Multinomial Cross-Sectional Regression Models to Estimate and Predict the Determinants of Academic Performance: The Case of Auditor Accountant of the Pontifical Catholic University of Valparaíso
Abstract
:1. Introduction
1.1. Academic Performance in Chile and the World
1.2. Competencies in Higher Education
1.3. Meauserement of Competencies
2. Materials and Methods
3. Results
Econometric Models
4. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Véliz, A.; Dorner, A.; Sandoval, S. Relación entre autoconcepto, eficacia académica y rendimiento académico en estudiantes de salud de Puerto Montt, Chile. EDUCADI 2016, 1, 97–109. [Google Scholar] [CrossRef]
- Mushtaq, I.; Khan, S.N. Factors affecting student’s academic performance. Glob. J. Manag. Bus. Res. 2012, 12, 17–22. [Google Scholar]
- Alamri, M.; Almaiah, M.; Al-Rahmi, W. Social Media Applications Affecting Students’ Academic Performance: A Model Developed for Sustainability in Higher Education. Sustainability 2020, 12, 6471. [Google Scholar] [CrossRef]
- Alam, M.M.; Ahmad, N.; Naveed, Q.N.; Patel, A.; Abohashrh, M.; Khaleel, M.A. E-learning services to archive sustainable learning and academic performance: An empirical study. Sustainability 2021, 13, 2653. [Google Scholar] [CrossRef]
- Cook, M.L. Politics of Labor Reform in Latin America: Between Flexibility and Rights; The Pennsylvania State University Press: University Park, PA, USA, 2010. [Google Scholar]
- Lamarra, N.F. Higher Education, Quality Evaluation and Accreditation in Latin America and MERCOSUR. Eur. J. Educ. 2003, 38, 253–269. [Google Scholar] [CrossRef]
- Rama, C. University virtualisation in Latin America. Int. J. Educ. Technol. High. Educ. 2014, 11, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Montané, A.; Llanes, J.; Calduch, I.; Hervás, G.; Méndez-Ulrich, J.L.; Muñoz, J. The social dimension in Higher Education. Design and implementation of an instrument for student analytics in a Latin American context. In Culture, Citizenship, Participation. Comparative Perspectives from Latin America on Inclusive Education, 1st ed.; Bon, A., Pini, M., Akkermans, H., Eds.; Pangea: Amsterdam, The Netherlands, 2019; Volume 2, pp. 133–158. [Google Scholar]
- Lent, R.W.; Taveira, M.D.C.; Figuera, P.; Dorio, I.; Faria, S.; Gonçalves, A.M. Test of the Social Cognitive Model of Well-Being in Spanish College Students. J. Career Assess. 2016, 25, 135–143. [Google Scholar] [CrossRef]
- Llanes, J.; Méndez-Ulrich, J.L.; Montané, A. Motivación y satisfacción académica de los estudiantes de Educación: Una visión internacional. Educ. XX1 2021, 24, 45–68. [Google Scholar]
- Fracchia, E.; Mesquita, L.; Quiroga, L. Business Groups in Argentina, 1st ed.; Oxford University Press: New York, NY, USA, 2010. [Google Scholar]
- Rozada, M.G.; Menendez, A. Public university in Argentina: Subsidizing the rich? Econ. Educ. Rev. 2002, 21, 341–351. [Google Scholar] [CrossRef] [Green Version]
- Perales Franco, C.; McCowan, T. Rewiring higher education for the Sustainable Development Goals: The case of the In-tercultural University of Veracruz, Mexico. High. Educ. 2021, 81, 69–88. [Google Scholar] [CrossRef] [Green Version]
- Gill, C.C. Education in a Changing Mexico, 1st ed.; US Office of Education, Institute of International Studies: Washington, DC, USA, 1969. [Google Scholar]
- Laus, S.P.; Morosini, M.C. Higher Education in Brazil. In Higher Education in Latin America: The International Dimension, 1st ed.; De Wit, H., Jarmillo, C., Gacel-Ávila, J., Knight, J., Eds.; The World Bank: Washington, DC, USA, 2005; Volume 638, p. 111. [Google Scholar]
- Schwartzman, S. Brazil: Opportunity and crisis in higher education. High. Educ. 1988, 17, 99–119. [Google Scholar] [CrossRef]
- Berchin, I.I.; dos Santos Grando, V.; Marcon, G.A.; Corseuil, L.; de Andrade, J.B.S.O. Strategies to promote sustainability in higher education institutions: A case study of a federal institute of higher education in Brazil. Int. J. Sustain. High. Educ. 2017, 18, 1018–1038. [Google Scholar] [CrossRef]
- Brunner, J.J. Higher Education in Chile from 1980 to 1990. Eur. J. Educ. 1993, 28, 71. [Google Scholar] [CrossRef]
- Bernasconi, A. Private Higher Education in Chile: The New Exceptionalism. Int. High. Educ. 2003, 32, 18–19. [Google Scholar] [CrossRef] [Green Version]
- Ramírez, R.I.; Villalobos, J.V.; Lay, N.D.; Herrera, B.A. Medios de comunicación para la apropiación del conocimiento en instituciones educativas. Inf. Tecnológica 2021, 32, 27–38. [Google Scholar] [CrossRef]
- Delors, J. Los cuatro pilares de la educación. In La Educación Encierra un Tesoro. Informe a la UNESCO de la Comisión Internacional Sobre la Educación Para el Siglo XXI; Santillana/UNESCO: Madrid, Spain, 1996; Available online: https://uom.uib.cat/digitalAssets/221/221918_9.pdf (accessed on 8 July 2022).
- Prasetvono, H.; Abdillah, A.; Widiyarto, T.; Srivono, H. Character-based economic learning implementation and teacher’s reinforcement on student’s affective competence in minimizing hoax. Cakrawala Pendidik. 2018, 37, 426–435. [Google Scholar]
- Soubhi, F.Z.; Lima, L.; Talbi, M.; Knouzi, N.; Touri, B. Learning Difficulties Related of Health Status of Moroccan Students. Procedia Soc. Behav. Sci. 2015, 197, 1507–1511. [Google Scholar] [CrossRef] [Green Version]
- Awan, K. Experimentation and correlates of electronic nicotine delivery system (electronic cigarettes) among university students—A cross sectional study. Saudi Dent. J. 2016, 28, 91–95. [Google Scholar] [CrossRef] [Green Version]
- de la Fuente-Mella, H.; Umaña-Hermosilla, B.; Fonseca-Fuentes, M.; Elórtegui-Gómez, C. Multinomial Logistic Regression to Estimate the Financial Education and Financial Knowledge of University Students in Chile. Information 2021, 12, 379. [Google Scholar] [CrossRef]
- Torikka, A.; Kaltiala-Heino, R.; Rimpelä, A.; Marttunen, M.; Luukkaala, T.; Rimpelä, M. Self-reported depression is increasing among socio-economically disadvantaged adolescents—Repeated cross-sectional surveys from Finland from 2000 to 2011. BMC Public Health 2014, 14, 408. [Google Scholar] [CrossRef] [Green Version]
- Trinidad, M.F.; Pascual, J.L.G.; García, M.R. Perception of caring among nursing students: Results from a cross-sectional survey. Nurse Educ. Today 2019, 83, 104196. [Google Scholar] [CrossRef] [PubMed]
- Webb, J.; Chaffer, C. The expectation performance gap in accounting education: A review of generic skills development in UK accounting degrees. Account. Educ. 2016, 25, 349–367. [Google Scholar] [CrossRef]
- Douglas, S.; Gammie, E. An investigation into the development of non-technical skills by undergraduate accounting programmes. Account. Educ. 2019, 28, 304–332. [Google Scholar] [CrossRef]
- Van Vught, F.A. Governmental Strategies and Innovation in Higher Education. Higher Education Policies Series, 7, 1st ed.; Kingsley: London, UK, 1989. [Google Scholar]
- Kırkgöz, Y. The challenge of developing and maintaining curriculum innovation at higher education. Procedia Soc. Behav. Sci. 2009, 1, 73–78. [Google Scholar] [CrossRef] [Green Version]
- Kemp, K.K.; Goodchild, F.M. Evaluating a major innovation in higher education: The NCGIA core curriculum in GIS. J. Geogr. High. Educ. 1992, 16, 21–35. [Google Scholar] [CrossRef]
- Leask, B. Internationalisation, globalisation and curriculum innovation. In Researching International Pedagogies, 1st ed.; Hellstén, M., Reid, A., Eds.; Springer Dordrecht: Dordrecht, The Netherlands, 2008; pp. 9–26. [Google Scholar]
- Fuentes, G.Y.; Moreno-Murcia, L.M.; Rincón-Tellez, D.C.; Silva-Garcia, M.B. Evaluación de las habilidades blandas en la educación superior. Form. Univ. 2021, 14, 49–60. [Google Scholar] [CrossRef]
- Carrión-Martínez, J.J.; Fernández-Martínez, M.D.M.; Pérez-Fuentes, M.D.C.; Gázquez-Linares, J.J. Specific competencies in social work higher education in the framework of the European higher education area: The perception of future professionals in the Spanish context. Eur. J. Soc. Work 2018, 23, 43–55. [Google Scholar] [CrossRef]
- Echeverría-Ramírez, J.A.; Mazzitelli, C. Estudio de la percepción sobre los factores institucionales que influyen en el rendimiento académico de estudiantes de la Universidad Estatal a Distancia de Costa Rica. Rev. Electrónica Educ. 2021, 25, 326–344. [Google Scholar] [CrossRef]
- Preciado-Serrano, M.D.L.; Ángel-González, M.; Colunga-Rodríguez, C.; Vázquez-Colunga, J.C.; Esparza-Zamora, M.A.; Vázquez-Juárez, C.L.; Obando-Changuán, M.P. Construction and Validation of the University Academic Performance RAU Scale. Rev. Iberoam. Diagnóstico Evaluación Avaliação Psicológica (RIDEP) 2021, 60, 1–20. [Google Scholar] [CrossRef]
- Sagredo, A.V.; Etchepare, G.C.; Mendizábal, E.A.; Wilson, C.P. Academic performance and its relationship with socioemotional variables in chilean students from vulnerable contexts. Educ. XXI 2021, 24, 375–398. [Google Scholar] [CrossRef]
- Jiménez, M.; Pérez, F.; Gómez, P. Análisis de los factores tecnológicos sobre el rendimiento académico en una universidad pública en la Ciudad de México. Form. Univ. 2020, 13, 255–266. [Google Scholar] [CrossRef]
- Quinapallo, X.P.L.; Yépez, M.M.M.; Corbi, R.G. Clima de aula y rendimiento académico: Apuntes en torno al contexto universitario. Rev. Venez. Gerenc. 2021, 26, 140–156. [Google Scholar] [CrossRef]
- Sukier, H.; Ramírez Molina, R.I.; Parra, M.; Martínez, K.; Fernández, G.; Lay, N. Strategic Management of Human Talent from a Sustainable Approach. Rev. Opción 2020, 36, 929–953. [Google Scholar]
- Matyushok, V.; Krasavina, V.; Berezin, A.; García, J.S. The global economy in technological transformation conditions: A review of modern trends. Econ. Res. Ekon. Istraživanja 2021, 34, 1471–1497. [Google Scholar] [CrossRef]
- Glomado, E.; Zagrebaylova, Y. The Overview of Factors Contributing to the Global Economy Development, 1st ed.; Belarusian State Economic University: Minsk, Belarus, 2022. [Google Scholar]
- Gómez, L.; Oinas, P.; Wall, R.S. Undercurrents in the world economy: Evolving global investment flows in the South. World Econ. 2021, 45, 1830–1855. [Google Scholar] [CrossRef]
- Velasco, M.; Mumme, S.P. Environmental capacities in Latin America: A comparison of Brazil, Chile, and Mexico. Soc. Sci. J. 2021, 1–20. [Google Scholar] [CrossRef]
- Fernández, J. Escala de Motivaciones Psicosociales, 1st ed.; Tea Ediciones: Madrid, Spain, 1987. [Google Scholar]
- Allport, G.W.; Vernon, P.E.; Lindzey, G. Study of Values, 1st ed.; Houghton Mifflin: Boston, FL, USA, 1960. [Google Scholar]
- Pender, N.J.; Murdaugh, C.L.; Parsons, M.A. Health Promotion in Nursing Practice, 7th ed.; Pearson: London, UK, 2006. [Google Scholar]
- Wonderlic, E.F. Wonderlic Personnel Test; Wonderlic, Inc.: Liberty, IL, USA, 2004. [Google Scholar]
- De Moya, M.V.; Hernández, J.A.; Hernández, J.R.; Cózar, R. Análisis de los estilos de aprendizaje y las tic en la formación personal del alumnado universitario a través del cuestionario reatic. Rev. De Investig. Educ. 2009, 29, 137–156. [Google Scholar]
- Coopersmith, S. The Antecedents of Self-Esteem; W. H. Freeman & Co. Behavioral Science: San Francisco, CA, USA, 1967; p. 15. [Google Scholar] [CrossRef]
- Moren, C.C.; Augant, K.C.; Labrin, B.C.; de Giorgis, R.S.; de la Fuente-Mella, H.; Fritz, P.; Saavedra, M.V.; Monckton, P.H.; Castelli, L. A quantitative analysis of the identification of personality traits in engineering students and their relation to academic performance. Stud. High. Educ. 2019, 45, 1323–1334. [Google Scholar] [CrossRef]
- Mella, H.D.L.F.; Navarro, M.M.; Manero, C.B.; Iglesias, M.P.; Huenuman, C.G. Análisis de los determinantes del rendimiento académico. El caso de Contador Auditor de la Pontificia Universidad Católica de Valparaíso. Rev. Estud. Pedagógicos 2021, 47, 469–482. [Google Scholar] [CrossRef]
- De La Fuente-Mella, H.; Gutiérrez, C.G.; Crawford, K.; Foschino, G.; Crawford, B.; Soto, R.; De La Barra, C.L.; Caneo, F.C.; Monfroy, E.; Becerra-Rozas, M.; et al. Analysis and Prediction of Engineering Student Behavior and Their Relation to Academic Performance Using Data Analytics Techniques. Appl. Sci. 2020, 10, 7114. [Google Scholar] [CrossRef]
- Lawson, A.E. The Generality of Hypothetico-Deductive Reasoning: Making Scientific Thinking Explicit. Am. Biol. Teach. 2000, 62, 482–495. [Google Scholar] [CrossRef]
- Greene, W.H. Análisis Econométrico, 3rd ed.; Prentice Hall: Madrid, Spain, 1999. [Google Scholar]
- Coughenour, C.; Paz, A.; de la Fuente-Mella, H.; Singh, A. Multinomial logistic regression to estimate and predict perceptions of bicycle and transportation infrastructure in a sprawling metropolitan area. J. Public Health 2016, 38, e401–e408. [Google Scholar] [CrossRef] [PubMed]
- Flores-Mendoza, C.; Ardila, R.; Gallegos, M.; Reategui-Colareta, N. General Intelligence and Socioeconomic Status as Strong Predictors of Student Performance in Latin American Schools: Evidence from PISA Items. Front. Educ. 2021, 6, 1–16. [Google Scholar] [CrossRef]
- Murillo, F.J.; Román, M. School infrastructure and resources do matter: Analysis of the incidence of school resources on the performance of Latin American students. Sch. Eff. Sch. Improv. 2011, 22, 29–50. [Google Scholar] [CrossRef]
- Torres-Roman, J.S.; Cruz-Avila, Y.; Suarez-Osorio, K.; Arce-Huamaní, M.; Menez-Sanchez, A.; Robalo, T.R.A.; Mejia, C.R.; Ruiz, E. Motivation towards medical career choice and academic performance in Latin American medical students: A cross-sectional study. PLoS ONE 2018, 13, e0205674. [Google Scholar] [CrossRef]
- Herman, K.C. Engaging Latino-American Students in School: Evaluating a Causal Model for Understanding and Predicting Academic Achievement. Doctoral Thesis, University of Florida, Gainesville, FL, USA, 1997. [Google Scholar]
- Rodríguez-Hernández, C.F.; Cascallar, E.; Kyndt, E. Socio-economic status and academic performance in higher education: A systematic review. Educ. Res. Rev. 2019, 29, 100305. [Google Scholar] [CrossRef]
- Sackett, P.R.; Kuncel, N.R.; Arneson, J.J.; Cooper, S.R.; Waters, S.D. Does socioeconomic status explain the relationship between admissions tests and post-secondary academic performance? Psychol. Bull. 2009, 135, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Trusty, J.; Robinson, C.R.; Plata, M.; Ng, K.-M. Effects of Gender, Socioeconomic Status, and Early Academic Performance on Postsecondary Educational Choice. J. Couns. Dev. 2000, 78, 463–472. [Google Scholar] [CrossRef]
- Brodnick, R.J.; Ree, M.J. A structural model of academic performance, socioeconomic status, and Spearman’s g. Educ. Psychol. Meas. 1995, 55, 583–594. [Google Scholar] [CrossRef]
- Muñoz, P.; Redondo, A. Inequality and academic achievement in Chile. CEPAL Rev. 2013, 109, 99–114. [Google Scholar] [CrossRef] [Green Version]
- Rossi, M. Factors Affecting Academic Performance of University Evening Students. J. Educ. Hum. Dev. 2017, 6, 96–102. [Google Scholar] [CrossRef] [Green Version]
- Valladares, M.; Ramírez-Tagle, R.; Muñoz, M.A.; Obregón, A.M. Individual differences in chronotypes associated with academic performance among Chilean University students. Chronobiol. Int. 2017, 35, 578–583. [Google Scholar] [CrossRef]
- Claro, S.; Paunesku, D.; Dweck, C.S. Growth mindset tempers the effects of poverty on academic achievement. Proc. Natl. Acad. Sci. USA 2016, 113, 8664–8668. [Google Scholar] [CrossRef] [Green Version]
- Gestsdottir, S.; von Suchodoletz, A.; Wanless, S.B.; Hubert, B.; Guimard, P.; Birgisdottir, F.; Gunzenhauser, C.; McClelland, M. Early Behavioral Self-Regulation, Academic Achievement, and Gender: Longitudinal Findings from France, Germany, and Iceland. Appl. Dev. Sci. 2014, 18, 90–109. [Google Scholar] [CrossRef]
- Zimmerman, B.J. Self-Regulated Learning and Academic Achievement: An Overview. Educ. Psychol. 1990, 25, 3–17. [Google Scholar] [CrossRef]
- Nota, L.; Soresi, S.; Zimmerman, B.J. Self-regulation and academic achievement and resilience: A longitudinal study. Int. J. Educ. Res. 2004, 41, 198–215. [Google Scholar] [CrossRef]
- Zimmerman, B.J. Self-Regulated Learning and Academic Achievement: Theoretical Perspectives, 2nd ed.; Routledge: London, UK, 2001. [Google Scholar]
- Ruban, L.M.; McCoach, D.B.; McGuire, J.M.; Reis, S.M. The Differential Impact of Academic Self-Regulatory Methods on Academic Achievement among University Students with and Without Learning Disabilities. J. Learn. Disabil. 2003, 36, 270–286. [Google Scholar] [CrossRef]
- Matuga, J.M. Self-regulation, goal orientation, and academic achievement of secondary students in online university courses. J. Educ. Technol. Soc. 2009, 12, 4–11. [Google Scholar]
- Stringer, R.W.; Heath, N. Academic self-perception and its relationship to academic performance. Can. J. Educ./Rev. Can. De L’éducation 2008, 31, 327–345. [Google Scholar]
- Chevalier, A.; Gibbons, S.; Thorpe, A.; Snell, M.; Hoskins, S. Student’s academic self-perception. Econ. Educ. Rev. 2009, 28, 716–727. [Google Scholar] [CrossRef] [Green Version]
- Leung, P.W.; Kwan, K.S. Parenting styles, motivational orientations, and self-perceived academic competence: A mediational model. Merrill-Palmer Q. 1998, 44, 1–19. [Google Scholar]
N | Minimum | Maximum | Mean | Std. Deviation | |
---|---|---|---|---|---|
Average of grades | 82 | 4.17 | 6.62 | 5.42 | 0.65 |
Approved courses | 82 | 0.50 | 1 | 0.83 | 0.14 |
Failed courses | 82 | 0.00 | 0.23 | 0.057 | 0.076 |
Retirees courses | 82 | 0.00 | 0.30 | 0.087 | 0.086 |
Degree of advancement | 82 | 0.105 | 0.926 | 0.440 | 0.300 |
Minimum qualification | 82 | 1.0 | 6.3 | 3.72 | 1.52 |
Maximum qualification | 82 | 5.8 | 7.0 | 6.7 | 0.30 |
Standard deviation of Qualification | 82 | 0.206 | 1.269 | 0.793 | 0.236 |
Theoretical value | 82 | 1 | 5 | 3.93 | 0.890 |
Nutrition | 82 | 7 | 24 | 15.66 | 4.054 |
Exercise | 82 | 5 | 18 | 9.34 | 3.181 |
General self-esteem | 82 | 28.0 | 104.0 | 67.92 | 24.192 |
Academic self-esteem | 82 | 4.0 | 16.0 | 11.882 | 3.3802 |
Reading Comprehension | 82 | 2.0 | 10.0 | 6.039 | 1.9896 |
Level of English | 82 | 9.0 | 74.0 | 28.302 | 14.8823 |
Maths test | 82 | 1.0 | 23.0 | 13.360 | 5.3443 |
Self-updating | 82 | 24 | 50 | 38.49 | 6.784 |
Religious value | 82 | 13 | 45 | 25.86 | 7.236 |
Middle school score | 82 | 5.2 | 6.8 | 6.070 | 0.3259 |
Average of grades | ||||
Model 1 | Model 2 | |||
R Square | 0.321 | 0.321 | ||
ANOVA (p-value) | 0.003 | 0.000 | ||
Variables | Theoretical value 0.280 (3.369) | Theoretical value 0.294 (4.045) | ||
Nutrition −0.047 (−2.931) | ||||
Approved courses | ||||
Model 1 | Model 2 | Model 3 | Model 4 | |
R Square | 0.301 | 0.568 | 0.639 | 0.708 |
ANOVA (p-value) | 0.004 | 0.000 | 0.000 | 0.000 |
Variables | General self-esteem −0.003 (−3.218) | General self-esteem −0.003 (−4.715) | General self-esteem −0.003 (−4.946) | General self-esteem 0.003 (5.525) |
Academic self-esteem 0.019 (3.772) | Academic self-esteem 0.023 (4.529) | Academic self-esteem 0.022 (4.628) | ||
Reading comprehension 0.019 (2.082) | Reading comprehension 0.020 (2.426) | |||
Level of English −0.002 (−2.230) | ||||
Failed courses | ||||
Model 1 | Model 2 | Model 3 | Model 4 | |
R Square | 0.416 | 0.573 | 0.652 | 0.751 |
ANOVA (p-value) | 0.000 | 0.000 | 0.000 | 0.000 |
Variables | Theoretical value −0.061 (−4.135) | Theoretical value −0.071 (−5.320) | Theoretical value −0.069 (−5.534) | Theoretical value −0.071 (−6.588) |
Student entry −0.055 (−2.906) | Student entry −0.066 (−3.661) | Student entry −0.066 (−4.218) | ||
Maths test −0.004 (−2.232) | Maths test −0.005 (−3.160) | |||
Self-updating −0.004 (−2.891) | ||||
Retirees courses | ||||
Model 1 | Model 2 | |||
R Square | 0.446 | 0.554 | ||
ANOVA (p-value) | 0.000 | 0.000 | ||
Variables | General self-esteem 0.002 (4.400) | General self-esteem 0.002 (5.190) | ||
Academic self-esteem −0.007 (−2.358) | ||||
Degree of advancement | ||||
Model 1 | ||||
R Square | 0.414 | |||
ANOVA (p-value) | 0.000 | |||
Variables | Graduation −0.130 (−4.116) | |||
Minimum qualification | ||||
Model 1 | Model 2 | |||
R Square | 0.314 | 0.488 | ||
ANOVA (p-value) | 0.003 | 0.000 | ||
Variables | Religious value −1.138 (−3.313) | Religious value −1.410 (−4.428) | ||
Student entry 0.779 (2.797) | ||||
Maximum qualification | ||||
Model 1 | Model 2 | |||
R Square | 0.493 | 0.583 | ||
ANOVA (p-value) | 0.000 | 0.000 | ||
Variables | Exercise −0.065 (−4.834) | Exercise −0.077 (−5.671) | ||
Religious value 0.196 (2.225) | ||||
Standard deviation of qualification | ||||
Model 1 | Model 2 | |||
R Square | 0.214 | 0.356 | ||
ANOVA (p-value) | 0.017 | 0.006 | ||
Variables | Middle school score −0.250 (−2.559) | Middle school score −0.216 (−2.358) | ||
Theoretical value −0.083 (−2.252) |
Endogenous Variable | Explanatory Variables |
---|---|
Academic performance of students measured (by average of grades) | Theoretical value and nutrition |
Number of approved courses | General self-esteem, academic self-esteem, reading comprehension and level of English |
Failed courses | Theoretical value, student entry, maths test, self-updating |
Academic performance (through the retirees courses variable) | General self-esteem and academic self-esteem |
Degree of advancement | Graduation |
Academic performance (by minimum qualification variable) | Religious value and student entry |
Maximum qualification of student | Exercise and religious value |
Academic performance model | Theoretical value |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de la Fuente-Mella, H.; Campos-Espinoza, R.; Lay-Raby, N.; Lamelés-Corvalán, O.; Pino-Moya, M.; Ramírez-Molina, R. Multinomial Cross-Sectional Regression Models to Estimate and Predict the Determinants of Academic Performance: The Case of Auditor Accountant of the Pontifical Catholic University of Valparaíso. Sustainability 2022, 14, 9232. https://doi.org/10.3390/su14159232
de la Fuente-Mella H, Campos-Espinoza R, Lay-Raby N, Lamelés-Corvalán O, Pino-Moya M, Ramírez-Molina R. Multinomial Cross-Sectional Regression Models to Estimate and Predict the Determinants of Academic Performance: The Case of Auditor Accountant of the Pontifical Catholic University of Valparaíso. Sustainability. 2022; 14(15):9232. https://doi.org/10.3390/su14159232
Chicago/Turabian Stylede la Fuente-Mella, Hanns, Ricardo Campos-Espinoza, Nelson Lay-Raby, Omar Lamelés-Corvalán, Mario Pino-Moya, and Reynier Ramírez-Molina. 2022. "Multinomial Cross-Sectional Regression Models to Estimate and Predict the Determinants of Academic Performance: The Case of Auditor Accountant of the Pontifical Catholic University of Valparaíso" Sustainability 14, no. 15: 9232. https://doi.org/10.3390/su14159232
APA Stylede la Fuente-Mella, H., Campos-Espinoza, R., Lay-Raby, N., Lamelés-Corvalán, O., Pino-Moya, M., & Ramírez-Molina, R. (2022). Multinomial Cross-Sectional Regression Models to Estimate and Predict the Determinants of Academic Performance: The Case of Auditor Accountant of the Pontifical Catholic University of Valparaíso. Sustainability, 14(15), 9232. https://doi.org/10.3390/su14159232