Coupling Mechanism of Coal Body Stress–Seepage around a Water Injection Borehole
Abstract
:1. Introduction
2. Radial Seepage Experiment of Large Size Raw Coal
2.1. Experimental System
2.2. Experimental Process
2.2.1. Coal Sample Preparation
2.2.2. Experimental Program
2.3. Experimental Results
Experiment Number | Burden Pressure (MPa) | Gas Injection Pressure (MPa) | Outlet Pressure (MPa) | Gas Flow | Gas Permeability (mD) |
---|---|---|---|---|---|
(mL min−1) | |||||
1 | 6 | 0.3 | 0.13 | 15186 | 72.49 |
2 | 9 | 0.3 | 0.08 | 4833.33 | 20.17 |
3 | 12 | 0.3 | 0.03 | 1833.33 | 7.18 |
4 | 15 | 0.3 | 0.02 | 208 | 0.81 |
3. Numerical Simulation Analysis of the Stress–Seepage Coupling Law
3.1. Physical Model and Parameter Settings
3.2. Basic Theory
3.2.1. Mechanical Equilibrium Equation
3.2.2. Percolation and Continuity Equations
3.3. Evolution of the Stress Field around the Borehole
3.3.1. Characteristics of Coal Stress Distribution around the Borehole before Water Injection
3.3.2. Characteristics of Coal Stress Distribution around the Borehole during Water Injection
3.4. Evolution of the Seepage Field around the Borehole
3.4.1. Distribution Characteristics of Pore Water Pressure around the Borehole
3.4.2. Distribution Characteristics of Seepage Velocity around the Borehole
4. Discussion
5. Conclusions
- (1)
- The experimental results obtained by using the radial seepage experimental system under different overpressures and before water injection showed that the tested coal seam permeability and flow rate were basically consistent and decreased exponentially with the overpressure.
- (2)
- Before water injection, the radial stress showed an increasing–decreasing–stable trend. With the increase in the overburden, the scope of the pressure relief area gradually decreased, that of the stress concentration area increased, and the stress peak moved toward the borehole wall. Overall, the greater the overburden, the greater was the stress at the same position and the stress peak.
- (3)
- During water injection, the stress showed a decreasing–increasing–decreasing–stable trend. Under the influence of water injection, abnormal stress occurred near the water injection hole wall, and a composite stress zone was created from the superposition of stress and of the pore water pressure. This composite stress zone caused a decrease in the hole wall permeability.
- (4)
- With the radial development of water injection, the pore water pressure dropped sharply and Darcy’s velocity decreased significantly. In particular, within the pressure relief area, Darcy’s velocity decreased rapidly from 7.26 × 10−3 m s−1 to 2.5 × 10−3 m s−1 (by 65.56%). Near the crack initiation point, Darcy’s velocity dropped from 6.73 × 10−3 m s−1 to 5.27 × 10−3 m s−1 (by 22.73%).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kong, B.; Wang, E.Y.; Lu, W.; Li, Z.H. Application of electromagnetic radiation detection in high temperature anomalous areas experiencing coalfield fires. Energy 2019, 189, 13. [Google Scholar] [CrossRef]
- Mark, C.; Gauna, M. Evaluating the risk of coal bursts in underground coal mines. Int. J. Min. Sci. Technol. 2016, 26, 47–52. [Google Scholar] [CrossRef]
- Wang, G.; Wang, R.; Wu, M.M.; Fan, C.; Song, X. Strength criterion effect of the translator and destabilization model of gas-bearing coal seam. Int. J. Min. Sci. Technol. 2019, 29, 327–333. [Google Scholar] [CrossRef]
- Zhao, L.; Ni, G.H.; Sun, L.L.; Qian, S.; Shang, L.; Kai, D.; Xie, J.N.; Gang, W. Effect of ionic liquid treatment on pore structure and fractal characteristics of low rank coal. Fuel 2020, 262, 10. [Google Scholar] [CrossRef]
- Zhao, T.B.; Guo, W.Y.; Tan, Y.L.; Yin, Y.C.; Cai, L.S.; Pan, J.F. Case Studies of Rock Bursts Under Complicated Geological Conditions During Multi-seam Mining at a Depth of 800 m. Rock Mech. Rock Eng. 2018, 51, 1539–1564. [Google Scholar] [CrossRef]
- Zhou, Q.L.; Herrera, J.; Hidalgo, A. Development of a quantitative assessment approach for the coal and gas outbursts in coal mines using rock engineering systems. Int. J. Min. Reclam. Environ. 2019, 33, 21–41. [Google Scholar] [CrossRef] [Green Version]
- Aguado, M.B.D.; Nicieza, C.G. Control and prevention of gas outbursts in coal mines, Riosa–Olloniego coalfield, Spain. Int. J. Coal Geol. 2007, 69, 253–266. [Google Scholar] [CrossRef]
- Cheng, W.M.; Nie, W.; Zhou, G.; Yu, Y.B.; Ma, Y.Y.; Xue, J. Research and practice on fluctuation water injection technology at low permeability coal seam. Saf. Sci. 2012, 50, 851–856. [Google Scholar] [CrossRef]
- Liu, Z.; Raorao, L.I.; Yang, H.E.; Tian, F.; Zhu, D. A New Fractal Model of Coal Permeability Based on the Increasing Fractal Construction Method of the Menger Sponge. Fractals 2021, 29, 2150187. [Google Scholar] [CrossRef]
- Moreno, T.; Trechera, P.; Querol, X.; Lah, R.; Johnson, D.; Wrana, A.; Williamson, B. Trace element fractionation between PM10 and PM2.5 in coal mine dust: Implications for occupational respiratory health. Int. J. Coal Geol. 2019, 203, 52–59. [Google Scholar] [CrossRef]
- Sun, B.; Cheng, W.; Wang, J.; Hao, W. Effects of turbulent airflow from coal cutting on pollution characteristics of coal dust in fully-mechanized mining face: A case study. J. Clean. Prod. 2018, 201, 308–324. [Google Scholar] [CrossRef]
- Ye, Q.; Wang, G.; Jia, Z.; Zheng, C. Experimental study on the influence of wall heat effect on gas explosion and its propagation. Appl. Therm. Eng. 2017, 118, 392–397. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Zhou, G.; Qian, X.M.; Yuan, M.Q.; Sun, Y.L.; Wang, D. Diffuse pollution characteristics of respirable dust in fully-mechanized mining face under various velocities based on CFD investigation. J. Clean. Prod. 2018, 184, 239–250. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, D.W.; Yang, H.; Li, G.M.; Wang, W.Y. Experimental study on the spontaneous imbibition characteristics of accumulated coal grains. Fuel 2021, 288, 12. [Google Scholar] [CrossRef]
- Liu, Z.; Zeng-Hua, L.I.; Yang, Y.L.; Tang, Y.B. Study of Outburst Prevention Technology by Comprehensive Hydraulic Drilling Downward Through Coal-Seam. J. Min. Saf. Eng. 2012, 29, 564. [Google Scholar]
- Roy, D.G.; Singh, T.N.; Kodikara, J.; Das, R. Effect of Water Saturation on the Fracture and Mechanical Properties of Sedimentary Rocks. Rock Mech. Rock Eng. 2017, 50, 2585–2600. [Google Scholar] [CrossRef]
- Roy, D.G.; Singh, T.N.; Kodikara, J.; Talukdar, M. Correlating the Mechanical and Physical Properties with Mode-I Fracture Toughness of Rocks. Rock Mech. Rock Eng. 2017, 50, 1941–1946. [Google Scholar] [CrossRef]
- Schwarz, J.O.; Enzmann, F. Simulation of Fluid Flow on Fractures and Implications for Reactive Transport Simulations. Transp. Porous Media 2013, 96, 501–525. [Google Scholar] [CrossRef]
- Xiao, Z.; Meng, L. Numerical Analysis of Effect of Coal Seam Water Injection on Crack Propagation and Water Distribution. Saf. Coal Mines 2016, 47, 159–162+166. [Google Scholar]
- Wu, F.; Qi, Q.; Dong, Z.; Li, X.; Jing, S.; Wang, H. Numerical simulation on radial displacement around coal seam water injection drilling. J. Liaoning Tech. Univ. (Nat. Sci.) 2017, 36, 7. [Google Scholar]
- Raza, S.S.; Ge, L.; Rufford, T.E.; Chen, Z.; Rudolph, V. Anisotropic coal permeability estimation by determining cleat compressibility using mercury intrusion porosimetry and stress–strain measurements. Int. J. Coal Geol. 2019, 205, 75–86. [Google Scholar] [CrossRef]
- Yang, H.; Cheng, W.M.; Liu, Z.; Wang, W.D.; Zhao, D.W.; Yang, W.Z. Study on the Dynamic Evolution Law of the Effective Stress in the Coal Seam Water infusion Process Based on Fractal Theory. Fractals 2020, 28, 13. [Google Scholar] [CrossRef]
- Yang, Y.T.; Tang, X.H.; Zheng, H.; Liu, Q.S.; Liu, Z.J. Hydraulic fracturing modeling using the enriched numerical manifold method. Appl. Math. Model. 2018, 53, 462–486. [Google Scholar] [CrossRef]
- Shen, Z.Z.; Zhang, X.; Sun, Y.L. Research on stress-seepage-damage coupling model of hydraulic fracturing for rock mass. Jisuan Lixue Xuebao/Chin. J. Comput. Mech. 2009, 26, 523–528. [Google Scholar]
- Miehe, C.; Hofacker, M.; Welschinger, F. A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Comput. Meth. Appl. Mech. Eng. 2010, 199, 2765–2778. [Google Scholar] [CrossRef]
- Xu, Y.; Zhai, C.; Hao, L.; Sun, X.; Liu, Y.; Li, X.; Li, Q. The Pressure Relief and Permeability Increase Mechanism of Crossing-Layers Directional Hydraulic Fracturing and Its Application. Procedia Eng. 2011, 26, 1184–1193. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Wheeler, M.F.; Wick, T. Pressure and fluid-driven fracture propagation in porous media using an adaptive finite element phase field model. Comput. Meth. Appl. Mech. Eng. 2016, 305, 111–132. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.W.; Zhuang, X.Y.; Rabczuk, T. Phase-field modeling of fluid-driven dynamic cracking in porous media. Comput. Meth. Appl. Mech. Eng. 2019, 350, 169–198. [Google Scholar] [CrossRef]
- Mikelic, A.; Wheeler, M.F.; Wick, T. Phase-field modeling of a fluid-driven fracture in a poroelastic medium. Comput. Geosci. 2015, 19, 1171–1195. [Google Scholar] [CrossRef] [Green Version]
- Borden, M.J.; Verhoosel, C.V.; Scott, M.A.; Hughes, T.J.R.; Landis, C.M. A phase-field description of dynamic brittle fracture. Comput. Meth. Appl. Mech. Eng. 2012, 217, 77–95. [Google Scholar] [CrossRef]
- Zhou, S.W.; Rabczuk, T.; Zhuang, X.Y. Phase field modeling of quasi-static and dynamic crack propagation: COMSOL implementation and case studies. Adv. Eng. Softw. 2018, 122, 31–49. [Google Scholar] [CrossRef] [Green Version]
- Vahab, M.; Khalili, N. Numerical investigation of the flow regimes through hydraulic fractures using the X-FEM technique. Eng. Fract. Mech. 2017, 169, 146–162. [Google Scholar] [CrossRef]
- Vahab, M.; Hirmand, M.R.; Jafari, A.; Khalili, N. Numerical analysis of multiple hydro-fracture growth in layered media based on a non-differentiable energy minimization approach. Eng. Fract. Mech. 2021, 241, 14. [Google Scholar] [CrossRef]
- Khoei, A.R.; Vahab, M.; Hirmand, M. An enriched-FEM technique for numerical simulation of interacting discontinuities in naturally fractured porous media. Comput. Meth. Appl. Mech. Eng. 2018, 331, 197–231. [Google Scholar] [CrossRef]
- Movassagh, A.; Haghighi, M.; Zhang, X.; Kasperczyk, D.; Sayyafzadeh, M. A fractal approach for surface roughness analysis of laboratory hydraulic fracture. J. Nat. Gas Sci. Eng. 2021, 85, 16. [Google Scholar] [CrossRef]
- Hirmand, M.R.; Vahab, M.; Papoulia, K.D.; Khalili, N. Robust simulation of dynamic fluid-driven fracture in naturally fractured impermeable media. Comput. Meth. Appl. Mech. Eng. 2019, 357, 23. [Google Scholar] [CrossRef]
- Mao, X.U.; Zhou, G.; Qiu, H. Study of Numerical Simulation of Coal Seam Low-pressure Water Injection Based on Three-dimensional Precast Pre-existing Fractures. J. Shandong Univ. Sci. Technol. (Nat. Sci.) 2017, 2, 73–80. [Google Scholar]
- Vahab, M.; Khoei, A.R.; Khalili, N. An X-FEM technique in modeling hydro-fracture interaction with naturally-cemented faults. Eng. Fract. Mech. 2019, 212, 269–290. [Google Scholar] [CrossRef]
- Zhu, W.; Wei, C.; Tian, J.; Yang, T.; Tang, C. Coupled thermal-hydraulic-mechanical model during rock damage and its preliminary application. Yantu Lixue/Rock Soil Mech. 2009, 30, 3851–3857. [Google Scholar]
- Min, T.U.; Miao, X.X.; Colliery, Z.; Mining, H. Deformation Rule of Protected Coal Seam Exploited by Using the Long-Distance-Lower Protective Seam Method. J. Min. Saf. Eng. 2006, 3, 253–257. [Google Scholar]
- Duan, M.; Jiang, C.; Guo, X.; Yang, K.; Zhang, X.; Ma, H. Experimental study on mechanical and damage characteristics of coal under cyclic true triaxial loading. Chin. J. Rock Mech. Eng. 2021, 40, 1110–1118. [Google Scholar] [CrossRef]
- Beamish, B.B.; Crosdale, P.J. Instantaneous outbursts in underground coal mines: An overview and association with coal type. Int. J. Coal Geol. 1998, 35, 27–55. [Google Scholar] [CrossRef]
- Davies, R.; Foulger, G.; Bindley, A.; Styles, P. Induced seismicity and hydraulic fracturing for the recovery of hydrocarbons. Mar. Pet. Geol. 2013, 45, 171–185. [Google Scholar] [CrossRef] [Green Version]
- Gai, D.; Zhu, W.; Wei, C.; Niu, L. Pulse fracturing model based on damage mechanics and its numerical simulation. J. Min. Saf. Eng. 2016, 33, 945–950. [Google Scholar]
- Lu, P.Q.; Li, G.S.; Huang, Z.W.; Tian, S.C.; Shen, Z.H. Simulation and analysis of coal seam conditions on the stress disturbance effects of pulsating hydro-fracturing. J. Nat. Gas Sci. Eng. 2014, 21, 649–658. [Google Scholar] [CrossRef]
- Zhao, Y.L.; Liu, Q.; Zhang, C.S.; Liao, J.; Lin, H.; Wang, Y.X. Coupled seepage-damage effect in fractured rock masses: Model development and a case study. Int. J. Rock Mech. Min. Sci. 2021, 144, 22. [Google Scholar] [CrossRef]
- Cao, J.L.; Dong, L.H.; Ai, D.-H.; Wang, F.Y.; Cui, Y.G. Nonlinear seepage law of deep hole water-injection in working face under the influence of mining. Meitan Xuebao/J. China Coal Soc. 2017, 42, 225–232. [Google Scholar]
- Jasinge, D.; Ranjith, P.G.; Choi, S.K. Effects of effective stress changes on permeability of latrobe valley brown coal. Fuel 2011, 90, 1292–1300. [Google Scholar] [CrossRef]
- Gao, K.; Liu, Z.G.; Liu, J. Study on Permeability Comparison Tests with Two Different Gas Content Coal Samples. Coal Sci. Technol. 2011, 39, 57–59. [Google Scholar]
- Wang, D.; Zhang, P.; Wei, J.; Yu, C. The seepage properties and permeability enhancement mechanism in coal under temperature shocks during unloading confining pressures. J. Nat. Gas Sci. Eng. 2020, 77, 103242. [Google Scholar] [CrossRef]
- Lu, Y.Y.; Yang, F.; Ge, Z.L.; Zhou, Z.; Lin, X.D. Comparative experiment on influence of clear fracturing fluid and water on coal seam permeability. J. China Coal Soc. 2015, 5, 93–97. [Google Scholar]
- Zhang, C.; Zhang, L.; Wang, W. The axial and radial permeability testing of coal under cyclic loading and unloading. Arab. J. Geosci. 2019, 12, 371. [Google Scholar] [CrossRef]
- Zhou, S.N.; Lin, B.Q. The Theory of Gas Flow and Storage in Coal Seams; Coal Industry Publishing House: Beijing, China, 1997; pp. 69–90. [Google Scholar]
- Huang, Y.; Wang, E. Experimental Study on Coefficient of Sensitiveness Between Percolation Rate and Effective Pressure for Low Permeability Rock. Chin. J. Rock Mech. Eng. 2007, 26, 410–414. [Google Scholar]
- Suarez-Rivera, R.; Begnaud, B.J.; Martin, W.J. Numerical Analysis of Open-hole Multilateral Completions Minimizes the Risk of Costly Junction Failures. In Proceedings of the Rio Oil & Gas Expo and Conference, Rio de Janeiro, Brazil, 4–7 October 2004. [Google Scholar]
- Biot, M.A. Mechanics of Deformation and Acoustic Propagation in Porous Media. J. Appl. Phys. 2004, 33, 1482–1498. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, J.; Elsworth, D. How sorption-induced matrix deformation affects gas flow in coal seams: A new FE model. Int. J. Rock Mech. Min. Sci. 2008, 45, 1226–1236. [Google Scholar] [CrossRef]
- Zhou, H.; Liu, J.; Xue, D.; Yi, H.; Xue, J. Numerical simulation of gas flow process in mining-induced crack network - ScienceDirect. Int. J. Min. Sci. Technol. 2012, 22, 793–799. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Z.; Yang, Y.; Ji, H. Experimental study of effect of water on sorption and radial gas seepage of coal. Yanshilixue Yu Gongcheng Xuebao/Chin. J. Rock Mech. Eng. 2014, 33, 586–593. [Google Scholar]
- Zhen, L.; Wendi, W.; Dandan, C. Numerical Calculation and Analysis of Hole Sealing Parameters of Gas Drainage in Bedding. Min. Res. Dev. 2020, 40, 6. [Google Scholar]
- Shi, Y.; Wang, C.; Hui, C.; Sun, Y.; Zhang, J. Analysis of Coal Permeability Revolution Laws Around Drillings Along Coal Seam. Saf. Coal Mines 2015, 46, 170–173+178. [Google Scholar]
- Liu, Z.; Yang, H.; Wang, W.; Cheng, W.; Xin, L. Experimental Study on the Pore Structure Fractals and Seepage Characteristics of a Coal Sample Around a Borehole in Coal Seam Water Infusion. Transp. Porous Media 2018, 125, 1–21. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, Z.; Wang, B.; Li, L.; Zhu, X. Numerical simulation and test study on mechanical properties evolution of high-pressure water injection coal seam. Yanshilixue Yu Gongcheng Xuebao/Chin. J. Rock Mech. Eng. 2009, 28, 3371–3375. [Google Scholar]
Samples | Mad (%) | Ad (%) | Vdaf (%) | FCdaf (%) |
---|---|---|---|---|
LLK | 1.76 | 27.79 | 39.3 | 43.83 |
Samples | Bulk Modulus | Shear Modulus | Density | Internal Friction Angle | Cohesion | Tensile Strength |
---|---|---|---|---|---|---|
K (Gpa) | G (Gpa) | Ρ (kg m–3) | Φ (°) | C (Mpa) | Σ (Mpa) | |
LLK | 0.65 | 0.3 | 1300 | 27 | 1 | 0.8 |
Attributes | Variable Name | Variable | Value (Unit) |
---|---|---|---|
Coal density | rho_s | 1300 (kg m−3) | |
Coal bulk modulus | Ek | 0.65 (GPa) | |
Solid properties | Coal shear modulus | Eg | 0.3 (GPa) |
Biot–Willis coefficient | biot | 1 | |
Initial coal porosity | phi | 0.05 | |
Density of water | rho_w | 1000 (kg m−3) | |
Fluid properties | Dynamic viscosity of water | eta_w | 0.001 (Pa s) |
Compressibility of water | chif | 1.8 × 10–9 (Pa−1) | |
Drilling diameter | d | 60 (mm) | |
Geometric size | Coal diameter | D | 300 (mm) |
Coal height | H | 100 (mm) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Hu, P.; Yang, H.; Yang, W.; Gu, Q. Coupling Mechanism of Coal Body Stress–Seepage around a Water Injection Borehole. Sustainability 2022, 14, 9599. https://doi.org/10.3390/su14159599
Liu Z, Hu P, Yang H, Yang W, Gu Q. Coupling Mechanism of Coal Body Stress–Seepage around a Water Injection Borehole. Sustainability. 2022; 14(15):9599. https://doi.org/10.3390/su14159599
Chicago/Turabian StyleLiu, Zhen, Peng Hu, He Yang, Wenzhi Yang, and Qingbo Gu. 2022. "Coupling Mechanism of Coal Body Stress–Seepage around a Water Injection Borehole" Sustainability 14, no. 15: 9599. https://doi.org/10.3390/su14159599
APA StyleLiu, Z., Hu, P., Yang, H., Yang, W., & Gu, Q. (2022). Coupling Mechanism of Coal Body Stress–Seepage around a Water Injection Borehole. Sustainability, 14(15), 9599. https://doi.org/10.3390/su14159599