Economic and Environmental Assessment of Conventional versus Organic Durum Wheat Production in Southern Italy
Abstract
:1. Introduction
2. Theoretical Background
3. Materials and Methods
3.1. Material Flow Analysis
3.2. Crop Accounting Method
3.3. Data Collection
4. Results and Discussion
4.1. MFA Results
4.2. Managerial Implications
4.3. Limitations and Further Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Page, G.; Ridoutt, B.; Bellotti, B. Location and technology options to reduce environmental impacts from agriculture. J. Clean. Prod. 2014, 81, 130–136. [Google Scholar] [CrossRef]
- Fritz, S.; See, L.; Bayas, J.C.L.; Waldner, F.; Jacques, D.; Becker-Reshef, I.; Whitcraft, A.; Baruth, B.; Bonifacio, R.; Crutchfield, J.; et al. A comparison of global agricultural monitoring systems and current gaps. Agric. Syst. 2019, 168, 258–272. [Google Scholar] [CrossRef]
- Konduri, V.S.; Vandal, T.J.; Ganguly, S.; Ganguly, A.R. Data Science for Weather Impacts on Crop Yield. Front. Sustain. Food Syst. 2020, 4, 52. [Google Scholar] [CrossRef]
- Hazra, D.K.; Purkait, A. Role of pesticide formulations for sustainable crop protection and environment management: A review. J. Pharmacogn. Phytochem. 2021, 8, 686–693. [Google Scholar]
- Wiebe, K.; Sulser, T.B.; Dunston, S.; Rosegrant, M.W.; Fuglie, K.; Willenbockel, D.; Nelson, G.C. Modeling impacts of faster productivity growth to inform the CGIAR initiative on Crops to End Hunger. PLoS ONE 2021, 16, e0249994. [Google Scholar] [CrossRef] [PubMed]
- Lo Piccolo, E.; Landi, M. Red-leafed species for urban “greening” in the age of global climate change. J. For. Res. 2021, 32, 151–159. [Google Scholar] [CrossRef]
- Liao, C.; Tian, Q.; Liu, F. Nitrogen availability regulates deep soil priming effect by changing microbial metabolic efficiency in a subtropical forest. J. For. Res. 2021, 32, 713–723. [Google Scholar] [CrossRef]
- Ritchie, H.; Roser, M. Environmental Impacts of Food Production. 2021. Available online: https://ourworldindata.org/environmental-impacts-of-food#citation (accessed on 17 February 2022).
- Poore, J.; Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef] [Green Version]
- Froehlich, A.G.; Melo, A.S.S.A.; Sampaio, B. Comparing the Profitability of Organic and Conventional Production in Family Farming: Empirical Evidence from Brazil. Ecol. Econ. 2018, 150, 307–314. [Google Scholar] [CrossRef]
- Ozturk, M.; Gul, A. Climate Change and Food Security with Emphasis on Wheat; Elsevier: Amsterdam, The Netherlands; Academic Press: Cambridge, MA, USA, 2020; pp. 1–29. [Google Scholar]
- Eyinade, G.A.; Mushunje, A.; Yusuf, S.F.G. The willingness to consume organic food: A review. Food Agric. Immunol. 2021, 32, 78–104. [Google Scholar] [CrossRef]
- European Commission. Farm to Fork Strategy, for a Fair, Healthy and Environmentally Friendly Food System. 2022. Available online: https://ec.europa.eu/food/farm2fork_en (accessed on 17 February 2022).
- FAO. Organic Agriculture. 2022. Available online: https://www.fao.org/organicag/oa-faq/oa-faq1/en/ (accessed on 18 February 2022).
- Halberg, N. Assessment of the environmental sustainability of organic farming: Definitions, indicators and the major challenges. Can. J. Plant Sci. 2012, 92, 981–999. [Google Scholar] [CrossRef]
- Lynch, D.H.; Halberg, N.; Bhatta, G.D. Environmental impacts of organic agriculture in temperate regions. CAB Rev. 2012, 7, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Trydeman Knudsen, M.; Sillebak Kristensen, I.; Berntsen, J.; Molt Petersen, B.; Steen Kristensen, E. Estimated N leaching losses for organic and conventional farming in Denmark. J. Agric. Sci. 2006, 144, 135–149. [Google Scholar] [CrossRef] [Green Version]
- Smith, O.M.; Cohen, A.L.; Rieser, C.J.; Davis, A.G.; Taylor, J.M.; Adesanya, A.W.; Jones, M.S.; Meier, A.R.; Reganold, J.P.; Orpet, R.J.; et al. Organic Farming Provides Reliable Environmental Benefits but Increases Variability in Crop Yields: A Global Meta-Analysis. Front. Sustain. Food Syst. 2019, 3, 82. [Google Scholar] [CrossRef] [Green Version]
- Tedone, L.; Ali, S.A.; De Mastro, G. Optimization of Nitrogen in Durum Wheat in the Mediterranean Climate: The Agronomical Aspect and Greenhouse Gas (GHG) Emissions. In Nitrogen in Agriculture—Updates; Amanullah, A., Fahad, S., Eds.; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
- Sicilian Wheat Bank. World Wheat Report 2020–2021. Available online: https://www.bancadelgrano.it/wp-content/uploads/2021/01/World-Wheat-Report-2020-2021.pdf (accessed on 20 June 2022).
- FAOSTAT. Crops and Livestock Products. 2022. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 28 June 2022).
- European Commission. Cereals Market Situation. Committee for the Common Organisation of Agricultural Markets. 2022. Available online: https://circabc.europa.eu/sd/a/92653d37-7fff-40c1-8d5e-b6bb3625c04a/EU%20cereals%20market.pdf (accessed on 30 June 2022).
- Istat. Coltivazioni: Cereali, Legumi, Radici Bulbi e Tuberi. 2022. Available online: http://dati.istat.it/Index.aspx?QueryId=33702 (accessed on 20 June 2022).
- Istat. Statistiche Report. Coltivazioni Agricole. Annata Agraria 2019–2020 e Previsioni 2020–2021. 2021. Available online: https://www.istat.it/it/files//2021/04/Previsioni-coltivazioni-agricole.pdf (accessed on 30 June 2022).
- Sinab. Bio in Cifre. 2020. Available online: http://www.sinab.it/sites/default/files/share/BIO%20IN%20CIFRE%202020.pdf (accessed on 23 February 2022).
- Ismea. Cereali—Supply Balance Sheet. 2022. Available online: https://www.ismeamercati.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/4546 (accessed on 23 February 2022).
- Zingale, S.; Guarnaccia, P.; Timpanaro, G.; Scuderi, A.; Matarazzo, A.; Bacenetti, J.; Ingrao, C. Environmental life cycle assessment for improved management of agri-food companies: The case of organic whole-grain durum wheat pasta in Sicily. Int. J. Life Cycle Assess. 2022, 27, 205–226. [Google Scholar] [CrossRef]
- Todorović, M.; Mehmeti, A.; Cantore, V. Impact of different water and nitrogen inputs on the eco-efficiency of durum wheat cultivation in Mediterranean environments. J. Clean. Prod. 2018, 183, 1276–1288. [Google Scholar] [CrossRef]
- Alhajj Ali, S.; Tedone, L.; Verdini, L.; De Mastro, G. Effect of different crop management systems on rainfed durum wheat greenhouse gas emissions and carbon footprint under Mediterranean conditions. J. Clean. Prod. 2017, 140, 608–621. [Google Scholar] [CrossRef]
- Casolani, N.; Pattara, C.; Liberatore, L. Water and Carbon footprint perspective in Italian durum wheat production. Land Use Policy 2016, 58, 394–402. [Google Scholar] [CrossRef]
- Ababaei, B.; Etedali, H.R. Estimation of water footprint components of Iran’s wheat production: Comparison of global and national scale estimates. Environ. Process. 2014, 1, 193–205. [Google Scholar] [CrossRef] [Green Version]
- Bouatrous, A.; Harbaoui, K.; Karmous, C.; Gargouri, S.; Souissi, A.; Belguesmi, K.; Cheikh Mhamed, H.; Gharbi, M.S.; Annabi, M. Effect of Wheat Monoculture on Durum Wheat Yield under Rainfed Sub-Humid Mediterranean Climate of Tunisia. Agronomy 2022, 12, 1453. [Google Scholar] [CrossRef]
- Kourat, T.; Smadhi, D.; Madani, A. Modeling the Impact of Future Climate Change Impacts on Rainfed Durum Wheat Production in Algeria. Climate 2022, 10, 50. [Google Scholar] [CrossRef]
- Drugova, T.; Curtis, K.R.; Akhundjanov, S.B. Organic wheat products and consumer choice: A market segmentation analysis. Br. Food J. 2020, 122, 2341–2358. [Google Scholar] [CrossRef]
- Draghici, M.; Niculita, P.; Popa, M.; Duta, D. Organic Wheat Grains and Flour Quality versus Conventional Ones—Consumer versus Industry Expectations. Rom. Biotechnol. Lett. 2011, 16, 6572–6579. [Google Scholar]
- Montemurro, F.; Maiorana, M. Agronomic Practices at Low Environmental Impacts for Durum Wheat in Mediterranean Conditions. J. Plant Nutr. 2016, 38, 624–638. [Google Scholar] [CrossRef]
- Tudisca, S.; di Trapani, A.M.; Sgroi, F.; Testa, R. Organic farming and economic sustainability: The case of Sicilian durum wheat. Qual.-Access Success 2014, 15, 93–96. [Google Scholar]
- Fagnano, M.; Fiorentino, N.; D’Egidio, M.G.; Quaranta, F.; Ritieni, A.; Ferracane, R.; Raimondi, G. Durum Wheat in Conventional and Organic Farming: Yield Amount and Pasta Quality in Southern Italy. Sci. World J. 2012, 2012, 973058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruini, L.; Marino, M.; Pignatelli, S.; Laio, F.; Ridolfi, L. Water footprint of a large-sized food company: The case of Barilla pasta production. Water Resour. Ind. 2013, 1–2, 7–24. [Google Scholar] [CrossRef] [Green Version]
- Amicarelli, V.; Lagioia, G.; Gallucci, T.; Dimitrova, V. The water footprint as an indicator for managing water resources. The case of Italian olive oil. Int. J. Sustain. Econ. 2011, 3, 425–439. [Google Scholar] [CrossRef]
- Finco, A.; Bucci, G.; Belletti, M.; Bentivoglio, D. The Economic Results of Investing in Precision Agriculture in Durum Wheat Production: A Case Study in Central Italy. Agronomy 2021, 11, 1520. [Google Scholar] [CrossRef]
- Frascarelli, A.; Ciliberti, S.; Magalhães de Oliveira, G.; Chiodini, G.; Martino, G. Production Contracts and Food Quality: A Transaction Cost Analysis for the Italian Durum Wheat Sector. Sustainability 2021, 13, 2921. [Google Scholar] [CrossRef]
- Ciliberti, S.; Del Sarto, S.; Frascarelli, A.; Pastorelli, G.; Martino, G. Contracts to Govern the Transition towards Sustainable Production: Evidence from a Discrete Choice Analysis in the Durum Wheat Sector in Italy. Sustainability 2020, 12, 9441. [Google Scholar] [CrossRef]
- Bux, C.; Amicarelli, V. Separate collection and bio waste valorization in the Italian poultry sector by material flow analysis. J. Mater. Cycles Waste Manag. 2022, 24, 811–823. [Google Scholar] [CrossRef] [PubMed]
- Hendriks, C.R.; Obernosterer, D.; Müller, S.; Kytzia, P.; Brunner, B.P.H. Material flow analysis: A tool to support environmental policy decision making Case-studies on the city of Vienna and the Swiss lowlands. Int. J. Justice Sustain. 2000, 5, 311–328. [Google Scholar] [CrossRef]
- Yildiz, T. An Input-Output Energy Analysis of Wheat Production in Çarşamba District of Samsun Province. J. Agric. Fac. Gaziosmanpasa Univ. 2016, 33, 10–20. [Google Scholar] [CrossRef]
- Brunner, P.H.; Rechberger, H. Handbook of Material Flow Analysis. For Environmental, Resource and Waste Engineers, 2nd ed.; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: London, UK; LLC: New York, NY, USA, 2017. [Google Scholar]
- Camana, D.; Manzardo, A.; Toniolo, S.; Gallo, F.; Scipioni, A. Assessing environmental sustainability of local waste management policies in Italy from a circular economy perspective. An overview of existing tools. Sustain. Prod. Consum. 2021, 27, 613–629. [Google Scholar] [CrossRef]
- Courtonne, J.-Y.; Alapetite, J.; Longaretti, P.-Y.; Dupré, D.; Prados, E. Downscaling material flow analysis: The case of the cereal supply chain in France. Ecol. Econ. 2015, 118, 67–80. [Google Scholar] [CrossRef]
- Courtonne, J.-Y.; Longaretti, P.-Y.; Alapetite, J.-Y.; Dupré, D. Environmental Pressures Embodied in the French Cereals Supply Chain. J. Ind. Ecol. 2016, 20, 423–434. [Google Scholar] [CrossRef] [Green Version]
- Brock, P.; Madden, P.; Schwenke, G.; Herridge, D. Greenhouse gas emissions profile for 1 tonne of wheat produced in Central Zone (East) New South Wales: A life cycle assessment approach. Crop Pasture Sci. 2012, 63, 319–329. [Google Scholar] [CrossRef]
- Holka, M.; Jankowiak, J.; Bienkowski, J.F.; Dabrowicz, R. Life Cycle Assessment (LCA) of winter wheat in an intensive crop production system in Wielkopolska Region (Poland). Appl. Ecol. Environ. Res. 2016, 14, 535–545. [Google Scholar] [CrossRef]
- McAuliffe, G.A.; Takahashi, T.; Lee, M. Applications of nutritional functional units in commodity-level life cycle assessment (LCA) of agri-food systems. Int. J. Life Cycle Assess. 2020, 25, 208–221. [Google Scholar] [CrossRef] [Green Version]
- Tamburini, E.; Pedrini, P.; Marchetti, M.G.; Fano, E.A.; Castaldelli, G. Life Cycle Based Evaluation of Environmental and Economic Impacts of Agricultural Productions in the Mediterranean Area. Sustainability 2015, 7, 2915–2935. [Google Scholar] [CrossRef] [Green Version]
- Fischer-Kowalski, M.; Krausmann, F.; Giljum, S.; Lutter, S.; Mayer, A.; Bringezu, S.; Moriguchi, Y.; Schutz, H.; Schandl, H.; Weisz, H. Methodology and Indicators of Economy-wide Material Flow Accounting. State of the Art and Reliability Across Sources. J. Ind. Ecol. 2011, 15, 855–876. [Google Scholar] [CrossRef]
- Official Journal of the European Commission. Council Regulation (EC) No 834/2007 of 28 June 2007 on Organic Production and Labelling of Organic Products and Repealing Regulation (EEC) No 2092/91. 2007. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32007R0834 (accessed on 25 February 2022).
- Protezione Civile Puglia. Annali Idrologici—Parte I—Download dal 1921 al 2020. 2022. Available online: https://protezionecivile.puglia.it/centro-funzionale-decentrato/rete-di-monitoraggio/annali-e-dati-idrologici-elaborati/annali-idrologici-parte-i-download/ (accessed on 17 February 2022).
- Longobardi, A.; Buttafuoco, G.; Caloiero, T.; Coscarelli, R. Spatial and temporal distribution of precipitation in a Mediterranean area (southern Italy). Environ. Earth Sci. 2016, 75, 189. [Google Scholar] [CrossRef]
- Caporali, E.; Lompi, M.; Pacetti, T.; Chiarello, V.; Fatichi, S. A review of studies on observed precipitation trends in Italy. Int. J. Climatol. 2020, 41, E1–E25. [Google Scholar] [CrossRef]
- Golova, E.E.; Baranova, I.V.; Gapon, M.N. Crop Production Cost Accounting Audit. In Land Economy and Rural Studies Essentials; Nardin, D.S., Stepanova, O.V., Kuznetsova, V.V., Eds.; European Publisher: London, UK, 2021; Volume 113, pp. 72–78. [Google Scholar] [CrossRef]
- Rahman, S.M.M.; Kim, J. Circular economy, proximity, and shipbreaking: A material flow and environmental impact analysis. J. Clean. Prod. 2020, 259, 120681. [Google Scholar] [CrossRef]
- European Union. Agriculture and Food Security in Climate Sensitive Areas in the Mediterranean; Commission for Citizenship, Governance, Institutional and External Affairs: Bruxelles, Belgium, 2020. [Google Scholar] [CrossRef]
- Schiller, G.; Gruhler, K.; Ortlepp, R. Continuous Material Flow Analysis Approach for Bulk Nonmetallic Mineral Construction Materials Applied to the German Building Sector. J. Ind. Ecol. 2017, 21, 673–688. [Google Scholar] [CrossRef]
- Eisenhardt, K.M. Building theories from case study research. In The Qualitative Researchers’ Companion; Huberman, A.M., Miles, M.B., Eds.; Sage Publications: Thousand Oaks, CA, USA, 2002. [Google Scholar]
- Amicarelli, V.; Fiore, M.; Bux, C. Hidden flows assessment in the agri-food sector: Evidence from the Italian beef system. Br. Food J. 2021, 123, 384–403. [Google Scholar] [CrossRef]
- Noble, H.; Heale, R. Triangulation in research, with examples. Evid.-Based Nurs. 2019, 22, 67–68. [Google Scholar] [CrossRef]
- Patrício, J.; Kalmykova, Y.; Rosado, L.; Lisovskaja, V. Uncertainty in Material Flow Analysis Indicators at Different Spatial Levels. J. Ind. Ecol. 2015, 19, 837–852. [Google Scholar] [CrossRef]
- da Silva, V.P.R.; da Silva, B.B.; Albuquerque, W.G.; Borges, C.J.R.; de Sousa, I.F.; Neto, J.D. Crop coefficient, water requirements, yield and water use efficiency of sugarcane growth in Brazil. Agric. Water Manag. 2013, 128, 102–109. [Google Scholar] [CrossRef]
- Nielsen, K.M. Organic Farming. In Encyclopedia of Ecology, 2nd ed.; Fath, B., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 550–558. [Google Scholar] [CrossRef]
- Yadav, S.K.; Subhash Babu, M.K.; Yadav, K.S.; Yadav, G.S.; Pal, S. A Review of Organic Farming for Sustainable Agriculture in Northern India. Int. J. Agron. 2013, 2013, 718145. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Meng, J.; Bo, W.; Cheng, D.; Li, Y.; Guo, L.; Li, C.; Zheng, C.; Liu, M.; Ning, T.; et al. Biodiversity management of organic farming enhances agricultural sustainability. Sci. Rep. 2016, 6, 23816. [Google Scholar] [CrossRef] [PubMed]
- Jouzi, Z.; Azadi, H.; Taheri, F.; Zarafshani, K.; Gebrehiw, K.; Van Passel, S.; Lebailly, P. Organic farming and small-scale farmers: Main opportunities and challenges. Ecol. Econ. 2017, 132, 144–154. [Google Scholar] [CrossRef] [Green Version]
- Joshi, N.; Prasad Parewa, H.; Joshi, S.; Sharma, J.K.; Shukla, U.N.; Paliwal, A.; Gupta, V. Chapter 5—Use of microbial biostimulants in organic farming. In Advances in Organic Farming; Meena, V.S., Meena, S.K., Rakshit, A., Stanley, J., Srinivasarao, C., Eds.; Woodhead Publishing: Sawston, UK, 2021; pp. 59–73. [Google Scholar] [CrossRef]
- Post, E.; Schahczenksi, J. Understanding Organic Pricing and Costs of Production. In National Sustainable Agriculture Information Service; ATTRA: Butte, MT, USA, 2012; pp. 1–12. [Google Scholar]
- Durham, T.C.; Tamás, M. Comparative Economics of Conventional, Organic, and Alternative Agricultural Production Systems. Economies 2021, 9, 64. [Google Scholar] [CrossRef]
- Slorach, P.C.; Jeswani, H.K.; Cuéllar-Franca, R.; Azapagic, A. Environmental sustainability in the food-energy-water-health nexus: A new methodology and an application to food waste in a circular economy. Waste Manag. 2020, 113, 359–368. [Google Scholar] [CrossRef]
- Karamian, F.; Mirakzadeh, A.A.; Azari, A. The water-energy-food nexus in farming: Managerial insights for a more efficient consumption of agricultural inputs. Sustain. Prod. Consum. 2021, 27, 1357–1371. [Google Scholar] [CrossRef]
- Sidhoum, A.A.; Dakpo, K.H.; Latruffe, L. Trade-offs between economic, environmental and social sustainability on farms using a latent class frontier efficiency model: Evidence for Spanish crop farms. PLoS ONE 2022, 17, e0261190. [Google Scholar] [CrossRef]
- Viganò, E.; Maccaroni, M.; Righi, S. Finding the right price: Supply chain contracts as a tool to guarantee sustainable economic viability of organic farms. Int. Food Agribus. Manag. Rev. 2022, 23, 411–426. [Google Scholar] [CrossRef]
- European Commission. Organic Action Plan. 2022. Available online: https://ec.europa.eu/info/food-farming-fisheries/farming/organic-farming/organic-action-plan_it (accessed on 29 June 2022).
- Solfanelli, F.; Ozturk, E.; Pugliese, P.; Zanoli, R. Potential outcomes and impacts of organic certification in Italy: An evaluative case study. Ecol. Econ. 2021, 187, 107107. [Google Scholar] [CrossRef]
- Saber, Z.; van Zelm, R.; Pirdashti, H.; Schipper, A.M.; Esmaeili, M.; Motevali, A.; Nabavi-Pelesaraei, A.; Huijbregts, M.A.J. Understanding farm-level differences in environmental impact and eco-efficiency: The case of rice production in Iran. Sustain. Prod. Consum. 2021, 27, 1021–1029. [Google Scholar] [CrossRef]
- ST/ESCAP/2561; Eco-Efficiency Indicators: Measuring Resource-Use Efficiency and the Impact of Economic Activities on the Environment. United Nations: New York, NY, USA, 2009.
Input–Output Table | Conventional Production | Organic Production | ||||
---|---|---|---|---|---|---|
Material Flows | Unit | Min. | Max. | Min. | Max. | |
Input | Seeds | kg/ha | 142.5 | 157.5 | 142.5 | 157.5 |
N | kg/ha | 118 α | 131 α | 204 β | 226 β | |
P | kg/ha | 57 | 63 | 28.5 γ | 31.5 γ | |
K | kg/ha | 95 | 105 | 68.4 | 75.6 | |
Diesel | MJ/ha | 148.2 | 163.8 | 127.3 | 140.7 | |
Urea | L/ha | 11.4 | 12.6 | 8.6 | 9.5 | |
Electricity | MJ/ha | 6070.5 | 6709.5 | 5198.4 | 5745.6 | |
Herbicides | kg/ha | 4.7 | 5.2 | 0 | 0 | |
Water | L/ha | 5225 δ | 5775 δ | 3610 ε | 3990 ε | |
Output | Durum wheat | kg/ha | 3087.5 | 3412.5 | 2185 | 2415 |
Straw | kg/ha | 2850 | 3150 | 1995 | 2205 | |
Paper waste | kg/ha | 3.8 | 4.2 | 3.8 | 4.2 | |
Plastic waste | kg/ha | 6.4 | 7 | 0 | 0 | |
CO2 emissions | kg/ha | 399 | 441 | 339.1 | 374.9 |
Crop Accounting Method | CDW (Min.) | CDW (Max.) | ODW (Min.) | ODW (Max.) | |
---|---|---|---|---|---|
Revenues | Revenues durum wheat | 912 | 1008 | 917.7 | 1014.3 |
Revenues straw | 256.5 | 283.4 | 0 | 0 | |
Total revenues (a) | 1168.5 | 1291.5 | 917.7 | 1014.3 | |
Costs | Plowing | 190 | 210 | 0 | 0 |
Subsoiling | 0 | 0 | 75.05 | 82.3 | |
Harrowing | 123.5 | 136.5 | 47.5 | 52.5 | |
Sowing | 190 | 210 | 190 | 210 | |
Cover fertilization | 128.3 | 141.8 | 0 | 0 | |
Basic fertilization | 0 | 0 | 228 | 252 | |
Weeding | 59.9 | 66.2 | 0 | 0 | |
Mechanical weeding | 0 | 0 | 57 | 63 | |
Phytosanitary treatments | 80.8 | 89.3 | 0 | 0 | |
Collection | 114 | 126 | 0 | 0 | |
Collection and shredding | 0 | 0 | 133 | 147 | |
Transport to the collection center | 39.9 | 44.1 | 31.4 | 34.7 | |
Total costs (b) | 926.5 | 1023.8 | 762 | 842 | |
Gross income (a–b) | 242.3 | 267.8 | 156 | 172 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bux, C.; Lombardi, M.; Varese, E.; Amicarelli, V. Economic and Environmental Assessment of Conventional versus Organic Durum Wheat Production in Southern Italy. Sustainability 2022, 14, 9143. https://doi.org/10.3390/su14159143
Bux C, Lombardi M, Varese E, Amicarelli V. Economic and Environmental Assessment of Conventional versus Organic Durum Wheat Production in Southern Italy. Sustainability. 2022; 14(15):9143. https://doi.org/10.3390/su14159143
Chicago/Turabian StyleBux, Christian, Mariarosaria Lombardi, Erica Varese, and Vera Amicarelli. 2022. "Economic and Environmental Assessment of Conventional versus Organic Durum Wheat Production in Southern Italy" Sustainability 14, no. 15: 9143. https://doi.org/10.3390/su14159143