. Total Environ. 2017, 584–585, 1248–1255. [Google Scholar] [CrossRef]
- Nunes, L.J.R.; Godina, R.; Matias, J.C.O.; Catalão, J.P.S. Economic and Environmental Benefits of Using Textile Waste for the Production of Thermal Energy. J. Clean. Prod. 2018, 171, 1353–1360. [Google Scholar] [CrossRef]
- Brickler, C.A.; Wu, Y.; Li, S.; Anandhi, A.; Chen, G. Comparing Physicochemical Properties and Sorption Behaviors of Pyrolysis-Derived and Microwave-Mediated Biochar. Sustainability 2021, 13, 2359. [Google Scholar] [CrossRef]
- Venegas, M.; Leiva, A.M.; Bay-Schmith, E.; Silva, J.; Vidal, G. Phytotoxicity of Biosolids for Soil Application: Influence of Conventional and Advanced Anaerobic Digestion with Sequential Pre-Treatmen. Environ. Technol. Innov. 2019, 16, 100445. [Google Scholar] [CrossRef]
- Ali, M.; Ahmed, T.; Abu-Dieyeh, M.; Al-Ghouti, M. Environmental Impacts of Using Municipal Biosolids on Soil, Plant and Groundwater Qualities. Sustainability 2021, 13, 8368. [Google Scholar] [CrossRef]
- Shan, R.; Han, J.; Gu, J.; Yuan, H.; Luo, B.; Chen, Y. A Review of Recent Developments in Catalytic Applications of Biochar-Based Materials. Resour. Conserv. Recycl. 2020, 162, 105036. [Google Scholar] [CrossRef]
- Elkhalifa, S.; Parthasarathy, P.; Mackey, H.R.; Al-Ansari, T.; Elhassan, O.; Mansour, S.; McKay, G. Biochar Development from Thermal TGA Studies of Individual Food Waste Vegetables and Their Blended Systems. Biomass Convers. Biorefin. 2022, 1–8. [Google Scholar] [CrossRef]
- Hong, Z.; Zhong, F.; Niu, W.; Zhang, K.; Su, J.; Liu, J.; Li, L.; Wu, F. Effects of Temperature and Particle Size on the Compositions, Energy Conversions and Structural Characteristics of Pyrolysis Products from Different Crop Residues. Energy 2020, 190, 116413. [Google Scholar] [CrossRef]
- Albalasmeh, A.; Gharaibeh, M.A.; Mohawesh, O.; Alajlouni, M.; Quzaih, M.; Masad, M.; El Hanandeh, A. Characterization and Artificial Neural Networks Modelling of Methylene Blue Adsorption of Biochar Derived from Agricultural Residues: Effect of Biomass Type, Pyrolysis Temperature, Particle Size. J. Saudi Chem. Soc. 2020, 24, 811–823. [Google Scholar] [CrossRef]
- Guran, S. Sustainable Waste-to-Energy Technologies: Gasification and Pyrolysis. In Sustainable Food Waste-to-Energy Systems; Elsevier: Amsterdam, The Netherlands, 2018; pp. 141–158. Available online: https://www.sciencedirect.com/science/article/pii/B9780128111574000085 (accessed on 8 May 2022).
- Zhao, B.; O’Connor, D.; Zhang, J.; Peng, T.; Shen, Z.; Tsang, D.C.W.; Hou, D. Effect of Pyrolysis Temperature, Heating Rate, and Residence Time on Rapeseed Stem Derived Biochar. J. Clean. Prod. 2018, 174, 977–987. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, K.; Xie, L.; Zhu, H.; Ji, S.; Shu, X. Effects of Residence Time on Characteristics of Biochars Prepared via Co-Pyrolysis of Sewage Sludge and Cotton Stalks. J. Anal. Appl. Pyrolysis 2019, 142, 104659. [Google Scholar] [CrossRef]
- Bong, H.K.; Selvarajoo, A.; Arumugasamy, S.K. Stability of Biochar Derived from Banana Peel through Pyrolysis as Alternative Source of Nutrient in Soil: Feedforward Neural Network Modelling Study. Environ. Monit. Assess. 2022, 194, 70. [Google Scholar] [CrossRef] [PubMed]
- Demirbas, A. Effects of Temperature and Particle Size on Bio-Char Yield from Pyrolysis of Agricultural Residues. J. Anal. Appl. Pyrolysis 2004, 72, 243–248. [Google Scholar] [CrossRef]
- Novak, J.M.; Lima, I.; Xing, B.; Gaskin, J.W.; Steiner, C.; Das, K.C.; Ahmedna, M.; Rehrah, D.; Watts, D.W.; Busscher, W.J.; et al. Characterization of Designer Biochar Produced at Different Temperatures and Their Effects on a Loamy Sand. Ann. Environ. Sci. 2009, 3, 195–206. [Google Scholar]
- Al-Wabel, M.I.; Al-Omran, A.; El-Naggar, A.H.; Nadeem, M.; Usman, A.R.A. Pyrolysis Temperature Induced Changes in Characteristics and Chemical Composition of Biochar Produced from Conocarpus Wastes. Bioresour. Technol. 2013, 131, 374–379. [Google Scholar] [CrossRef]
- Tang, Y.; Huang, Q.; Sun, K.; Chi, Y.; Yan, J. Co-Pyrolysis Characteristics and Kinetic Analysis of Organic Food Waste and Plastic. Bioresour. Technol. 2018, 249, 16–23. [Google Scholar] [CrossRef]
- Liang, S.; Han, Y.; Wei, L.; McDonald, A.G. Production and Characterization of Bio-Oil and Bio-Char from Pyrolysis of Potato Peel Wastes. Biomass Convers. Biorefin. 2015, 5, 237–246. [Google Scholar] [CrossRef]
- González, J.F.; Román, S.; Encinar, J.M.; Martínez, G. Pyrolysis of Various Biomass Residues and Char Utilization for the Production of Activated Carbons. J. Anal. Appl. Pyrolysis 2009, 85, 134–141. [Google Scholar] [CrossRef]
- Agrafioti, E.; Bouras, G.; Kalderis, D.; Diamadopoulos, E. Biochar Production by Sewage Sludge Pyrolysis. J. Anal. Appl. Pyrolysis 2013, 101, 72–78. [Google Scholar] [CrossRef]
- Lu, H.; Zhang, W.; Wang, S.; Zhuang, L.; Yang, Y.; Qiu, R. Characterization of Sewage Sludge-Derived Biochars from Different Feedstocks and Pyrolysis Temperatures. J. Anal. Appl. Pyrolysis 2013, 102, 137–143. [Google Scholar] [CrossRef]
- Eid, E.M.; Shaltout, K.H.; Alamri, S.A.M.; Alrumman, S.A.; Taher, M.A.; El-Bebany, A.F.; Hashem, M.; Galal, T.M.; Mostafa, Y.S.; Ahmed, M.T.; et al. Planned Application of Sewage Sludge Recirculates Nutrients to Agricultural Soil and Improves Growth of Okra (Abelmoschus Esculentus (L.) Moench) Plants. Sustainability 2022, 14, 740. [Google Scholar] [CrossRef]
- Almanassra, I.W.; Kochkodan, V.; Subeh, M.; Mckay, G.; Atieh, M.; Al-Ansari, T. Phosphate Removal from Synthetic and Treated Sewage Effluent by Carbide Derive Carbon. J. Water Process Eng. 2020, 36, 101323. [Google Scholar] [CrossRef]
- Poulikakos, L.D.; Papadaskalopoulou, C.; Hofko, B.; Gschösser, F.; Cannone Falchetto, A.; Bueno, M.; Arraigada, M.; Sousa, J.; Ruiz, R.; Petit, C.; et al. Harvesting the Unexplored Potential of European Waste Materials for Road Construction. Resour. Conserv. Recycl. 2017, 116, 32–44. [Google Scholar] [CrossRef]
- Disfani, M.M.; Arulrajah, A.; Suthagaran, V.; Bo, M.W. Long-Term Settlement Prediction for Wastewater Biosolids in Road Embankments. Resour. Conserv. Recycl. 2013, 77, 69–77. [Google Scholar] [CrossRef]
- Dotto, G.L.; McKay, G. Current Scenario and Challenges in Adsorption for Water Treatment. J. Environ. Chem. Eng. 2020, 8, 103988. [Google Scholar] [CrossRef]
- Adhikari, S.; Gascó, G.; Méndez, A.; Surapaneni, A.; Jegatheesan, V.; Shah, K.; Paz-Ferreiro, J. Influence of Pyrolysis Parameters on Phosphorus Fractions of Biosolids Derived Biochar. Sci. Total Environ. 2019, 695, 133846. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S.; Lu, J.; Yang, M.; Wu, Y. Improved Bio-Oil Quality from Pyrolysis of Pine Biomass in Pressurized Hydrogen. Appl. Sci. 2021, 12, 46. [Google Scholar] [CrossRef]
- Shrivastava, P.; Kumar, A.; Tekasakul, P.; Lam, S.S.; Palamanit, A. Comparative Investigation of Yield and Quality of Bio-Oil and Biochar from Pyrolysis of Woody and Non-Woody Biomasses. Energies 2021, 14, 1092. [Google Scholar] [CrossRef]
- McNamara, P.J.; Koch, J.D.; Liu, Z.; Zitomer, D.H. Pyrolysis of Dried Wastewater Biosolids Can Be Energy Positive. Water Environ. Res. 2016, 88, 804–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trinh, T.N.; Jensen, P.A.; Kim, D.J.; Knudsen, N.O.; Sørensen, H.R. Influence of the Pyrolysis Temperature on Sewage Sludge Product Distribution, Bio-Oil, and Char Properties. Energy Fuels 2013, 27, 1419–1427. [Google Scholar] [CrossRef]
- Pokorna, E.; Postelmans, N.; Jenicek, P.; Schreurs, S.; Carleer, R.; Yperman, J. Study of Bio-Oils and Solids from Flash Pyrolysis of Sewage Sludges. Fuel 2009, 88, 1344–1350. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Parker, W. A Technical and Economic Evaluation of the Pyrolysis of Sewage Sludge for the Production of Bio-Oil. Bioresour. Technol. 2008, 99, 1409–1416. [Google Scholar] [CrossRef]
- Fonts, I.; Gea, G.; Azuara, M.; Ábrego, J.; Arauzo, J. Sewage Sludge Pyrolysis for Liquid Production: A Review. Renew. Sustain. Energy Rev. 2012, 16, 2781–2805. [Google Scholar] [CrossRef]
- Méndez, A.; Terradillos, M.; Gascó, G. Physicochemical and Agronomic Properties of Biochar from Sewage Sludge Pyrolysed at Different Temperatures. J. Anal. Appl. Pyrolysis 2013, 102, 124–130. [Google Scholar] [CrossRef]
- Warnock, D.D.; Lehmann, J.; Kuyper, T.W.; Rillig, M.C. Mycorrhizal Responses to Biochar in Soil-Concepts and Mechanisms. Plant Soil 2007, 300, 9–20. [Google Scholar] [CrossRef]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar Effects on Soil Biota-A Review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Brockhoff, S.R.; Christians, N.E.; Killorn, R.J.; Horton, R.; Davis, D.D. Physical and Mineral-Nutrition Properties of Sand-Based Turfgrass Root Zones Amended with Biochar. Agron. J. 2010, 102, 1627–1631. [Google Scholar] [CrossRef]
- Altland, J.E.; Locke, J.C. Biochar Affects Macronutrient Leaching from a Soilless Substrate. HortScience 2012, 47, 1136–1140. [Google Scholar] [CrossRef]
- Khan, S.; Chao, C.; Waqas, M.; Arp, H.P.H.; Zhu, Y.G. Sewage Sludge Biochar Influence upon Rice (Oryza Sativa L) Yield, Metal Bioaccumulation and Greenhouse Gas Emissions from Acidic Paddy Soil. Environ. Sci. Technol. 2013, 47, 8624–8632. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Reid, B.J.; Li, G.; Zhu, Y.G. Application of Biochar to Soil Reduces Cancer Risk via Rice Consumption: A Case Study in Miaoqian Village, Longyan, China. Environ. Int. 2014, 68, 154–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anyaoha, K.E.; Sakrabani, R.; Patchigolla, K.; Mouazen, A.M. Co-Gasification of Oil Palm Biomass in a Pilot Scale Downdraft Gasifier. Energy Rep. 2020, 6, 1888–1896. [Google Scholar] [CrossRef]
- Dyer, A.C.; Nahil, M.A.; Williams, P.T. Catalytic Co-Pyrolysis of Biomass and Waste Plastics as a Route to Upgraded Bio-Oil. J. Energy Inst. 2021, 97, 27–36. [Google Scholar] [CrossRef]
Pyrolysis Method | Feedstock Type | Process Conditions | Products | References | ||||
---|---|---|---|---|---|---|---|---|
Temperature | Time | Pressure | Char | Oil | Gas | |||
Slow pyrolysis | Air-dried biosolids | 300 °C and 500 °C | Residence time of 30 min | - | 86 ± 8 and 65 ± 4% | - | - | [64] |
Slow pyrolysis | Three different biowastes including biosolids | 550 °C | Held for 1.5 h | - | 18.6% | - | - | [65] |
Microwave assisted pyrolysis in a customised single-mode microwave chamber connected to a 1.2 kW microwave source | Biosolids | 600 °C | Holding time of 10 min | - | - | - | [66] | |
Fast microwave-assisted | Continuous biomass (SS) | 450–600 °C | - | - | 63–34% | 17–26% | 20–40% | [67] |
Microwave pyrolysis technology | Biosolids | The quartz crucible outer temperature was reported in the range 300 °C to 350 °C immediately after each experimental run; but the sample temperatures were in the range 600 °C to 650 °C | - | - | 59.93% | 2.37% | 37.7% | [68] |
Microwave assisted pyrolysis in a customised single-mode microwave chamber connected to a 1.2 kW microwave source | Biosolids | 300–800 °C | Mean residence time of 6.38 s for the nitrogen in the pyrolysis chamber | The control valve was manually adjusted to maintain the pressure within −15 kPa gauge pressure | 0.91–0.77 g | - | - | [69] |
Slow pyrolysis | Biosolids | 300–750 °C | - | - | 67.5 ± 1.2 to 48.1 ± 0.4% and 70.1 ± 1.2 to 44.4 ± 0.2 | - | - | [70] |
Co-pyrolysis | Anaerobically digested and thermally dried SS | 525 °C | - | 1.01 × 105 Pa | 28% | 58% | 14% | [71] |
Co-pyrolysis | A triple oxidation ditch process was used for wastewater treatment and the SS feed samples were taken from the dewatering stage | 400–600 °C | Pyrolysis for 1 h | - | 44.5–44.1% | - | - | [61] |
Flash pyrolysis | Anaerobically digested and thermally dried sewage sludge | 450–600 °C | 1 s vapor residence time | - | 24–10% | 70–73% | 5–17% | [72] |
Slow pyrolysis | Four different anaerobically digested sewage sludges | 500–700 °C | Pyrolysis time of 5 h | - | Ranged from 54.5 to 40.2% | - | - | [73] |
Fast pyrolysis | Biophysical dried sludge | 500–900 °C | - | - | 63.10 ± 0.50 to 53.31 ± 0.48% | - | - | [74] |
Slow pyrolysis | Digested wastewater sludge/biosolids | 300–700 °C | - | - | 72.3 ± 2.5 to 52.4 ± 2.6% | - | - | [75] |
Biomass Type | Process Conditions | Biochar Properties | Reference | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Yield | Surface Area | Porosity | C (%) | H (%) | N (%) | S (%) | O (%) | Ash (%) | pH | |||
Biosolids | Temperature of 600 °C | - | 80 m2/g | Micropore area of around 67 m2/g | 45.5 | 0.9 | 3.4 | - | - | 59.1 | 8.1–10.2 | [104] |
Biosolids | Temperature of 600 °C | 0.599 g/g | 75 m2/g | pores with average width of 4.46 nm | 11.8 | 0 | 0.7 | 0.53 | - | 82.6 | 7.31 | [68] |
Banana peel | Temperature of 600 °C | 35.7% | 1.07 m2/g | Pore size of 1.93 × 10−6 m | 67.5% | - | 0.36 | 0.09 | 16.7 | 22.58 | - | [90] |
Crop residues | Temperature of 600 °C | 35% | Specific area of 12 m2/g | Pore diameter of 8 nm | 50 | 1.5 | - | - | 6 | 35 | 10 | [85] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elkhalifa, S.; Mackey, H.R.; Al-Ansari, T.; McKay, G. Pyrolysis of Biosolids to Produce Biochars: A Review. Sustainability 2022, 14, 9626. https://doi.org/10.3390/su14159626
Elkhalifa S, Mackey HR, Al-Ansari T, McKay G. Pyrolysis of Biosolids to Produce Biochars: A Review. Sustainability. 2022; 14(15):9626. https://doi.org/10.3390/su14159626
Chicago/Turabian StyleElkhalifa, Samar, Hamish R. Mackey, Tareq Al-Ansari, and Gordon McKay. 2022. "Pyrolysis of Biosolids to Produce Biochars: A Review" Sustainability 14, no. 15: 9626. https://doi.org/10.3390/su14159626