GIS-Based Assessment of the Potential for Treated Wastewater Reuse in Agricultural Irrigation: A Case Study in Northern Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study
2.2. Data Analysis
3. Results and Discussion
3.1. WWTPs Selection
Treated Wastewater Analysis for the Selected WWTPs
3.2. Treated Wastewater Reuse
3.2.1. First Criterion: Actually Irrigated Areas
3.2.2. Second Criterion: Irrigable Areas
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sheidaei, F.; Karami, E.; Keshavarz, M. Farmers’ attitude towards wastewater use in Fars Province, Iran. Water Policy 2005, 18, 355–367. [Google Scholar] [CrossRef]
- Ricart, S.; Rico, A.M. Assessing technical and social driving factors of water reuse in agriculture: A review on risks, regulation and the yuck factor. Agric. Water Manag. 2019, 217, 426–439. [Google Scholar] [CrossRef]
- Wang, D.; Hubacek, K.; Shan, Y.; Gerbens-Leenes, W.; Liu, J. A Review of Water Stress and Water Footprint Accounting. Water 2021, 13, 201. [Google Scholar] [CrossRef]
- Mancuso, G.; Bencresciuto, G.F.; Lavrnić, S.; Toscano, A. Diffuse Water Pollution from Agriculture: A Review of Nature-Based Solutions for Nitrogen Removal and Recovery. Water 2021, 13, 1893. [Google Scholar] [CrossRef]
- Mancuso, G.; Perulli, G.D.; Lavrnic, S.; Morandi, B.; Toscano, A. SARS-CoV-2 from Urban to Rural Water Environment: Occurrence, Persistence, Fate, and Influence on Agriculture Irrigation. A Rev. Water 2021, 13, 764. [Google Scholar] [CrossRef]
- Daigger, G.T. Evolving Urban Water and Residuals Management Paradigms: Water Reclamation and Reuse, Decentralization, and Resource Recovery. Water Environ. Res. 2009, 81, 809–823. [Google Scholar] [CrossRef]
- Gosling, S.N.; Arnell, N.W. A global assessment of the impact of climate change on water scarcity. Clim. Chang. 2016, 134, 371–385. [Google Scholar] [CrossRef] [Green Version]
- Lavrnić, S.; Zapater-Pereyra, M.; Mancini, M.L. Water Scarcity and Wastewater Reuse Standards in Southern Europe: Focus on Agriculture. Water Air Soil Pollut. 2017, 228, 251. [Google Scholar] [CrossRef]
- Azhoni, A.; Jude, S.; Holman, I. Adapting to climate change by water management organisations: Enablers and barriers. J. Hydrol. 2018, 559, 736–748. [Google Scholar] [CrossRef]
- WEF-World Economic Forum, The Global Risks Report 2020, Cologny/Geneva Switzerland. Available online: https://www3.weforum.org/docs/WEF_Global_Risk_Report_2020.pdf (accessed on 24 March 2022).
- FAO. The State of Food and Agriculture 2020. Available online: https://www.fao.org/publications/sofa/sofa-2021/en/ (accessed on 17 April 2022).
- FAO. AQUASTAT Website. Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/nr/water/aquastat/data/query/index.html?lang=en (accessed on 16 January 2022).
- WWAP. United Nation World Water Assessment Programme. In The United Nations World Water Development Report 2017. Wastewater: The Untapped Resource; Unesco: Paris, France, 2017. [Google Scholar]
- Hussain, M.I.; Muscolo, A.; Farooq, M.; Ahmad, W. Sustainable use and management of non-conventional water resources for rehabilitation of marginal lands in arid and semiarid environments. Agric. Water Manag. 2019, 221, 462–476. [Google Scholar] [CrossRef]
- Morote, Á.-F.; Olcina, J.; Hernández, M. The Use of Non-Conventional Water Resources as a Means of Adaptation to Drought and Climate Change in Semi-Arid Regions: South-Eastern Spain. Water 2019, 11, 93. [Google Scholar] [CrossRef] [Green Version]
- Omran, E.S.E. Unconventional Water Resources and Agriculture in Egypt; Negm, A.M., Ed.; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Chen, C.Y.; Wang, S.W.; Kim, H.; Pan, S.Y.; Fan, C.; Lin, Y.J. Non-conventional water reuse in agriculture: A circular water economy. Water Res. 2021, 199, 117193. [Google Scholar] [CrossRef]
- Al-Seekh, S.H.; Mohammad, A.G. The Effect of Water Harvesting Techniques on Runoff, Sedimentation, and Soil Properties. Environ. Manag. 2009, 44, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Avni, N.; Eben-Chaime, M.; Oron, G. Optimizing desalinated sea water blending with other sources to meet magnesium requirements for potable and irrigation waters. Water Res. 2013, 47, 2164–2176. [Google Scholar] [CrossRef] [PubMed]
- Ghermandi, A.; Minich, T. Analysis of farmers’ attitude toward irrigation with desalinated brackish water in Israel’s Arava Valley. DESALINATION Water Treat. 2017, 76, 328–331. [Google Scholar] [CrossRef] [Green Version]
- Chien, S.S.; Hong, D.L.; Lin, P.H. Ideological and volume politics behind cloud water resource governance–Weather modification in China. Geoforum 2017, 85, 225–233. [Google Scholar] [CrossRef]
- van Lier, J.B.; Huibers, F.P. From unplanned to planned agricultural use: Making an asset out of wastewater. Irrig. Drain. Syst. 2010, 24, 143–152. [Google Scholar] [CrossRef] [Green Version]
- Rizzo, L.; Gernjak, W.; Krzeminski, P.; Malato, S.; McArdell, C.S.; Perez, J.A.S.; Schaar, H.; Fatta-Kassinos, D. Best available technologies and treatment trains to address current challenges in urban wastewater reuse for irrigation of crops in EU countries. Sci. Total Environ. 2020, 710, 136312. [Google Scholar] [CrossRef]
- Garcia, X.; Pargament, D. Reusing wastewater to cope with water scarcity: Economic, social and environmental considerations for decision-making. Resour. Conserv. Recycl. 2015, 101, 154–166. [Google Scholar] [CrossRef]
- Sala, L.; Serra, M. Towards sustainability in transport. Water Sci. Technol. 2004, 50, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, G.; Langone, M.; Di Maggio, R.; Toscano, A.; Andreottola, G. Effect of hydrodynamic cavitation on flocs structure in sewage sludge to increase stabilization for efficient and safe reuse in agriculture. Bioremediation J. 2022, 26, 41–52. [Google Scholar] [CrossRef]
- Meneses, M.; Pasqualino, J.C.; Castells, F. Environmental assessment of urban wastewater reuse: Treatment alternatives and applications. Chemosphere 2010, 81, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Plumlee, M.H.; Gurr, C.J.; Reinhard, M. Recycled water for stream flow augmentation: Benefits, challenges, and the presence of wastewater-derived organic compounds. Sci. Total Environ. 2012, 438, 541–548. [Google Scholar] [CrossRef] [PubMed]
- FAO. The State of the World’s Land and Water Resources for Food and Agriculture–Systems at breaking point. Synthesis report 2021. Rome. 2021. Available online: https://doi.org/10.4060/cb7654en (accessed on 26 April 2022).
- Foglia, A.; Andreola, C.; Cipolletta, G.; Radini, S.; Akyol, Ç.; Eusebi, A.L.; Stanchev, P.; Katsou, E.; Fatone, F. Comparative life cycle environmental and economic assessment of anaerobic membrane bioreactor and disinfection for reclaimed water reuse in agricultural irrigation: A case study in Italy. J. Clean. Prod. 2021, 293, 126201. [Google Scholar] [CrossRef]
- EC. Water Reuse Report. 2020. Available online: http://ec.europa.eu/environment/water/reuse.htm (accessed on 14 December 2021).
- MedECC Network. Risks Associated to Climate and Environmental Changes in the Mediterranean Region: A Preliminary Assessment by the Mediterranean Experts on Climate and Environmental Change (MedECC) Network Science-Policy Interface. 2019. Available online: https://ufmsecretariat.org/wp-content/uploads/2019/10/MedECC-Booklet_EN_WEB.pdf (accessed on 4 May 2022).
- UNEP/MAP Plan Bleu. State of the Environment and Development in the 677 Mediterranean; Technical Report; UNEP/MAP: Athens, Greece, 2019. [Google Scholar]
- El-Kady, M.; El-Shibini, F. Desalination in Egypt and the future application in supplementary irrigation. Desalination 2001, 136, 63–72. [Google Scholar] [CrossRef]
- Abu-Sharar, T.M.; Hussein, I.A.; Al-Jayyousi, O.R. The use of treated sewage for irrigation in Jordan: Opportunities and constraints. Water Environ. J. 2003, 17, 232–238. [Google Scholar] [CrossRef]
- Alegbeleye, O.O.; Opeolu, B.O.; Jackson, V.A. Polycyclic Aromatic Hydrocarbons: A Critical Review of Environmental Occurrence and Bioremediation. Environ. Manag. 2017, 60, 758–783. [Google Scholar] [CrossRef]
- Kanber, R.; Unlu, M.; Koc, D.; Önder, D.; Cakmak, E.; Tüzün, M. Unconventional Irrigation Water Use in Turkey; Options Méditerranéennes: Series B—Studies and Research; CIHEAM: Paris, France, 2005; Volume 53, pp. 129–140. [Google Scholar]
- Qadir, M.; Sharma, B.R.; Bruggeman, A.; Choukr-Allah, R.; Karajeh, F. Non-conventional water resources and opportunities for water augmentation to achieve food security in water scarce countries. Agric. Water Manag. 2007, 87, 2–22. [Google Scholar] [CrossRef]
- Mancuso, G.; Lavrnić, S.; Toscano, A. Reclaimed water to face agricultural water scarcity in the Mediterranean area: An overview using Sustainable Development Goals preliminary data. In Advances in Chemical Pollution, Environmental Management and Protection; Elsevier: Amsterdam, The Netherlands, 2020; Volume 5, pp. 113–143. [Google Scholar]
- Ribeiro, P.; Albuquerque, A.; Quinta-Nova, L.; Cavaleiro, V. Recycling pulp mill sludge to improve soil fertility using GIS tools. Resour. Conserv. Recycl. 2010, 54, 1303–1311. [Google Scholar] [CrossRef] [Green Version]
- Blanco, I.; Loisi, R.V.; Sica, C.; Schettini, E.; Vox, G. Agricultural plastic waste mapping using GIS. A case study in Italy. Resour. Conserv. Recycl. 2018, 137, 229–242. [Google Scholar] [CrossRef]
- Lin, Y.C.; Lin, C.C.; Lee, M.; Chiueh, P.T.; Lo, S.L.; Liou, M.L. Comprehensive assessment of regional food-energy-water nexus with GIS-based tool. Resour. Conserv. Recycl. 2019, 151, 104457. [Google Scholar] [CrossRef]
- Parlato, M.C.M.; Valenti, F.; Porto, S.M.C. Covering plastic films in greenhouses system: A GIS-based model to improve post use suistainable management. J. Environ. Manag. 2020, 263, 110389. [Google Scholar] [CrossRef]
- Valenti, F.; Toscano, A. A GIS-Based Model to Assess the Potential of Wastewater Treatment Plants for Enhancing Bioenergy Production within the Context of the Water–Energy Nexus. Energies 2021, 14, 2838. [Google Scholar] [CrossRef]
- Selvaggi, R.; Valenti, F. Assessment of Fruit and Vegetable Residues Suitable for Renewable Energy Production: GIS-Based Model for Developing New Frontiers within the Context of Circular Economy. Appl. Syst. Innov. 2021, 4, 10. [Google Scholar] [CrossRef]
- Gheibi, M.; Emrani, N.; Eftekhari, M.; Behzadian, K.; Mohtasham, M.; Abdollahi, J. Assessing the failures in water distribution networks using a combination of geographic information system, EPANET 2, and descriptive statistical analysis: A case study. Sustain. Water Resour. Manag. 2022, 8, 47. [Google Scholar] [CrossRef]
- Erfani, S.M.H.; Danesh, S.; Karrabi, S.M.; Gheibi, M.; Nemati, S. Statistical analysis of effective variables on the performance of waste storage service using geographical information system and response surface methodology. J. Environ. Manag. 2019, 235, 453–462. [Google Scholar] [CrossRef] [PubMed]
- Valenti, F.; Porto, S.M.C.; Dale, B.E.; Liao, W. Spatial analysis of feedstock supply and logistics to establish regional biogas power generation: A case study in the region of Sicily. Renew. Sustain. Energy Rev. 2018, 97, 50–63. [Google Scholar] [CrossRef]
- Sun, L.; Jiang, Y.; Guo, Q.; Ji, L.; Xie, Y.; Qiao, Q.; Huang, G.; Xiao, K. A GIS-based multi-criteria decision making method for the potential assessment and suitable sites selection of PV and CSP plants. Resour. Conserv. Recycl. 2021, 168, 105306. [Google Scholar] [CrossRef]
- Regulation (EU) 2020/741 of the European Parliament and of the Council of 25 May 2020 on Minimum Requirements for Water Reuse; European Union: Brussels, Belgium, 2020.
- Ye, Y.; Ngo, H.H.; Guo, W.; Chang, S.W.; Nguyen, D.D.; Zhang, X.; Zhang, J.; Liang, S. Nutrient recovery from wastewater: From technology to economy. Bioresour. Technol. Rep. 2020, 11, 100425. [Google Scholar] [CrossRef]
- Obaideen, K.; Shehata, N.; Taha, E.; Ali, M. The role of wastewater treatment in achieving sustainable development goals (SDGs) and sustainability guideline. Energy Nexus 2022, 7, 100112. [Google Scholar] [CrossRef]
- Akbarian, H.; Jalali, F.M.; Gheibi, M.; Hajiaghaei-Keshteli, M.; Akrami, M.; Sarmah, A.K. A sustainable Decision Support System for soil bioremediation of toluene incorporating UN sustainable development goals. Environ. Pollut. 2022, 307, 119587. [Google Scholar] [CrossRef] [PubMed]
Crop | Cultivated Area | P1 1 | Crop Water Needs | Delivered Volume | P2 2 |
---|---|---|---|---|---|
[Typology] | [ha] | [%] | [m3 ha−1] | [m3] | [%] |
Grapevine | 964.28 | 15.18 | 618.1 | 600,668.5 | 7.73 |
Peach | 883.83 | 13.91 | 647.9 | 588,604.3 | 7.57 |
Summer horticultural crops | 508.93 | 8.01 | 1487.2 | 740,942.8 | 9.53 |
Apricot | 471.33 | 7.42 | 1564.1 | 395,328.8 | 5.08 |
Maize | 443.84 | 6.99 | 744.1 | 323,263.1 | 4.16 |
Green bean | 433.79 | 6.83 | 886.5 | 759,958.9 | 9.77 |
Actinidia | 368.18 | 5.79 | 3440.8 | 1,270,785.2 | 16.34 |
Summer seed crops | 221.52 | 3.49 | 326.9 | 72,165.5 | 0.93 |
Onion | 218.70 | 3.44 | 1658.1 | 374,710.9 | 4.82 |
Pear | 195.56 | 3.08 | 1682.6 | 331,710.9 | 4.82 |
Plum | 185.23 | 2.92 | 1609.6 | 307,506.8 | 3.95 |
Apple | 173.08 | 2.72 | 3067.3 | 537,608.4 | 6.91 |
Sugar beet | 150.66 | 2.37 | 387.00 | 58,306.2 | 0.75 |
Spinach | 135.83 | 2.14 | 187.1 | 25,572.3 | 0.33 |
Winter seed crops | 109.85 | 1.73 | 148.0 | 107,299.0 | 1.38 |
Legumes | 105.58 | 1.66 | 355.0 | 16,262.0 | 0.21 |
Sugar beet for seed | 98.59 | 1.55 | 1074.8 | 429,184.2 | 5.52 |
Walnut | 97.64 | 1.54 | 4418.6 | 37,479.1 | 0.48 |
Khaki | 85.35 | 1.34 | 1829.6 | 142,775.5 | 1.84 |
Potato | 81.59 | 1.28 | 1750.0 | 156,601.7 | 2.01 |
Other fruit crops | 78.60 | 1.24 | 1902.4 | 150,654.9 | 1.94 |
Spring horticultural crops | 60.46 | 0.95 | 570.0 | 34,750.5 | 0.45 |
Tomato | 50.97 | 0.80 | 873.7 | 45,333.2 | 0.58 |
Strawberry | 46.99 | 0.74 | 600.0 | 28,195.3 | 0.36 |
Cherry | 45.50 | 0.72 | 774.4 | 35,060.0 | 0.45 |
Nursery crops | 39.95 | 0.63 | 1579.5 | 60,793.4 | 0.78 |
Bamboo and Paulownia | 31.38 | 0.49 | 600.0 | 18,829.7 | 0.24 |
Greenhouse crops | 19.37 | 0.30 | 1669.3 | 34,018.9 | 0.44 |
Cut flowers | 13.45 | 0.21 | 3775.2 | 4184.9 | 0.05 |
Other crops | 33.41 | 0.53 | - | 87,272.7 | 1.12 |
Total | 6353 | 100 | - | 7,775,425 | 100 |
Distribution System | Year | Users | Actually Irrigated Area | Water Withdrawal from CER | Delivered Volume | Theoretical Crop Water Needs |
---|---|---|---|---|---|---|
[Typology] | [Number] | [ha] | [m3] | [m3] | [m3] | |
Pressurized | 2017 | 2345 | 4684.51 | 9,216,383 | 9,216,383 | 12,432,229 |
2018 | 2353 | 4624.51 | 6,429,751 | 6,429,751 | 7,279,715 | |
2019 | 2348 | 4919.39 | 6,437,025 | 6,437,025 | 6,132,885 | |
average | 2349 | 4742.80 | 7,361,053 | 7,361,053 | 8,614,943 | |
Open channel | 2017 | 517 | 1502.17 | 13,936,110 | 3,209,558 | 3,163,117 |
2018 | 525 | 1378.00 | 15,533,985 | 1,916,303 | 1,874,534 | |
2019 | 521 | 1434.05 | 13,661,926 | 1,691,510 | 1,642,540 | |
average | 521 | 1438.08 | 14,377,340 | 2,272,457 | 2,226,730 | |
Total (average) | 2870 | 6180.88 | 21,738,393 | 9,633,510 | 10,841,673 |
WWTPs | Population Equivalent (PE) | Treated Wastewater 1 | Treated Wastewater Discharge Point Altitude |
---|---|---|---|
[Name] | [Number] | [m3 year−1] | [m s.l.m.] |
Cesena | 197,500 | 7,021,721 | 21 |
Cesenatico | 120,000 | 4,715,863 | 3 |
Forlì | 250,000 | 15,753,861 | 23 |
Piavestina | 5200 | 462,331 | 23 |
Savignano | 139,000 | 6,255,403 | 19 |
Total | 711,700 | 34,219,179 | - |
WWTP’s Territorial Area | E. Coli | BOD5 | TSS | |||||
---|---|---|---|---|---|---|---|---|
A | B | C | D | A | B, C, D | A | B, C, D | |
Cesena | 17.6% | 76.5% | 94.1% | 100.0% | 98.6% | 100.0% | 87.1% | 90.0% |
Cesenatico | 75.0% | 100.0% | 100.0% | 100.0% | 98.6% | 100.0% | 51.4% | 85.7% |
Forlì | 76.5% | 100.0% | 100.0% | 100.0% | 97.1% | 100.0% | 87.1% | 90.0% |
Pievestina | - | - | - | - | 94.1% | 91.2% | 73.5% | 88.2% |
Savignano | 23.5% | 64.7% | 100.0% | 100.0% | 92.9% | 100.0% | 75.7% | 97.1% |
Irrigated Areas | Crop Water Needs | Potential of Treated Wastewater to Satisfy Crop Water Needs | ||
---|---|---|---|---|
[Typology] | [ha] | [m3] | Yearly | Irrigation Season |
Actually irrigated areas | 6180.88 1 | 10,841,673 3 | 316% | 210% |
Irrigable areas | 14,049.50 | 21,169,708 3 | 162% | 108% |
Actually irrigated + irrigable areas | 20,230.38 2 | 32,011,381 3 | 107% | 71% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mancuso, G.; Parlato, M.C.M.; Lavrnić, S.; Toscano, A.; Valenti, F. GIS-Based Assessment of the Potential for Treated Wastewater Reuse in Agricultural Irrigation: A Case Study in Northern Italy. Sustainability 2022, 14, 9364. https://doi.org/10.3390/su14159364
Mancuso G, Parlato MCM, Lavrnić S, Toscano A, Valenti F. GIS-Based Assessment of the Potential for Treated Wastewater Reuse in Agricultural Irrigation: A Case Study in Northern Italy. Sustainability. 2022; 14(15):9364. https://doi.org/10.3390/su14159364
Chicago/Turabian StyleMancuso, Giuseppe, Monica C. M. Parlato, Stevo Lavrnić, Attilio Toscano, and Francesca Valenti. 2022. "GIS-Based Assessment of the Potential for Treated Wastewater Reuse in Agricultural Irrigation: A Case Study in Northern Italy" Sustainability 14, no. 15: 9364. https://doi.org/10.3390/su14159364
APA StyleMancuso, G., Parlato, M. C. M., Lavrnić, S., Toscano, A., & Valenti, F. (2022). GIS-Based Assessment of the Potential for Treated Wastewater Reuse in Agricultural Irrigation: A Case Study in Northern Italy. Sustainability, 14(15), 9364. https://doi.org/10.3390/su14159364