Spatial Characteristics of Land Use Multifunctionality and Their Trade-Off/Synergy in Urumqi, China: Implication for Land Space Zoning Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Research Framework
2.4. Identification of LUMF
2.5. Trade-Off/Synergy between LUMF
3. Results
3.1. Spatial Pattern of LUMF
3.1.1. Spatial Distribution Characteristics of a Single Function of Land Use
3.1.2. Spatial Distribution Characteristics of Composite Land Use Functions
3.2. Characteristics of Trade-Off/Synergy Relationship of LUMF
3.2.1. Trade-Off/Synergy Level of LUMF
3.2.2. Trade-Off/Synergy Type of LUMF
4. Discussions
4.1. Trade-Off/Synergy of LUMF
4.2. Suggestions on LUMF Zoning and Sustainable Development
4.3. Uncertainties and Challenges for Further Research
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; UN: New York, NY, USA, 2015. [Google Scholar]
- Bennett, E.M.; Peterson, G.D.; Gordon, L.J. Understanding Relationships among Multiple Ecosystem Services. Ecol. Lett. 2009, 12, 1394–1404. [Google Scholar] [CrossRef] [PubMed]
- Huang, A.; Xu, Y.; Lu, L.; Liu, C.; Zhang, Y.; Hao, J.; Wang, H. Research Progress of the Identification and Optimization of Production-Living-Ecological Spaces. Prog. Geogr. 2020, 39, 503–518. [Google Scholar] [CrossRef]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C. Spatiotemporal Characteristics, Patterns and Causes of Land Use Changes in China since the Late 1980s. Acta Geogr. Sin. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Long, H.; Ge, D.; Zhang, Y.; Tu, S. Changing Man-Land Interrelations in China’s Farming Area under Urbanization and Its Implications for Food Security. J. Environ. Manag. 2018, 20, 440–451. [Google Scholar] [CrossRef] [PubMed]
- Turner, B.L.; Lambin, E.F.; Reenberg, A. Land change science special feature: The emergence of land change science for global environmental change and sustainability. Proc. Natl. Acad. Sci. USA 2008, 105, 2751. [Google Scholar] [CrossRef] [Green Version]
- Xue, Z.; Zhen, L.; Miah, M.G.; Shoyama, K. Impact Assessment of Land Use Functions on the Sustainable Regional Development of Representative Asian Countries—A Comparative Study in Bangladesh, China and Japan. Sci. Total Environ. 2019, 694, 133689. [Google Scholar] [CrossRef]
- Jiang, Y.; Long, H.; Ives, C.D.; Deng, W.; Chen, K.; Zhang, Y. Modes and Practices of Rural Vitalisation Promoted by Land Consolidation in a Rapidly Urbanising China: A Perspective of Multifunctionality. Habitat Int. 2022, 121, 102514. [Google Scholar] [CrossRef]
- Fan, J.; Zhao, Y. China’s Regional Development Pattern Oriented toward Modernization: The Scientific Connotation and Strategic Priorities. Econ. Geogr. 2021, 41, 1–9. [Google Scholar]
- Ali, S.; Xu, H.; Ahmed, W.; Ahmad, N.; Solangi, Y.A. Metro Design and Heritage Sustainability: Conflict Analysis Using Attitude Based on Options in the Graph Model. Environ. Dev. Sustain. 2020, 22, 3839–3860. [Google Scholar] [CrossRef]
- Sheng, K.; Fan, J. The Formation Mechanism of Regional Function: An Analysis Based on the Theory of Man-Earth Areal System. Econ. Geogr. 2018, 38, 11–19. [Google Scholar]
- Huang, J.; Tichit, M.; Poulot, M.; Darly, S.; Li, S.; Petit, C.; Aubry, C. Comparative Review of Multifunctionality and Ecosystem Services in Sustainable Agriculture. J. Environ. Manag. 2015, 149, 138–147. [Google Scholar] [CrossRef]
- Cai, W.; Gibbs, D.; Zhang, L.; Ferrier, G.; Cai, Y. Identifying Hotspots and Management of Critical Ecosystem Services in Rapidly Urbanizing Yangtze River Delta Region, China. J. Environ. Manag. 2017, 191, 258–267. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The Value of the World’s Ecosystem Services and Natural Capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Peng, J.; Tian, L.; Liu, Y.; Zhao, M.; Hu, Y.; Wu, J. Ecosystem Services Response to Urbanization in Metropolitan Areas: Thresholds Identification. Sci. Total Environ. 2017, 607–608, 706–714. [Google Scholar] [CrossRef]
- Liang, X.; Jin, X.; Ren, J.; Gu, Z.; Zhou, Y. A Research Framework of Land Use Transition in Suzhou City Coupled with Land Use Structure and Landscape Multifunctionality. Sci. Total Environ. 2020, 737, 139932. [Google Scholar] [CrossRef]
- Peng, J.; Chen, X.; Liu, Y.; Lü, H.; Hu, X. Spatial Identification of Multifunctional Landscapes and Associated Influencing Factors in the Beijing-Tianjin-Hebei Region, China. Appl. Geogr. 2016, 74, 170–181. [Google Scholar] [CrossRef]
- Liu, C.; Xu, Y.; Huang, A.; Liu, Y.; Wang, H.; Lu, L.; Sun, P.; Zheng, W. Spatial Identification of Land Use Multifunctionality at Grid Scale in Farming-Pastoral Area: A Case Study of Zhangjiakou City, China. Habitat Int. 2018, 76, 48–61. [Google Scholar] [CrossRef]
- Verburg, P.H.; Steeg, J.; Veldkamp, A.; Willemen, L. From Land Cover Change to Land Function Dynamics: A Major Challenge to Improve Land Characterization. J. Environ. Manag. 2009, 90, 1327–1335. [Google Scholar] [CrossRef]
- Wiggering, H.; Dalchow, C.; Glemnitz, M.; Helming, K.; Müller, K.; Schultz, A.; Stachow, U.; Zander, P. Indicators for Multifunctional Land Use—Linking Socio-Economic Requirements with Landscape Potentials. Ecol. Indic. 2006, 6, 249. [Google Scholar] [CrossRef]
- Long, H.; Ma, L.; Zhang, Y.; Qu, L. Multifunctional Rural Development in China: Pattern, Process and Mechanism. Habitat Int. 2022, 121, 102530. [Google Scholar] [CrossRef]
- Zhou, D.; Xu, J.; Lin, Z. Conflict or Coordination? Assessing Land Use Multi-Functionalization Using Production-Living-Ecology Analysis. Sci. Total Environ. 2016, 577, 136. [Google Scholar] [CrossRef]
- Liu, C.; Xu, Y.; Lu, X.; Han, J. Trade-Offs and Driving Forces of Land Use Functions in Ecologically Fragile Areas of Northern Hebei Province: Spatiotemporal Analysis. Land Use Policy 2021, 104, 105387. [Google Scholar] [CrossRef]
- Ma, C.; Jin, Y.; Ke, X.; Ma, Y. Study on the Typical ModeS of Farmland Multi-Functional Intensity and Coordination in Hubei Province Based on the Entire-Array-Polygo Indicator Method. China Land Sci. 2018, 32, 51–58. [Google Scholar]
- Xiao, L.; Deng, Q.; Lin, Y.; Mao, Y.; Liu, J. Dynamic Analysis on Multifunctionality of Land Use and Obstacle Factors in Jiangxi Province Based on Entropy Weight TOPSIS Model. Bull. Soil Water Conserv. 2020, 40, 176–183. [Google Scholar]
- Zhu, C.; Dong, B.; Li, S.; Lin, Y.; Wang, K. Identifying the Trade-Offs and Synergies among Land Use Functions and Their Influencing Factors from a Geospatial Perspective: A Case Study in Hangzhou, China. J. Clean. Prod. 2021, 314, 128026. [Google Scholar] [CrossRef]
- Dai, E.; Wang, X.; Zhu, J.; Zhao, D. Methods, Tools and Research Framework of Ecosystem Service Trade-Offs. Geogr. Res. 2016, 35, 1005–1016. [Google Scholar]
- Sheng, K.; Fan, J.; Yang, H. Progress and Prospect of Modern Regional Function Theory and Its Application. Econ. Geogr. 2016, 36, 1–7. [Google Scholar]
- Mooney, H.; Duraiappah, A.; Larigauderie, A. Evolution of Natural and Social Science Interactions in Global Change Research Programs. Proc. Natl. Acad. Sci. USA 2013, 110, 3665–3672. [Google Scholar] [CrossRef] [Green Version]
- Zhong, L.; Wang, J.; Zhang, X.; Ying, L. Effects of Agricultural Land Consolidation on Ecosystem Services: Trade-Offs and Synergies. J. Clean. Prod. 2020, 264, 121412. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Y.; Sun, J.; Liang, E.; Shen, M.; Yang, B.; Jia, X.; Zhang, J. Precipitation Dominants Synergies and Trade-Offs among Ecosystem Services across the Qinghai-Tibet Plateau. Glob. Ecol. Conserv. 2021, 32, e01886. [Google Scholar] [CrossRef]
- Jafarzadeh, A.A.; Mahdavi, A.; Shamsi, S.R.F.; Yousefpour, R. Assessing Synergies and Trade-Offs between Ecosystem Services in Forest Landscape Management. Land Use Policy 2021, 111, 105741. [Google Scholar] [CrossRef]
- Shen, J.; Li, S.; Liang, Z.; Liu, L.; Li, D.; Wu, S. Exploring the Heterogeneity and Nonlinearity of Trade-Offs and Synergies among Ecosystem Services Bundles in the Beijing-Tianjin-Hebei Urban Agglomeration. Ecosyst. Serv. 2020, 43, 101103. [Google Scholar] [CrossRef]
- Yang, Y.; Li, M.; Feng, X.; Yan, H.; Su, M.; Wu, M. Spatiotemporal Variation of Essential Ecosystem Services and Their Trade-off/Synergy along with Rapid Urbanization in the Lower Pearl River Basin, China. Ecol. Indic. 2021, 133, 108439. [Google Scholar] [CrossRef]
- Bao, W.; Yang, Y.; Zou, L. How to Reconcile Land Use Conflicts in Mega Urban Agglomeration? A Scenario-Based Study in the Beijing-Tianjin-Hebei Region, China. J. Environ. Manag. 2021, 296, 113168. [Google Scholar] [CrossRef]
- Zhang, Y.; Long, H.; Tu, S.; Ge, D.; Ma, L.; Wang, L. Spatial Identification of Land Use Functions and Their Tradeoffs/Synergies in China: Implications for Sustainable Land Management. Ecol. Indic. 2019, 107, 105550.1–105550.14. [Google Scholar] [CrossRef]
- Shi, S.; Li, X.; Hu, B. Theory and Research Prospect of Multi-Function in Karst Region. Econ. Geogr. 2022, 42, 74–83. [Google Scholar]
- Wang, Y.; Fan, J.; Zhou, K. Territorial Function Optimization Regionalization Based on the Integration of “Double Evaluation”. Geogr. Res. 2019, 38, 2415–2429. [Google Scholar]
- Ji, Z.; Liu, C.; Xu, Y.; Huang, A.; Lu, L.; Duan, Y. Identification and Optimal Regulation of the Production-Living-Ecological Space Based on Quantitative Land Use Functions. Trans. Chin. Soc. Agric. Eng. 2020, 36, 222–231. [Google Scholar] [CrossRef]
- Li, G.; Fan, C. Quantitative Function Identification and Analysis of Urban Ecology-Production-Living Space. J. Geogr. Sci. 2016, 71, 49–65. [Google Scholar] [CrossRef]
- Fan, Y.; Gan, L.; Hong, C.; Jessup, L.H.; Jin, X.; Pijanowski, B.C.; Sun, Y.; Lv, L. Spatial Identification and Determinants of Trade-Offs among Multiple Land Use Functions in Jiangsu Province, China. Sci. Total Environ. 2021, 772, 145022. [Google Scholar] [CrossRef]
- Sun, Y.; Ren, Z.; Zhao, S.; Zhang, J. Spatial and Temporal Changing Analysis of Synergy and Trade-off between Ecosystem Services Basins of Shaanxi Province. J. Geogr. Sci. 2017, 72, 521–532. [Google Scholar]
- Hang, A.; Yue, Y.; Liu, C.; Hao, J.; Sun, P.; Zheng, W.; Lu, L. Evaluation on Livability of Living Space Based on Multiple Functions of Land Use at County Level. Trans. Chin. Soc. Agric. Eng. 2018, 34, 252–261. [Google Scholar] [CrossRef]
- Li, M.; Wang, C.; Zhang, X. Identification of the Candidate Areas of Ecological Protection Red Lines Based on Water Conservation Function in Territory Spatial Planning. Geogr. Res. 2019, 38, 2447–2457. [Google Scholar]
- Xu, L.; Yan, H.; Qian, S. Spatio-Temporal Variation of Land Desertification Sensitivity in Northern China from 2000 to 2018 Based on MODIS-NDVI. J. Nat. Resour. 2020, 35, 925–936. [Google Scholar]
- Li, Q.; Zhou, Y.; Xu, T.; Wang, L.; Wu, Z. Trade-Offs/Synergies in Land-Use Function Changes in Central China from 2000 to 2015. Chin. Geogr. Sci. 2021, 31, 711–726. [Google Scholar] [CrossRef]
- Liu, C.; Xu, Y.; Liu, Y.; Sun, P.; Huang, A.; Zhou, J. Research on Land Use Functions Classification and Evaluation System Based on System Theory. Acta Sci. Nat. Univ. Pekin. 2018, 54, 181–188. [Google Scholar] [CrossRef]
- Hou, R.; Li, H. Spatial-Temporal Change and Coupling Coordination Characteristics of Land Use Functions in Wuhan City:Based on the Comparison Before and After the “Resource-Economical and Environment-Friendly Society” Experimental Zone Establishment. China Land Sci. 2021, 35, 69–78. [Google Scholar]
- Huang, S.; Wang, Y.; Liu, R.; Jiang, Y.; Qie, L.; Pu, L. Identification of Land Use Function Bundles and Their Spatiotemporal Trade-Offs/Synergies: A Case Study in Jiangsu Coast, China. Land 2022, 11, 286. [Google Scholar] [CrossRef]
- Zhang, Y.; Cheng, Y.; Wang, J.; Ye, J.; Zhang, B. Coordinate Degree and Differential Optimizing"Production-Living-Ecological" Function in the Yellow River Basin. Trans. Chin. Soc. Agric. Eng. 2021, 37, 251–261. [Google Scholar]
- Zhu, C.; Li, W.; Du, Y.; Xu, H.; Wang, K. Spatial-Temporal Change, Trade-off and Synergy Relationships of Cropland Multifunctional Value in Zhejiang, China. Trans. Chin. Soc. Agric. Eng. 2020, 36, 263–272. [Google Scholar] [CrossRef]
- Cheng, H.; Meng, J.; Zhu, L. Spatial-Temporal Pattern and Trade-Offs of Land Multi-Function in the Middle Reaches of the Heihe River Based on Multi-Source Geographic Data Fussion. Arid Land Geogr. 2021, 44, 208–220. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, J.; Gong, J.; Qian, C. Spatial and Temporal Relations among Land-Use Intensity, Ecosystem Services, Human Well-Being in the Longzhong Loess Hilly Region: A Case Study of the Anding District, Gansu Province. Acta Ecol. Sin. 2019, 39, 637–648. [Google Scholar]
- Han, Z.; Meng, J.; Zhu, L.; Cheng, H.; Wu, Y.; Wei, C. Quantifying Trade-offs of Land Multifunctionality Evaluated by Set Pair Analysis in Ecologically Vulnerable Areas of Northwestern China. Land Degrad. Dev. 2022, 33, 1999–2013. [Google Scholar] [CrossRef]
- Shi, W.; Liu, Y.; Shi, X. Quantitative Methods for Detecting the Impacts of Climate Change on the Fluctuation of Farming-Pastoral Ecotone Boundaries in Northern China. J. Geogr. Sci. 2017, 72, 407–419. [Google Scholar]
- Zhang, R.; Li, P.; Xu, L. Effects of Urbanization on Carbon Emission from Land Use in Xinjiang and Their Coupling Relationship. Acta Ecol. Sin. 2022, 1–17. [Google Scholar] [CrossRef]
- Zhu, W.; Li-Xia, Q.I.; Wang, R.M. The Relationship between Farm Size and Fertilizer Use Efficiency: Evidence from China. J. Integr. Agric. 2022, 21, 9. [Google Scholar] [CrossRef]
- Wang, J.; Wu, Z. Evolution of Patterns and Risk Assessment of Productive-Living-Ecological Space in Urumqi during 2000-2018. Bull. Soil Water Conserv. 2021, 41, 318–326. [Google Scholar]
- Zhang, H.; Wang, H.; Lei, J.; Zhang, F.; Wang, Z.; Tan, B.; Gao, Y. Cross-Border Integration of Production-Living-Ecological Function in XPCC and Local City Based on Symbiosis Theory. Acta Ecol. Sin. 2021, 41, 4393–4405. [Google Scholar]
- Deng, B.; Affolderbach, J.; Deutz, P. Industrial Restructuring through Eco-Transformation: Green Industrial Transfer in Changsha–Zhuzhou–Xiangtan, Hunan Province. Sustainability 2020, 12, 6945. [Google Scholar] [CrossRef]
- Xiao, R.; Liu, Y.; Huang, X.; Shi, R.; Yu, W.; Zhang, T. Exploring the Driving Forces of Farmland Loss under Rapidurbanization Using Binary Logistic Regression and Spatial Regression: A Case Study of Shanghai and Hangzhou Bay. Ecol. Indic. 2018, 95, 455–467. [Google Scholar] [CrossRef]
- Li, S.; Zhao, X.; Pu, J.; Miao, P.; Tan, K. Optimize and Control Territorial Spatial Functional Areas to Improve the Ecological Stability and Total Environment in Karst Areas of Southwest China. Land Use Policy 2021, 100, 104940. [Google Scholar] [CrossRef]
- Lin, S.; Lu, R.; Liu, S.; Ye, Z.; Wei, Q.; Luo, J. Land Use Pattern and Multifunctional Evolution in the Border Areas in the Guangxi Zhuang Autonomous Region Based on “Production-Living-Ecosystem” Space. Trans. Chin. Soc. Agric. Eng. 2021, 37, 265–274. [Google Scholar]
- Luo, J.; Zhang, X.; Shi, P. Land Use Multi-Functionality and Zoning Governance Strategy of Densely Populated Areas in the Upper Reaches of the Yellow River: A Case Study of the Lanzhou–Xining Region, China. Land 2022, 11, 897. [Google Scholar] [CrossRef]
- Liu, C.; Xu, Y.; Lu, X. Spatio-Temporal Evolution and Optimal Zation of Trade-off and Synergy of Land Use Functions in Ecologically Fragile and Poverty Areas: A Case Study of Zhangjiaou City. Econ. Geogr. 2021, 41, 181–190. [Google Scholar]
- Cao, Y.; Cao, Y.; Li, G.; Tian, Y.; Fang, X.; Li, Y.; Tan, Y. Linking Ecosystem Services Trade-Offs, Bundles and Hotspot Identification with Cropland Management in the Coastal Hangzhou Bay Area of China. Land Use Policy 2020, 97, 104689. [Google Scholar] [CrossRef]
- Zhang, J.; Li, S.; Lin, N.; Lin, Y.; Yuan, S.; Zhang, L.; Zhu, J.; Wang, K.; Gan, M.; Zhu, C. Spatial Identification and Trade-off Analysis of Land Use Functions Improve Spatial Zoning Management in Rapid Urbanized Areas, China. Land Use Policy 2022, 116, 106058. [Google Scholar] [CrossRef]
- Chen, H.; Li, Y.; Sheng, J. Study on the Evolution of Land Use Function of Basins Based on Land Use Change in Guizhou Province, China. Acta Ecol. Sin. 2019, 39, 9325–9338. [Google Scholar]
Type of Data | Data Content | Data Sources |
---|---|---|
Vector data | Road traffic data | Chinese Academy of Sciences Resource and Environmental Science Data Center (www.resdc.cn, accessed on 15 July 2020) |
Point of interest (POI) data | Use JAVA programming to crawl Gaode map points of interest | |
Raster data | Land use/Land cover data (30 m × 30 m) | Chinese Academy of Sciences Resource and Environmental Science Data Center (www.resdc.cn, accessed on 25 July 2020) |
Net primary production (NPP) (500 m × 500 m) | Chinese Academy of Sciences Resource and Environmental Science Data Center (www.resdc.cn, accessed on 30 July 2020) | |
Normalized Difference Vegetation Index (NDVI) (1 Km × 1 Km) | Chinese Academy of Sciences Resource and Environmental Science Data Center (www.resdc.cn, accessed on 15 July 2020) | |
Population density (1 Km × 1 Km) | Chinese Academy of Sciences Resource and Environmental Science Data Center (www.resdc.cn, accessed on 15 June 2020) | |
DEM data (30 m × 30 m) | Geospatial Data Cloud (www.gscloud.cn, accessed on 20 July 2020) | |
Soil data (1 Km × 1 Km) | Chinese Academy of Sciences Resource and Environmental Science Data Center (www.resdc.cn, accessed on 15 June 2020) | |
Socio-economic statistics data | Individual output value of agriculture, animal husbandry, forestry | Urumqi Statistical Yearbook (2019) (www.wlmq.gov.cn, accessed on 20 June 2020) |
Primary Functions | Sub-Functions | Indicators | Weights (%) | Quantification Method | Units | References |
---|---|---|---|---|---|---|
Agricultural production | Agricultural product supply | Crop supply | 34.58 | Kg/m2 | A1, A2, A3 represent the areas of cultivated land, grassland, forest land, respectively, in a 500 m × 500 m grid cell. F1, F2, F3 represent the total output value of agriculture, animal husbandry, and forestry, respectively, in each district in 2019. S1, S2, S3 represent the total area of arable land, water area, and grassland, respectively, in each district [46]. | |
Animal husbandry supply | 33.45 | Kg/m2 | ||||
Forestry supply | 31.97 | Kg/m2 | ||||
Urban life | Life bearing | Residential carrying | 10.62 | # | Pop/m2 | Characterization of population density. |
Traffic carrying | 8.10 | # | Km/Km2 | The ratio of traffic land mileage to grid area in grid cells. | ||
Life support | Life service | 14.09 | ArcGIS overlay analysis | # | Euclidean distance spatialization of POI data of shopping malls, supermarkets (stores), market shopping services, and living services. | |
Employment service | 12.63 | # | Euclidean distance spatialization of POI data of primary, secondary, and tertiary industries. | |||
Medical service | 15.20 | # | Euclidean distance spatialization of POI data in general hospitals, specialized hospitals, health centers, and clinics. | |||
Security services | 15.07 | # | Euclidean distance spatialization of POI data of government agencies such as alarm points and fire points. | |||
Cultural education | Education service | 13.80 | # | Euclidean distance spatialization of POI data of science, education, and culture in kindergartens, primary schools, middle schools, and museums. | ||
Leisure and entertainment services | 10.49 | # | Euclidean distance spatialization of POI data of scenic spots and sports leisure. | |||
Ecology | Ecological service | Biodiversity | 24.92 | # | is the average annual vegetation net primary productivity. is the annual average precipitation. is the annual average temperature, is the altitude factor [47]. | |
Windbreak and sand fixation | 24.42 | # | NDVI normalized index. | |||
Soil and water conservation | 25.06 | # | Standardized processing of NPP data, soil erodibility factor and slope factor raster data superimposed. | |||
Climate adjustment | 25.60 | g/m2 | C is the carbon content of CO2 fixed by vegetation in the atmosphere. N is the proportion of carbon in CO2, which is 27.27%. β = 1.63, which means that vegetation needs to fix 1.63 g of carbon per 1 g of dry matter [48]. |
Quadrant | Polar Angle Range | Agricultural Production Function | Urban Life Function | Ecological Function | Description |
---|---|---|---|---|---|
I | [330°,0°)∪[0°,30°) | / | − | + | Function of high ecology–low urban life |
II | [30°,90°) | + | − | / | Function of high agricultural production–low urban life |
II | [90°,150°) | + | / | − | Function of high agricultural production–low ecology |
IV | [150°,210°) | / | + | − | Function of high urban life–low ecology |
V | [210°,270°) | − | + | / | Function of high urban life–low agricultural production |
VI | [270°,330°) | − | / | + | Function of high ecology–low agricultural production |
Average Value | Standard Deviation | Agricultural Production | Urban Life | Ecology | |
---|---|---|---|---|---|
Agricultural production | 0.026 | 0.076 | 1 | ||
Urban life | 0.622 | 0.215 | 0.332 ** | 1 | |
Ecology | 0.263 | 0.211 | 0.416 ** | 0.383 ** | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, M.; Wang, H.; Wei, Y.; Ma, C.; Yin, Y. Spatial Characteristics of Land Use Multifunctionality and Their Trade-Off/Synergy in Urumqi, China: Implication for Land Space Zoning Management. Sustainability 2022, 14, 9285. https://doi.org/10.3390/su14159285
Xue M, Wang H, Wei Y, Ma C, Yin Y. Spatial Characteristics of Land Use Multifunctionality and Their Trade-Off/Synergy in Urumqi, China: Implication for Land Space Zoning Management. Sustainability. 2022; 14(15):9285. https://doi.org/10.3390/su14159285
Chicago/Turabian StyleXue, Mengqi, Hongwei Wang, Yiming Wei, Chen Ma, and Yucong Yin. 2022. "Spatial Characteristics of Land Use Multifunctionality and Their Trade-Off/Synergy in Urumqi, China: Implication for Land Space Zoning Management" Sustainability 14, no. 15: 9285. https://doi.org/10.3390/su14159285