# Observing Earthquake-Induced Velocity Change on the Rock Slope Following the 2021 M 7.4 Maduo Earthquake 780 km Away

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Context and Methods

#### 2.1. Study Site

#### 2.2. Instruments

#### 2.3. Earthquake

#### 2.4. Methods

## 3. Results

## 4. Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Lin, Q.; Wang, Y. Spatial and temporal analysis of a fatal landslide inventory in China from 1950 to 2016. Landslides
**2018**, 15, 2357–2372. [Google Scholar] [CrossRef] - Chigira, M.; Wu, X.; Inokuchi, T.; Wang, G. Landslides induced by the 2008 Wenchuan earthquake, Sichuan, China. Geomorphology
**2010**, 118, 225–238. [Google Scholar] [CrossRef] - Burbank, D.W.; Leland, J.; Fielding, E.; Anderson, R.S.; Brozovic, N.; Reid, M.R.; Duncan, C. Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas. Nature
**1996**, 379, 505–510. [Google Scholar] [CrossRef] - Li, Y.; Chen, P.; Cochran, E.S.; Vidale, J.E.; Burdette, T. Seismic Evidence for Rock Damage and Healing on the San Andreas Fault Associated with the 2004 M 6.0 Parkfield Earthquake. Bull. Seismol. Soc. Am.
**2006**, 96, S349–S363. [Google Scholar] [CrossRef] - Murnaghan, F.D. Finite Deformation of an Elastic Solid; Wiley: Hoboken, NJ, USA, 1951. [Google Scholar]
- Whiteley, J.; Chambers, J.; Uhlemann, S.; Wilkinson, P.; Kendall, J. Geophysical monitoring of moisture-induced landslides: A review. Rev. Geophys.
**2019**, 57, 106–145. [Google Scholar] [CrossRef] [Green Version] - Del Gaudio, V.; Muscillo, S.; Wasowski, J. What we can learn about slope response to earthquakes from ambient noise analysis: An overview. Eng. Geol.
**2014**, 182, 182–200. [Google Scholar] [CrossRef] - Pazzi, V.; Morelli, S.; Fanti, R. A review of the advantages and limitations of geophysical investigations in landslide studies. Int. J. Geophys.
**2019**, 2019, 2983087. [Google Scholar] [CrossRef] [Green Version] - Colombero, C.; Jongmans, D.; Fiolleau, S.; Valentin, J.; Baillet, L.; Bièvre, G. Seismic noise parameters as indicators of reversible modifications in slope stability: A review. Surv. Geophys.
**2021**, 42, 339–375. [Google Scholar] [CrossRef] - Le Breton, M.; Bontemps, N.; Guillemot, A.; Baillet, L.; Larose, É. Landslide monitoring using seismic ambient noise correlation: Challenges and applications. Earth-Sci. Rev.
**2021**, 216, 103518. [Google Scholar] [CrossRef] - Yamaoka, K.; Kunitomo, T.; Miyakawa, K.; Kobayashi, K.; Kumazawa, M. A trial for monitoring temporal variation of seismic velocity using an ACROSS system. Isl. Arc
**2001**, 10, 336–347. [Google Scholar] [CrossRef] - Chen, Y.; Irfan, M.; Uchimura, T.; Cheng, G.; Nie, W. Elastic wave velocity monitoring as an emerging technique for rainfall-induced landslide prediction. Landslides
**2018**, 15, 1155–1172. [Google Scholar] [CrossRef] - Campillo, M.; Paul, A. Long-range correlations in the diffuse seismic coda. Science
**2003**, 299, 547–549. [Google Scholar] [CrossRef] [Green Version] - Nakata, N.; Gualtieri, L.; Fichtner, A. Seismic Ambient Noise; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Snieder, R. The theory of coda wave interferometry. Pure Appl. Geophys.
**2006**, 163, 455–473. [Google Scholar] [CrossRef] - Sens-Schönfelder, C.; Wegler, U. Passive image interferometry and seasonal variations of seismic velocities at Merapi Volcano, Indonesia. Geophys. Res. Lett.
**2006**, 33. [Google Scholar] [CrossRef] - Brenguier, F.; Campillo, M.; Hadziioannou, C.; Shapiro, N.M.; Nadeau, R.M.; Larose, E. Postseismic relaxation along the San Andreas fault at Parkfield from continuous seismological observations. Science
**2008**, 321, 1478–1481. [Google Scholar] [CrossRef] [Green Version] - Lecocq, T.; Longuevergne, L.; Pedersen, H.A.; Brenguier, F.; Stammler, K. Monitoring ground water storage at mesoscale using seismic noise: 30 years of continuous observation and thermo-elastic and hydrological modeling. Sci. Rep.
**2017**, 7, 14241. [Google Scholar] [CrossRef] [Green Version] - Bièvre, G.; Franz, M.; Larose, E.; Carrière, S.; Jongmans, D.; Jaboyedoff, M. Influence of environmental parameters on the seismic velocity changes in a clayey mudflow (Pont-Bourquin Landslide, Switzerland). Eng. Geol.
**2018**, 245, 248–257. [Google Scholar] [CrossRef] - James, S.; Knox, H.; Abbott, R.; Screaton, E. Improved moving window cross-spectral analysis for resolving large temporal seismic velocity changes in permafrost. Geophys. Res. Lett.
**2017**, 44, 4018–4026. [Google Scholar] [CrossRef] - Mainsant, G.; Larose, E.; Brönnimann, C.; Jongmans, D.; Michoud, C.; Jaboyedoff, M. Ambient seismic noise monitoring of a clay landslide: Toward failure prediction. J. Geophys. Res. Earth Surf.
**2012**, 117. [Google Scholar] [CrossRef] [Green Version] - Mainsant, G.; Jongmans, D.; Chambon, G.; Larose, E.; Baillet, L. Shear-wave velocity as an indicator for rheological changes in clay materials: Lessons from laboratory experiments. Geophys. Res. Lett.
**2012**, 39. [Google Scholar] [CrossRef] - Bontemps, N.; Lacroix, P.; Larose, E.; Jara, J.; Taipe, E. Rain and small earthquakes maintain a slow-moving landslide in a persistent critical state. Nat. Commun.
**2020**, 11, 780. [Google Scholar] [CrossRef] - Huang, H.; Dai, S.; Xie, F. Monitoring In-Situ Seismic Response on Rock Slopes Using Ambient Noise Interferometry: Application to the 2019 Changning (Mw 5.7) Earthquake, China. Front. Earth Sci.
**2021**, 8, 610181. [Google Scholar] [CrossRef] - Jin, Z.; Fialko, Y. Coseismic and early postseismic deformation due to the 2021 M7. 4 Maduo (China) earthquake. Geophys. Res. Lett.
**2021**, 48, e2021GL095213. [Google Scholar] [CrossRef] - Hadziioannou, C.; Larose, E.; Coutant, O.; Roux, P.; Campillo, M. Stability of monitoring weak changes in multiply scattering media with ambient noise correlation: Laboratory experiments. J. Acoust. Soc. Am.
**2009**, 125, 3688–3695. [Google Scholar] [CrossRef] [Green Version] - Moreau, L.; Stehly, L.; Boué, P.; Lu, Y.; Larose, E.; Campillo, M. Improving ambient noise correlation functions with an SVD-based Wiener filter. Geophys. J. Int.
**2017**, 211, 418–426. [Google Scholar] [CrossRef] - Tsai, V.C. A model for seasonal changes in GPS positions and seismic wave speeds due to thermoelastic and hydrologic variations. J. Geophys. Res. Solid Earth
**2011**, 116. [Google Scholar] [CrossRef] [Green Version] - Larose, E.; Carrière, S.; Voisin, C.; Bottelin, P.; Baillet, L.; Guéguen, P.; Walter, F.; Jongmans, D.; Guillier, B.; Garambois, S.; et al. Environmental seismology: What can we learn on earth surface processes with ambient noise? J. Appl. Geophys.
**2015**, 116, 62–74. [Google Scholar] [CrossRef] - Herrmann, R.B. Computer programs in seismology: An evolving tool for instruction and research. Seismol. Res. Lett.
**2013**, 84, 1081–1088. [Google Scholar] [CrossRef] - Johnson, P.; Sutin, A. Slow dynamics and anomalous nonlinear fast dynamics in diverse solids. J. Acoust. Soc. Am.
**2005**, 117, 124–130. [Google Scholar] [CrossRef] [Green Version] - TenCate, J.A. Slow dynamics of earth materials: An experimental overview. Pure Appl. Geophys.
**2011**, 168, 2211–2219. [Google Scholar] [CrossRef] - Yoritomo, J.Y.; Weaver, R.L. Slow dynamic elastic recovery in unconsolidated metal structures. Phys. Rev. E
**2020**, 102, 012901. [Google Scholar] [CrossRef] [PubMed] - IRIS DATA. Data Services Products: Noise Toolkit PDF-PSD Noise Toolkit PDF/PSD Bundle. 2014. Available online: http://ds.iris.edu/ds/products/pdf-psd/ (accessed on 15 June 2022).
- Tremblay, N.; Larose, É.; Rossetto, V. Probing slow dynamics of consolidated granular multicomposite materials by diffuse acoustic wave spectroscopy. J. Acoust. Soc. Am.
**2010**, 127, 1239–1243. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Wyss, M.; Glllard, D.; Liang, B. An estimate of the absolute stress tensor in Kaoiki, Hawaii. J. Geophys. Res. Solid Earth
**1992**, 97, 4763–4768. [Google Scholar] [CrossRef] - Peng, Z.; Hill, D.P.; Shelly, D.R.; Aiken, C. Remotely triggered microearthquakes and tremor in central California following the 2010 Mw 8.8 Chile earthquake. Geophys. Res. Lett.
**2010**, 37. [Google Scholar] [CrossRef] - Zheng, Y. Transient pressure surge in a fluid-filled fracture. Bull. Seismol. Soc. Am.
**2018**, 108, 1481–1488. [Google Scholar] [CrossRef] - Jin, Y.; Dyaur, N.; Zheng, Y. Laboratory Evidence of Transient Pressure Surge in a Fluid-Filled Fracture as a Potential Driver of Remote Dynamic Earthquake Triggering. Seism. Rec.
**2021**, 1, 66–74. [Google Scholar] [CrossRef]

**Figure 1.**(

**a**) Hillshade map of the Pubugou rock slope. (

**b**) Terrain map of the 2021 M 7.4 Maduo earthquake and the Pubugou rock slope. (

**c**) Geological profile of the slope (modified from [24]). (

**d**) The ground velocity due to the 2021 M 7.4 Maduo earthquake is recorded by vertical component of station T01 and T04, respectively.

**Figure 2.**The temporal observation results before and after the earthquake on the slope. (

**a**) $dv/v$ at 20 min temporal, (

**b**) air temperature, rainfall, and (

**c**) GNSS-based horizontal displacement observations at the 1 h temporal resolution.

**Figure 3.**(

**a**) Depth sensitivity of the Rayleigh phase velocity to a shear wave velocity perturbation at 4.5, 6.5, 8.5, 10.5, and 15 Hz at the PBG slope. (

**b**) The earthquake-induced power spectral density (PSD) analysis at two stations.

**Figure 4.**The $dv/v$ in each passband. (

**a**) 2–7 Hz, (

**b**) 4–9 Hz, (

**c**) 6–11 Hz, (

**d**) 8–13 Hz, and (

**e**) 10–20 Hz, respectively.

**Figure 5.**The The $dv/v$ drop and characterized recovery time are measured at the five passbands on the slop.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Huang, H.; Dai, S.; Yu, Y.; Xie, F.
Observing Earthquake-Induced Velocity Change on the Rock Slope Following the 2021 M 7.4 Maduo Earthquake 780 km Away. *Sustainability* **2022**, *14*, 9345.
https://doi.org/10.3390/su14159345

**AMA Style**

Huang H, Dai S, Yu Y, Xie F.
Observing Earthquake-Induced Velocity Change on the Rock Slope Following the 2021 M 7.4 Maduo Earthquake 780 km Away. *Sustainability*. 2022; 14(15):9345.
https://doi.org/10.3390/su14159345

**Chicago/Turabian Style**

Huang, Huibao, Shigui Dai, Yingdong Yu, and Fan Xie.
2022. "Observing Earthquake-Induced Velocity Change on the Rock Slope Following the 2021 M 7.4 Maduo Earthquake 780 km Away" *Sustainability* 14, no. 15: 9345.
https://doi.org/10.3390/su14159345