Carbon Emissions from Manufacturing Sector in Jiangsu Province: Regional Differences and Decomposition of Driving Factors
Abstract
:1. Introduction
2. Literature Review
3. Methodology
3.1. LMDI Model
3.2. Tapio Decoupling Model
3.3. Data Source
4. Results and Discussions
4.1. Comparison of Decoupling Statuses, Trends and Decomposition Factors of Manufacturing in Three Regions
4.1.1. Decoupling Statuses and Trends of Manufacturing in Different Regions
4.1.2. Comparison of the Decomposition Factors among the Three Regions
4.2. Analysis of the Decoupling Statuses, Trends and Decomposition Factors of Key Subindustries in the Three Regions
4.2.1. Analysis of the Decoupling Statuses and Trends of Key Subindustries
4.2.2. Analysis of the Decomposition Factors of Key Industries in Three Regions
5. Conclusions and Policy Implications
5.1. Research Conclusions
- During the 13th Five-Year-Plan period, the coordinated development level of the three regions gradually improved, but there was still a large gap. There were also significant differences in the carbon emissions and carbon-emission intensities among the different subsectors of the manufacturing industry in southern Jiangsu, northern Jiangsu and middle Jiangsu;
- Industrial development is the most important driving factor of the manufacturing carbon emissions in southern Jiangsu, northern Jiangsu and middle Jiangsu, and especially for the industries with high-emission intensities, which are represented by ferrous metal smelting and calendering, the chemical industry and the textile industry; the contribution of the economic-activity effect to carbon emissions is the most significant;
- Energy intensity is the most important driving force of carbon-emission reduction, and the most important influencing factor on the carbon-emission differences among the manufacturing subindustries in southern Jiangsu, northern Jiangsu and middle Jiangsu. The energy-intensity gap between high- and low-energy-intensity industries is further widening, and there is still a lot of room for improvement in the energy efficiencies of traditional high-emission-intensity industries.
5.2. Policy Recommendations
- There is a need to clarify the carbon-peaking tasks of the key industries in different regions of Jiangsu Province, and to support key industries and enterprises to take the lead in achieving carbon peaking. The government should regard the ferrous-metal-smelting and calendering industry, with high total carbon emissions and high-carbon-emission intensity, as the top priority of the carbon-peak work during the 14th Five-Year-Plan period. According to the characteristics of the industrial structures in different regions, the government should specify the carbon-peak tasks for the key industries in each region, and it should formulate relevant policy documents to guide enterprises to improve their energy efficiencies and reduce their carbon-emission intensities;
- By combining the characteristics of the different regions in middle Jiangsu, southern Jiangsu and northern Jiangsu, the government should formulate differentiated carbon-peaking and carbon-neutrality action plans. Different regions should include the “3060” dual carbon target in their development plans, and they should actively explore the realization path to carbon peak and carbon neutrality. For example, the south of Jiangsu Province, with its developed economy and high industrial concentration, is a key area of energy consumption and carbon emissions, and it should be strongly encouraged to achieve green development through the adoption of new technologies and procarbon emissions;
- There is a need to accelerate the development and application of energy-saving technologies and promote the optimization and upgrading of the industrial structure of Jiangsu Province. The upgrading of the industrial structure is an important means to promote energy conservation and emission reduction, but the industrial structure is unchangeable in the short term. Therefore, reducing carbon emissions by improving the technical level is the key to energy conservation and emission reduction in the Jiangsu manufacturing industry, through vigorously promoting scientific and technological innovation, promoting the industrial-structure upgrading of Jiangsu Province, promoting regional coordinated development and finally realizing the green economic transformation of Jiangsu Province.
5.3. Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Period | Industry | Southern Jiangsu | Northern Jiangsu | Middle Jiangsu | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
% C | % GDP | D | State | % C | % GDP | D | State | % C | % GDP | D | State | ||
2016–2017 | 13 | 0.0238 | 0.0881 | 0.2703 | WD | −0.0628 | −0.0273 | 2.3026 | RD | 0.1206 | −0.0091 | −13.2353 | SND |
2016–2017 | 14 | −0.0729 | −0.0093 | 7.8735 | RD | −0.1038 | 0.0495 | −2.0980 | SD | 0.0601 | 0.0789 | 0.7618 | WD |
2016–2017 | 15 | −0.9859 | −0.7222 | 1.3652 | RD | −0.0267 | 0.0463 | −0.5773 | SD | −0.0326 | −0.0610 | 0.5339 | WND |
2016–2017 | 16 | −0.0207 | 0.0000 | 0.0000 | SD | −0.0480 | 0.2918 | −0.1643 | SD | − | − | − | SD |
2016–2017 | 17 | −0.0371 | −0.2419 | 0.1535 | WND | −0.0848 | −0.0521 | 1.6274 | RD | −0.1410 | 0.0015 | −96.2740 | SD |
2016–2017 | 18 | 0.0548 | 0.2357 | 0.2325 | WD | −0.4263 | −0.1699 | 2.5099 | RD | 0.6224 | 1.9206 | 0.3241 | WD |
2016–2017 | 19 | 0.0465 | 0.1043 | 0.4457 | WD | −0.0600 | 0.0194 | −3.0928 | SD | −0.7793 | 0.2771 | −2.8127 | SD |
2016–2017 | 20 | −0.1331 | −0.0578 | 2.3007 | RD | −0.0572 | 0.0433 | −1.3221 | SD | −0.2735 | −0.1114 | 2.4561 | RD |
2016–2017 | 21 | −0.0918 | 4.1195 | −0.0223 | SD | 158.1224 | 18.0095 | 8.7800 | END | 0.0103 | −0.0056 | −1.8372 | SND |
2016–2017 | 22 | 0.0699 | 0.0815 | 0.8578 | EC | 0.0387 | −0.0599 | −0.6467 | SND | −0.0536 | −0.0017 | 31.1985 | RD |
2016–2017 | 23 | 0.1258 | −0.1713 | −0.7346 | SND | −0.0038 | 0.0772 | −0.0491 | SD | −0.9334 | −0.9806 | 0.9519 | RC |
2016–2017 | 24 | −0.2986 | 0.0534 | −5.5936 | SD | −0.4235 | −0.1924 | 2.2012 | RD | −0.9536 | 0.0934 | −10.2073 | SD |
2016–2017 | 25 | −0.0907 | 0.0100 | −9.0538 | SD | −0.1642 | −0.0011 | 149.2618 | RD | 0.0375 | 0.1084 | 0.3458 | WD |
2016–2017 | 26 | 0.3244 | −0.0130 | −24.8926 | SND | 0.0774 | 0.0990 | 0.7824 | WD | 0.0450 | 0.1851 | 0.2432 | WD |
2016–2017 | 27 | 0.0406 | 0.4305 | 0.0942 | WD | 0.5103 | 0.0666 | 7.6668 | END | −0.2045 | −0.0390 | 5.2495 | RD |
2016–2017 | 28 | −0.1046 | −0.0636 | 1.6446 | RD | −0.2601 | 0.0427 | −6.0902 | SD | −0.0586 | −0.0509 | 1.1521 | RC |
2016–2017 | 29 | −0.3309 | 0.1487 | −2.2261 | SD | 0.1030 | 0.2298 | 0.4482 | WD | 0.0137 | 0.0906 | 0.1507 | WD |
2016–2017 | 30 | 0.0073 | 0.2272 | 0.0322 | WD | −0.1478 | −0.0804 | 1.8375 | RD | −0.3165 | −0.0773 | 4.0956 | RD |
2016–2017 | 31 | 0.4571 | −0.0760 | −6.0176 | SND | −0.4341 | 0.1160 | −3.7436 | SD | −0.5571 | −0.0795 | 7.0065 | RD |
2016–2017 | 32 | −0.7078 | −0.0196 | 36.0664 | RD | 0.0483 | −0.2336 | −0.2069 | SND | −0.1483 | −0.0012 | 128.3436 | RD |
2016–2017 | 33 | −0.0767 | 0.0071 | −10.8125 | SD | −0.0646 | −0.2569 | 0.2517 | WND | 0.0497 | 0.0141 | 3.5247 | END |
2016–2017 | 34 | 0.1475 | −0.0673 | −2.1909 | SND | −0.1529 | 1.5850 | −0.0965 | SD | 0.0458 | 0.0854 | 0.5365 | WD |
2016–2017 | 35 | 0.1139 | 1.0146 | 0.1123 | WD | 22.2128 | −0.2056 | −108.0512 | SND | 0.5838 | −0.1520 | −3.8405 | SND |
2016–2017 | 36 | −0.0428 | −0.0323 | 1.3244 | RD | −0.1190 | 0.4759 | −0.2500 | SD | −0.0812 | 0.0345 | −2.3540 | SD |
2016–2017 | 37 | −0.3040 | −0.2323 | 1.3088 | RD | 0.6344 | 9.4036 | 0.0675 | WD | 3.8703 | −0.0397 | −97.4965 | SND |
2016–2017 | 38 | −0.0837 | −0.0278 | 3.0084 | RD | 0.0258 | 0.3767 | 0.0684 | WD | −0.1710 | 0.5792 | −0.2952 | SD |
2016–2017 | 39 | −0.3489 | 0.2112 | −1.6518 | SD | 1.3365 | 2.3222 | 0.5755 | WD | −0.8791 | −0.3968 | 2.2156 | RD |
2016–2017 | 40 | 4.9610 | 0.1538 | 32.2598 | END | −0.9831 | −0.9577 | 1.0265 | RC | 0.0246 | −0.0182 | −1.3525 | SND |
2016–2017 | 41 | 0.7211 | 0.8073 | 0.8932 | EC | 0.1648 | 0.1811 | 0.9102 | EC | 0.0289 | 0.0977 | 0.2956 | WD |
2016–2017 | 42 | −0.4930 | −0.1270 | 3.8804 | RD | 0.9698 | −0.6934 | −1.3986 | SND | −0.3775 | −0.0653 | 5.7838 | RD |
2016–2017 | 43 | 86.8205 | 13.5568 | 6.4042 | END | − | − | − | SD | −0.9929 | −0.8830 | 1.1245 | RC |
Period | Industry | Southern Jiangsu | Northern Jiangsu | Middle Jiangsu | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
% C | % GDP | D | State | % C | % GDP | D | State | % C | % GDP | D | State | ||
2017–2018 | 13 | −0.1008 | 0.1502 | −0.6706 | SD | 0.0481 | 0.1057 | 0.4554 | WD | −0.0977 | −0.0266 | 3.6710 | RD |
2017–2018 | 14 | 0.4785 | 0.1261 | 3.7939 | END | 0.0044 | 0.2377 | 0.0184 | WD | −0.0858 | 0.0547 | −1.5691 | SD |
2017–2018 | 15 | 0.0589 | −0.1517 | −0.3882 | SND | −0.1337 | −0.0861 | 1.5525 | RD | 0.0899 | −0.6864 | −0.1309 | SND |
2017–2018 | 16 | −0.0708 | 0.0000 | 0.0000 | SD | 4.2689 | 1.1384 | 3.7501 | END | − | − | − | SD |
2017–2018 | 17 | 0.0040 | 0.0511 | 0.0792 | WD | −0.0481 | −0.0924 | 0.5208 | WND | −0.0078 | 0.0222 | −0.3494 | SD |
2017–2018 | 18 | 0.1894 | 0.8769 | 0.2160 | WD | 0.7014 | 0.9786 | 0.7168 | WD | 0.2927 | −0.0740 | −3.9545 | SND |
2017–2018 | 19 | 0.9807 | −0.0098 | −100.3330 | SND | 0.1253 | 0.0391 | 3.2041 | END | −0.1537 | 0.0577 | −2.6647 | SD |
2017–2018 | 20 | 0.0043 | 0.0204 | 0.2118 | WD | 0.1600 | 0.1163 | 1.3752 | END | −0.1870 | −0.0330 | 5.6674 | RD |
2017–2018 | 21 | −0.4063 | 0.1478 | −2.7497 | SD | −0.9137 | 0.0222 | −41.1774 | SD | 0.0000 | 0.2010 | 0.0000 | SD |
2017–2018 | 22 | −0.0081 | −0.0373 | 0.2160 | WND | −0.2289 | −0.2786 | 0.8215 | RC | −0.4943 | −0.0768 | 6.4382 | RD |
2017–2018 | 23 | 0.1870 | 0.1323 | 1.4139 | END | −0.9084 | −0.2393 | 3.7961 | RD | 8.9570 | 26.1612 | 0.3424 | WD |
2017–2018 | 24 | 0.3589 | 0.0916 | 3.9178 | END | −0.0280 | 0.1521 | −0.1838 | SD | −0.1676 | −0.0209 | 8.0081 | RD |
2017–2018 | 25 | 0.2314 | 0.0977 | 2.3689 | END | 0.2007 | 0.1748 | 1.1478 | EC | −0.0102 | −0.1395 | 0.0729 | WND |
2017–2018 | 26 | −0.0944 | −0.3329 | 0.2835 | WND | −0.0617 | 0.2173 | −0.2838 | SD | −0.0826 | 0.0454 | −1.8185 | SD |
2017–2018 | 27 | 0.2261 | −0.1980 | −1.1420 | SND | 0.2500 | 0.0700 | 3.5745 | END | −0.1519 | 0.0326 | −4.6639 | SD |
2017–2018 | 28 | 0.0685 | 0.0254 | 2.6973 | END | −0.2861 | −0.0409 | 6.9907 | RD | 0.0843 | −0.0405 | −2.0830 | SND |
2017–2018 | 29 | 0.0831 | −0.0572 | −1.4521 | SND | −0.0138 | 0.0504 | −0.2732 | SD | −0.0022 | −0.0299 | 0.0737 | WND |
2017–2018 | 30 | −0.3209 | −0.1828 | 1.7551 | RD | 0.0941 | −0.0305 | −3.0830 | SND | −0.2030 | 0.1334 | −1.5216 | SD |
2017–2018 | 31 | 0.0944 | −0.1044 | −0.9038 | SND | −0.0864 | −0.0803 | 1.0767 | RC | −0.1980 | −0.6358 | 0.3115 | WND |
2017–2018 | 32 | 0.0744 | −0.0275 | −2.7021 | SND | −0.0859 | 0.3537 | −0.2427 | SD | 3.3627 | 1.5898 | 2.1152 | END |
2017–2018 | 33 | −0.1420 | −0.0433 | 3.2750 | RD | 0.1653 | 0.1950 | 0.8478 | EC | 0.0699 | 0.0583 | 1.1984 | EC |
2017–2018 | 34 | −0.1315 | 0.0591 | −2.2258 | SD | −0.1128 | 0.5436 | −0.2075 | SD | −0.0988 | 0.0389 | −2.5369 | SD |
2017–2018 | 35 | 0.0813 | 0.2345 | 0.3466 | WD | −0.9877 | −0.4270 | 2.3133 | RD | 0.2763 | −0.0237 | −11.6376 | SND |
2017–2018 | 36 | −0.3015 | 0.1262 | −2.3894 | SD | 0.0008 | 0.1638 | 0.0050 | WD | −0.1365 | 2.1902 | −0.0623 | SD |
2017–2018 | 37 | 0.1464 | −0.0500 | −2.9275 | SND | −0.1458 | 0.1152 | −1.2655 | SD | −0.9376 | −0.1099 | 8.5334 | RD |
2017–2018 | 38 | 3.7538 | 0.1121 | 33.4831 | END | −0.1403 | −0.1455 | 0.9640 | RC | 0.0484 | −0.0499 | −0.9695 | SND |
2017–2018 | 39 | −0.1132 | −0.0364 | 3.1106 | RD | 0.1002 | 0.3471 | 0.2887 | WD | −0.1326 | 0.0225 | −5.9039 | SD |
2017–2018 | 40 | −0.7024 | −0.2392 | 2.9367 | RD | −0.0603 | −0.8335 | 0.0723 | WND | 0.0071 | 0.3042 | 0.0233 | WD |
2017–2018 | 41 | 0.0950 | 0.9577 | 0.0992 | WD | −0.0636 | −0.8531 | 0.0745 | WND | 0.1833 | 0.0455 | 4.0238 | END |
2017–2018 | 42 | 0.0839 | 0.0787 | 1.0664 | EC | −0.0029 | 0.3233 | −0.0091 | SD | −0.0092 | −0.0167 | 0.5487 | WND |
2017–2018 | 43 | −0.7456 | −0.4766 | 1.5646 | RD | −0.3083 | 1.3331 | −0.2313 | SD | −0.8700 | −0.5858 | 1.4852 | RD |
Period | Industry | Southern Jiangsu | Northern Jiangsu | Middle Jiangsu | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
% C | % GDP | D | State | % C | % GDP | D | State | % C | % GDP | D | State | ||
2018–2019 | 13 | −0.0050 | −0.0735 | 0.0676 | WND | 0.2537 | 0.0943 | 2.6891 | END | −0.0293 | −0.0487 | 0.6018 | WND |
2018–2019 | 14 | −0.3007 | −0.0071 | 42.5305 | RD | 0.0109 | 0.1040 | 0.1052 | WD | −0.0228 | 0.4005 | −0.0570 | SD |
2018–2019 | 15 | 1.1817 | −0.1760 | −6.7159 | SND | −0.0766 | 0.2110 | −0.3632 | SD | 0.1508 | 0.6606 | 0.2283 | WD |
2018–2019 | 16 | −0.2017 | 0.0000 | 0.0000 | SD | −0.6424 | 0.6984 | −0.9198 | SD | − | − | − | SD |
2018–2019 | 17 | −0.0121 | 0.0324 | −0.3749 | SD | 0.1737 | 0.0530 | 3.2760 | END | −0.0170 | −0.0762 | 0.2235 | WND |
2018–2019 | 18 | −0.0802 | −0.0108 | 7.4047 | RD | −0.0884 | −0.2656 | 0.3329 | WND | 0.4570 | −0.2082 | −2.1946 | SND |
2018–2019 | 19 | 0.1987 | −0.0192 | −10.3270 | SND | 0.1020 | 0.1115 | 0.9154 | EC | 0.2243 | −0.0660 | −3.3962 | SND |
2018–2019 | 20 | 0.4903 | 0.4631 | 1.0587 | EC | 0.0169 | 0.0174 | 0.9665 | EC | −0.0166 | 0.0556 | −0.2992 | SD |
2018–2019 | 21 | 0.2463 | 0.0676 | 3.6429 | END | −0.4643 | −0.4195 | 1.1069 | RC | −0.0028 | 0.0000 | 0.0000 | SD |
2018–2019 | 22 | −0.0871 | −0.0263 | 3.3120 | RD | 0.0432 | 0.7564 | 0.0571 | WD | 0.8502 | 0.2935 | 2.8972 | END |
2018–2019 | 23 | 4.1583 | −0.2928 | −14.2007 | SND | 7.8803 | 0.1749 | 45.0596 | END | 0.2004 | 4.5933 | 0.0436 | WD |
2018–2019 | 24 | 0.0633 | 0.0095 | 6.6495 | END | 2.9608 | 1.0243 | 2.8905 | END | 0.0249 | 0.1407 | 0.1771 | WD |
2018–2019 | 25 | 0.0133 | 0.0137 | 0.9728 | EC | 0.0157 | −0.0891 | −0.1761 | SND | −0.0458 | −0.1245 | 0.3675 | WND |
2018–2019 | 26 | 0.0853 | 0.0470 | 1.8163 | END | 0.0054 | 0.0044 | 1.2215 | END | 0.1235 | 0.0475 | 2.5987 | END |
2018–2019 | 27 | 0.3036 | 0.0994 | 3.0546 | END | 0.2122 | −0.1329 | −1.5970 | SND | 0.1007 | 0.2270 | 0.4437 | WD |
2018–2019 | 28 | 0.1386 | −0.0273 | −5.0804 | SND | −0.0447 | −0.0512 | 0.8721 | RC | −0.0474 | −0.0671 | 0.7063 | WND |
2018–2019 | 29 | 0.1591 | 0.0178 | 8.9364 | END | 0.3080 | 0.1385 | 2.2234 | END | 0.0787 | −0.1209 | −0.6506 | SND |
2018–2019 | 30 | −0.1694 | 0.0001 | −1131.7328 | SD | 0.0031 | 0.4563 | 0.0068 | WD | −0.0202 | −0.0137 | 1.4723 | RD |
2018–2019 | 31 | −0.0849 | −0.0392 | 2.1671 | RD | 0.3854 | −0.0080 | −48.1417 | SND | 0.1628 | 0.4169 | 0.3905 | WD |
2018–2019 | 32 | −0.2145 | −0.2213 | 0.9692 | RC | −0.0132 | 0.2541 | −0.0518 | SD | −0.7926 | −0.5725 | 1.3845 | RD |
2018–2019 | 33 | 0.0907 | 0.1513 | 0.5992 | WD | 0.2460 | 0.1948 | 1.2627 | END | 0.0003 | 0.0030 | 0.0833 | WD |
2018–2019 | 34 | 0.2415 | 0.1539 | 1.5694 | END | −0.4937 | 0.1599 | −3.0887 | SD | 3.9916 | 0.5455 | 7.3174 | END |
2018–2019 | 35 | 0.3115 | −0.0507 | −6.1377 | SND | 0.1637 | 0.2085 | 0.7851 | WD | 0.9511 | 0.2134 | 4.4560 | END |
2018–2019 | 36 | 0.1736 | 0.0123 | 14.1035 | END | −0.0027 | 0.0002 | −16.1790 | SD | 10.2368 | 0.0123 | 830.2161 | END |
2018–2019 | 37 | 4.2307 | 0.0584 | 72.4684 | END | 0.7059 | −0.5101 | −1.3839 | SND | 0.0799 | 0.0124 | 6.4478 | END |
2018–2019 | 38 | −0.4087 | −0.0728 | 5.6122 | RD | 0.1627 | −0.0663 | −2.4537 | SND | 0.0301 | −0.0164 | −1.8350 | SND |
2018–2019 | 39 | −0.0128 | 0.0378 | −0.3392 | SD | −0.2654 | 0.1346 | −1.9713 | SD | 0.1109 | 0.0317 | 3.4996 | END |
2018–2019 | 40 | 0.5048 | 0.1749 | 2.8869 | END | 0.9309 | 40.3453 | 0.0231 | WD | 0.0020 | −0.0918 | −0.0215 | SND |
2018–2019 | 41 | −0.0035 | 0.1312 | −0.0267 | SD | 0.1826 | 0.5829 | 0.3133 | WD | 0.1400 | −0.2000 | −0.7001 | SND |
2018–2019 | 42 | −0.5212 | −0.0330 | 15.8109 | RD | 0.5122 | −0.2901 | −1.7655 | SND | 0.0189 | 0.0910 | 0.2079 | WD |
2018–2019 | 43 | 0.3286 | −0.0349 | −9.4224 | SND | 0.1836 | 0.8197 | 0.2240 | WD | 138.8960 | 12.8453 | 10.8129 | END |
Period | Industry | Southern Jiangsu | Northern Jiangsu | Middle Jiangsu | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
% C | % GDP | D | State | % C | % GDP | D | State | % C | % GDP | D | State | ||
2019–2020 | 13 | 0.1233 | −0.1278 | −0.9644 | SND | 0.5086 | 0.0807 | 6.2992 | END | 0.2054 | −0.0382 | −5.3778 | SND |
2019–2020 | 14 | 0.1503 | 0.0385 | 3.9037 | END | 0.0183 | −0.0224 | −0.8162 | SND | 0.3115 | 1.5709 | 0.1983 | WD |
2019–2020 | 15 | −0.0455 | 0.3191 | −0.1425 | SD | −0.0883 | 0.1439 | −0.6139 | SD | 0.5918 | 0.2458 | 2.4077 | END |
2019–2020 | 16 | −0.0458 | 0.0000 | 0.0000 | SD | 0.2245 | 0.0116 | 19.3086 | END | − | − | − | SD |
2019–2020 | 17 | 0.0021 | 0.0415 | 0.0509 | WD | −0.0911 | 0.1508 | −0.6044 | SD | 0.0478 | 0.0597 | 0.8008 | EC |
2019–2020 | 18 | 1.0643 | 0.0060 | 176.3757 | END | 0.5684 | 1.0607 | 0.5359 | WD | −0.3881 | −0.5166 | 0.7514 | WND |
2019–2020 | 19 | −0.0470 | 0.0756 | −0.6209 | SD | 0.7085 | 0.6693 | 1.0586 | EC | 7.8090 | 0.1684 | 46.3834 | END |
2019–2020 | 20 | 11.9393 | −0.1596 | −74.8185 | SND | 0.3452 | 0.2949 | 1.1705 | EC | −0.4579 | −0.0399 | 11.4857 | RD |
2019–2020 | 21 | 0.0809 | 0.0374 | 2.1611 | END | 0.0000 | 0.0000 | 0.0000 | SD | 0.3588 | 0.3347 | 1.0722 | EC |
2019–2020 | 22 | 0.1555 | −0.0136 | −11.4419 | SND | −0.1782 | −0.0446 | 3.9928 | RD | 0.3948 | 0.3834 | 1.0297 | EC |
2019–2020 | 23 | −0.8491 | 0.2735 | −3.1048 | SD | 0.0428 | 0.0992 | 0.4313 | WD | −0.5818 | −0.9191 | 0.6330 | WND |
2019–2020 | 24 | 0.1117 | 0.0311 | 3.5951 | END | 0.0000 | 0.0036 | 0.0000 | SD | 0.0333 | 0.3914 | 0.0852 | WD |
2019–2020 | 25 | −0.0114 | −0.1521 | 0.0751 | WND | 0.4550 | 0.1007 | 4.5170 | END | −0.0258 | −0.4682 | 0.0551 | WND |
2019–2020 | 26 | 0.0692 | −0.0143 | −4.8292 | SND | 0.7221 | 0.1515 | 4.7666 | END | 0.0265 | −0.0713 | −0.3720 | SND |
2019–2020 | 27 | 2.5993 | 0.0968 | 26.8540 | END | −0.3489 | 0.9757 | −0.3576 | SD | 0.4795 | 2.5025 | 0.1916 | WD |
2019–2020 | 28 | 0.0908 | 0.1961 | 0.4633 | WD | 0.9813 | −0.1078 | −9.1072 | SND | −0.0292 | −0.0536 | 0.5450 | WND |
2019–2020 | 29 | 0.0303 | 0.1559 | 0.1944 | WD | −0.0702 | −0.0386 | 1.8189 | RD | −0.0556 | 1.8732 | −0.0297 | SD |
2019–2020 | 30 | −0.0258 | 0.2100 | −0.1226 | SD | −0.0931 | −0.0808 | 1.1526 | RC | 0.0303 | 0.2870 | 0.1057 | WD |
2019–2020 | 31 | 0.1018 | −0.1522 | −0.6688 | SND | 0.5420 | 0.1698 | 3.1923 | END | 3.1528 | 0.1442 | 21.8587 | END |
2019–2020 | 32 | 0.0475 | −0.0199 | −2.3887 | SND | 0.1695 | −0.3351 | −0.5059 | SND | 0.0676 | 0.0835 | 0.8090 | EC |
2019–2020 | 33 | −0.1307 | −0.1445 | 0.9045 | RC | −0.1238 | −0.0569 | 2.1739 | RD | 0.2330 | 0.0857 | 2.7206 | END |
2019–2020 | 34 | −0.2631 | −0.1460 | 1.8025 | RD | 0.1137 | −0.2919 | −0.3894 | SND | 0.0417 | −0.1453 | −0.2869 | SND |
2019–2020 | 35 | −0.1828 | 0.1951 | −0.9368 | SD | −0.5284 | −0.1963 | 2.6913 | RD | −0.2245 | 0.4129 | −0.5437 | SD |
2019–2020 | 36 | 0.0100 | 0.1143 | 0.0875 | WD | 0.5022 | 0.9216 | 0.5449 | WD | −0.8739 | −0.5939 | 1.4716 | RD |
2019–2020 | 37 | −0.7033 | −0.0578 | 12.1687 | RD | −0.6702 | 0.0876 | −7.6542 | SD | 1.0600 | 0.0770 | 13.7650 | END |
2019–2020 | 38 | −0.4789 | 0.0766 | −6.2513 | SD | −0.0355 | 0.1212 | −0.2932 | SD | −0.2649 | 0.2124 | −1.2468 | SD |
2019–2020 | 39 | 0.0786 | −0.0683 | −1.1510 | SND | 0.3994 | 0.5984 | 0.6674 | WD | 0.6285 | 0.4692 | 1.3395 | END |
2019–2020 | 40 | 0.0853 | 0.1011 | 0.8433 | EC | 4.0370 | −0.3195 | −12.6362 | SND | 0.1151 | 0.3449 | 0.3337 | WD |
2019–2020 | 41 | 5.2892 | −0.2930 | −18.0539 | SND | 6.0398 | 0.5641 | 10.7068 | END | 1.5307 | 0.7020 | 2.1805 | END |
2019–2020 | 42 | −0.5716 | −0.0953 | 5.9966 | RD | −0.2749 | 1.9982 | −0.1376 | SD | 5.0293 | 0.1072 | 46.9108 | END |
2019–2020 | 43 | 0.5929 | 3.5638 | 0.1664 | WD | 0.7335 | 0.4119 | 1.7807 | END | 15.1724 | −0.4976 | −30.4908 | SND |
Code | Name |
---|---|
13 | Farm and sideline food procarbon emissions |
14 | Food |
15 | Beverage |
16 | Tobacco |
17 | Textiles |
18 | Textiles and garments, shoes, hats |
19 | Leather, fur, feathers and other products |
20 | Wood procarbon emissions and furniture making |
21 | Furniture |
22 | Paper making and paper products |
23 | Copies of printing and recording mediums |
24 | Cultural and educational sporting goods |
25 | Oil procarbon emissions, coking and nuclear fuel |
26 | Chemical raw materials and chemical products |
27 | Pharmaceuticals |
28 | Chemical fiber |
29 | Rubber products |
30 | Plastic products |
31 | Nonmetallic mineral products |
32 | Ferrous metal smelting and rolling |
33 | Nonferrous metal smelting and rolling |
34 | Fabricated metal products |
35 | General machinery |
36 | Equipment for special purposes |
37 | Transportation equipment |
38 | Electrical equipment and machinery |
39 | Communication equipment, computer and other |
40 | Instrumentation, stationary and office supplies |
41 | Other manufacturing |
42 | Waste-resource carbon-emission comprehensive-utilization industry |
43 | Metal products, machinery and equipment repair |
References
- Xu, H.; Tang, A.; Pittock, J. The dark side of ambition: Side-effects of China’s climate policy. Environ. Res. Lett. 2021, 16, 111001. [Google Scholar] [CrossRef]
- Robinson, S.A.; Blair, C.; McDonough, M. China’s climate ambition: Revisiting its First Nationally Determined Contribution and centering a just transition to clean energy. Energy Policy 2021, 155, 112350. [Google Scholar]
- National Bureau of Statistics of China. National Development and Reform Commission. In CSY (China Statistical Yearbook); National Bureau of Statistics of China: Beijing, China, 2011–2016. [Google Scholar]
- The Statistical Yearbook of Jiangsu, 2015–2020. In JSY (Jiangsu Statistical Yearbook); National Bureau of Statistics of China: Beijing, China, 2015–2020.
- OECD (Organization for Economic Co-operation and Development). Indicators to Measure Decoupling of Environmental Pressure from Economic Growth. Sustainable Development. 2002. Available online: http://www.oecd.org/env/indicators-modelling-outlooks/1933638.pdf (accessed on 20 January 2020).
- Ang, B.W.; Goh, T. Index decomposition analysis for comparing emission scenarios: Applications and challenges. Energy Econ. 2019, 83, 74–87. [Google Scholar] [CrossRef]
- Zhang, C.; Su, B.; Zhou, K.; Yang, S. Analysis of electricity consumption in China (1990–2016) using index decomposition and decoupling approach. J. Clean. Prod. 2019, 209, 224–235. [Google Scholar] [CrossRef]
- Su, B.; Ang, B.W. Multi-region comparisons of emission performance: The structural decomposition analysis approach. Ecol. Indic. 2016, 67, 78–87. [Google Scholar] [CrossRef]
- Wang, H.; Ang, B.W.; Su, B. Multiplicative structural decomposition analysis of energy and emission intensities: Some methodological issues. Energy 2017, 123, 47–63. [Google Scholar] [CrossRef]
- Dong, B.; Zhang, M.; Mu, H.; Su, X. Study on decoupling analysis between energy consumption and economic growth in Liaoning Province. Energy Policy 2016, 97, 414–420. [Google Scholar] [CrossRef]
- Wang, W.; Liu, X.; Zhang, M.; Song, X. Using a new generalized LMDI (logarithmic mean Divisia index) method to analyze China’s energy consumption. Energy 2014, 67, 617–622. [Google Scholar] [CrossRef]
- Zhang, M.; Bai, C. Exploring the influencing factors and decoupling state of residential energy consumption in Shandong. J. Clean. Prod. 2018, 194, 253–262. [Google Scholar] [CrossRef]
- Tapio, P. Towards a theory of decoupling: Degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001. Transp. Policy 2005, 12, 137–151. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Zhang, M. Using a new decoupling indicator (ZM decoupling indicator) to study the relationship between the economic growth and energy consumption in China. Nat. Hazards 2017, 88, 1013–1022. [Google Scholar] [CrossRef]
- Pan, X.; Guo, S.; Xu, H.; Tian, M.; Pan, X.; Chu, J. China’s carbon intensity factor decomposition and carbon emission decoupling analysis. Energy 2022, 239, 122175. [Google Scholar] [CrossRef]
- Wang, Q.; Jiang, R. Is China’s economic growth decoupled from carbon emissions? J. Clean. Prod. 2019, 225, 1194–1208. [Google Scholar] [CrossRef]
- Zhao, Y.; Su, Q.; Li, B.; Zhang, Y.; Wang, X.; Zhao, H.; Guo, S. Have those countries declaring “zero carbon” or “carbon neutral” climate goals achieved carbon emissions-economic growth decoupling? J. Clean. Prod. 2022, 363, 132450. [Google Scholar] [CrossRef]
- Andreoni, V.; Galmarini, S. Decoupling economic growth from carbon dioxide emissions: A decomposition analysis of Italian energy consumption. Energy 2012, 44, 682–691. [Google Scholar] [CrossRef]
- Roinioti, A.; Koroneos, C. The decomposition of CO2 emissions from energy use in Greece before and during the economic crisis and their decoupling from economic growth. Renew. Sustain. Energy Rev. 2017, 76, 448–459. [Google Scholar] [CrossRef]
- Vavrek, R.; Chovancova, J. Decoupling of Greenhouse Gas Emissions from Economic Growth in V4 Countries. Procedia Econ. Financ. 2016, 39, 526–533. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Ang, B.W.; Su, B. A Multi-region Structural Decomposition Analysis of Global CO2 Emission Intensity. Ecol. Econ. 2017, 142, 163–176. [Google Scholar] [CrossRef]
- Wang, Q.; Su, M. The effects of urbanization and industrialization on decoupling economic growth from carbon emission—A case study of China. Sustain. Cities Soc. 2019, 51, 101758. [Google Scholar] [CrossRef]
- Zhang, Y.-J.; Da, Y.-B. The decomposition of energy-related carbon emission and its decoupling with economic growth in China. Renew. Sustain. Energy Rev. 2015, 41, 1255–1266. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, X.; Shao, S. Decoupling CO2 emissions and industrial growth in China over 1993–2013: The role of investment. Energy Econ. 2016, 60, 275–292. [Google Scholar] [CrossRef]
- Chen, B.; Yang, Q.; Li, J.S.; Chen, G.Q. Decoupling analysis on energy consumption, embodied GHG emissions and economic growth—The case study of Macao. Renew. Sustain. Energy Rev. 2017, 67, 662–672. [Google Scholar] [CrossRef]
- Li, L.; Shan, Y.; Lei, Y.; Wu, S.; Yu, X.; Lin, X.; Chen, Y. Decoupling of economic growth and emissions in China’s cities: A case study of the Central Plains urban agglomeration. Applied Energy 2019, 244, 36–45. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Sun, J.; Zhang, M.; Su, B. Using the Tapio-Z decoupling model to evaluate the decoupling status of China’s CO2 emissions at provincial level and its dynamic trend. Struct. Change Econ. Dyn. 2020, 52, 120–129. [Google Scholar] [CrossRef]
- Wang, Q.; Hang, Y.; Zhou, P.; Wang, Y. Decoupling and attribution analysis of industrial carbon emissions in Taiwan. Energy 2016, 113, 728–738. [Google Scholar] [CrossRef]
- Li, J.; Li, M. Research of Carbon Emission Reduction Potentials in the Yellow River Basin, Based on Cluster Analysis and the Logarithmic Mean Divisia Index (LMDI) Method. Sustainability 2022, 14, 5284. [Google Scholar] [CrossRef]
- Chen, J.; Wang, P.; Cui, L.; Huang, S.; Song, M. Decomposition and decoupling analysis of CO2 emissions in OECD. Applied Energy 2018, 231, 937–950. [Google Scholar] [CrossRef]
- Shuai, C.; Chen, X.; Wu, Y.; Zhang, Y.; Tan, Y. A three-step strategy for decoupling economic growth from carbon emission: Empirical evidences from 133 countries. Sci. Total Environ. 2019, 646, 524–543. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, M.; Zhou, M. Study on the decoupling relationship between CO2 emissions and economic development based on two-dimensional decoupling theory: A case between China and the United States. Ecol. Indic. 2019, 102, 230–236. [Google Scholar] [CrossRef]
- Dong, F.; Li, J.; Wang, Y.; Zhang, X.; Zhang, S.; Zhang, S. Drivers of the decoupling indicator between the economic growth and energy-related CO2 in China: A revisit from the perspectives of decomposition and spatiotemporal heterogeneity. Sci. Total Environ. 2019, 685, 631–658. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, S. A comparison of decomposition the decoupling carbon emissions from economic growth in transport sector of selected provinces in eastern, central and western China. J. Clean. Prod. 2019, 229, 570–581. [Google Scholar] [CrossRef]
- Liu, J.; Li, H.; Liu, T. Decoupling Regional Economic Growth from Industrial CO2 Emissions: Empirical Evidence from the 13 Prefecture-Level Cities in Jiangsu Province. Sustainability 2022, 14, 2733. [Google Scholar] [CrossRef]
- Luo, Y.; Long, X.; Wu, C.; Zhang, J. Decoupling CO2 emissions from economic growth in agricultural sector across 30 Chinese provinces from 1997 to 2014. J. Clean. Prod. 2017, 159, 220–228. [Google Scholar] [CrossRef]
- Yu, J.; Shao, C.; Xue, C.; Hu, H. China’s aircraft-related CO2 emissions: Decomposition analysis, decoupling status, and future trends. Energy Policy 2020, 138, 111215. [Google Scholar] [CrossRef]
- Ren, S.; Hu, Z. Effects of decoupling of carbon dioxide emission by Chinese nonferrous metals industry. Energy Policy 2012, 43, 407–414. [Google Scholar] [CrossRef]
- Wang, M.; Feng, C. Decoupling economic growth from carbon dioxide emissions in China’s metal industrial sectors: A technological and efficiency perspective. Sci. Total Environ. 2019, 691, 1173–1181. [Google Scholar] [CrossRef]
- Wu, Y.; Tam, V.W.; Shuai, C.; Shen, L.; Zhang, Y.; Liao, S. Decoupling China’s economic growth from carbon emissions: Empirical studies from 30 Chinese provinces (2001–2015). Sci. Total Environ. 2019, 656, 576–588. [Google Scholar] [CrossRef]
- Ren, S.; Yin, H.; Chen, X. Using LMDI to analyze the decoupling of carbon dioxide emissions by China’s manufacturing industry. Environ. Dev. 2014, 9, 61–75. [Google Scholar] [CrossRef]
- Wang, Q.; Jiang, X.; Li, R. Comparative decoupling analysis of energy-related carbon emission from electric output of electricity sector in Shandong Province, China. Energy 2017, 127, 78–88. [Google Scholar] [CrossRef]
- Xie, P.; Gao, S.; Sun, F. An analysis of the decoupling relationship between CO2 emission in power industry and GDP in China based on LMDI method. J. Clean. Prod. 2019, 211, 598–606. [Google Scholar] [CrossRef]
- Engo, J. Decoupling analysis of CO2 emissions from transport sector in Cameroon. Sustain. Cities Soc. 2019, 51, 101732. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, T.; Yang, S. Carbon emission and its decoupling research of transportation in Jiangsu Province. J. Clean. Prod. 2017, 142, 907–914. [Google Scholar] [CrossRef]
- Zhu, C.; Yang, S.; Liu, P. Study on the Factors Influencing on the Carbon Emissions of Shaanxi Province’s Transportation Industry in China. Sustainability 2022, 14, 8610. [Google Scholar] [CrossRef]
- Feng, J.-C.; Zeng, X.-L.; Yu, Z.; Bian, Y.; Li, W.-C.; Wang, Y. Decoupling and driving forces of industrial carbon emission in a coastal city of Zhuhai, China. Energy Rep. 2019, 5, 1589–1602. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, Y.; Wang, C.; Wang, F.; Qiu, F. Decoupling effect and sectoral attribution analysis of industrial energy-related carbon emissions in Xinjiang, China. Ecol. Indic. 2019, 97, 1–9. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, R.; He, Q. A city-scale decomposition and decoupling analysis of carbon dioxide emissions: A case study of China. J. Clean. Prod. 2019, 238, 117824. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, M.; Zhou, M.; Zhou, M. A comparative study on decoupling relationship and influence factors between China’s regional economic development and industrial energy–related carbon emissions. J. Clean. Prod. 2017, 142, 783–800. [Google Scholar] [CrossRef]
- Lu, Q.; Yang, H.; Huang, X.; Chuai, X.; Wu, C. Multi-sectoral decomposition in decoupling industrial growth from carbon emissions in the developed Jiangsu Province, China. Energy 2015, 82, 414–425. [Google Scholar] [CrossRef]
- Yang, L.; Yang, Y.; Zhang, X.; Tang, K. Whether China’s industrial sectors make efforts to reduce CO2 emissions from production?—A decomposed decoupling analysis. Energy 2018, 160, 796–809. [Google Scholar] [CrossRef]
- Wen, L.; Li, Z. Provincial-level industrial CO2 emission drivers and emission reduction strategies in China: Combining two-layer LMDI method with spectral clustering. Sci. Total Environ. 2020, 700, 134374. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, M.; Shan, C. Research on the decoupling trend and mitigation potential of CO2 emissions from China’s transport sector. Energy 2019, 183, 837–843. [Google Scholar] [CrossRef]
- Hang, Y.; Wang, Q.; Zhou, D.; Zhang, L. Factors influencing the progress in decoupling economic growth from carbon dioxide emissions in China’s manufacturing industry. Resour. Conserv. Recycl. 2019, 146, 77–88. [Google Scholar] [CrossRef]
- Liu, J.; Yang, Q.; Ou, S.; Liu, J. Factor decomposition and the decoupling effect of carbon emissions in China’s manufacturing high-emission subsectors. Energy 2022, 248, 123568. [Google Scholar] [CrossRef]
Decoupling Status | % C | % GDP | D | |
---|---|---|---|---|
Negative decoupling | Expansive Negative Decoupling (END) | + | + | (1.2, +∞) |
Weak Negative Decoupling (WND) | − | − | [0, 0.8) | |
Strong Negative Decoupling (SND) | + | − | (−∞, 0) | |
Decoupling | Recessive Decoupling (RD) | − | − | (1.2, +∞) |
Weak Decoupling (WD) | + | + | [0, 0.8) | |
Strong Decoupling (SD) | − | + | (−∞, 0) | |
Coupling | Expansive Coupling (EC) | + | + | [0.8, 1.2] |
Recessive Coupling (RC) | − | − | [0.8, 1.2] |
% C | % GDP | D | Status | ||
---|---|---|---|---|---|
Southern Jiangsu | 2016–2017 | 0.1198 | 0.0529 | 2.2665 | END |
2017–2018 | 0.0002 | 0.0795 | 0.0028 | WD | |
2018–2019 | −0.0573 | 0.0251 | −2.2842 | SD | |
2019–2020 | 0.0902 | 0.0021 | 42.4151 | END | |
Northern Jiangsu | 2016–2017 | −0.1186 | 0.3398 | −0.349 | SD |
2017–2018 | −0.0974 | 0.1997 | −0.4876 | SD | |
2018–2019 | 0.1124 | 0.1357 | 0.8279 | EC | |
2019–2020 | 0.4184 | 0.1218 | 3.4339 | END | |
Middle Jiangsu | 2016–2017 | −0.0768 | 0.1332 | −0.5766 | SD |
2017–2018 | −0.1264 | 0.1732 | −0.7297 | SD | |
2018–2019 | 0.1034 | 0.0872 | 1.1853 | EC | |
2019–2020 | 0.225 | 0.0982 | 2.2926 | END |
Period | d_EI | d_IG | d_G | D | |
---|---|---|---|---|---|
Southern Jiangsu | 2016–2017 | 1.2348 | −0.01 | 1.0417 | 2.2665 |
2017–2018 | −0.9595 | 0.0083 | 0.9541 | 0.0028 | |
2018–2019 | −3.2433 | 0.0062 | 0.9529 | −2.2842 | |
2019–2020 | 41.3717 | 0.1497 | 0.8936 | 42.4151 | |
Northern Jiangsu | 2016–2017 | −1.1577 | 0.069 | 0.7397 | −0.349 |
2017–2018 | −1.3542 | 0.0163 | 0.8503 | −0.4876 | |
2018–2019 | −0.1615 | 0.0365 | 0.9529 | 0.8279 | |
2019–2020 | 2.3043 | 0.0378 | 1.0917 | 3.4339 | |
Middle Jiangsu | 2016–2017 | −1.4789 | −0.0353 | 0.9376 | −0.5766 |
2017–2018 | −1.5924 | 0.0109 | 0.8518 | −0.7297 | |
2018–2019 | 0.1778 | 0.0114 | 0.9962 | 1.1853 | |
2019–2020 | 1.235 | 0.0158 | 1.0418 | 2.2926 |
Region | Industry | Period | Proportion | % C | % GDP | D | Status |
---|---|---|---|---|---|---|---|
Southern Jiangsu | 26 | 2016–2017 | 13.64% | 0.3244 | −0.0130 | −24.8926 | SND |
2017–2018 | 9.59% | −0.0944 | −0.3329 | 0.2835 | WND | ||
2018–2019 | 9.89% | 0.0853 | 0.0470 | 1.8163 | END | ||
2019–2020 | 10.13% | 0.0692 | −0.0143 | −4.8292 | SND | ||
31 | 2016–2017 | 16.71% | 0.4571 | −0.0760 | −6.0176 | SND | |
2017–2018 | 15.77% | 0.0944 | −0.1044 | −0.9038 | SND | ||
2018–2019 | 14.93% | −0.0849 | −0.0392 | 2.1671 | RD | ||
2019–2020 | 13.15% | 0.1018 | −0.1522 | −0.6688 | SND | ||
39 | 2016–2017 | 18.59% | −0.3489 | 0.2112 | −1.6518 | SD | |
2017–2018 | 18.88% | −0.1132 | −0.0364 | 3.1106 | RD | ||
2018–2019 | 19.32% | −0.0128 | 0.0378 | −0.3392 | SD | ||
2019–2020 | 18.69% | 0.0786 | −0.0683 | −1.1510 | SND | ||
Northern Jiangsu | 26 | 2016–2017 | 11.20% | 0.0774 | 0.0990 | 0.7824 | WD |
2017–2018 | 12.70% | −0.0617 | 0.2173 | −0.2838 | SD | ||
2018–2019 | 11.71% | 0.0054 | 0.0044 | 1.2215 | END | ||
2019–2020 | 11.45% | 0.7221 | 0.1515 | 4.7666 | END | ||
31 | 2016–2017 | 12.97% | −0.4341 | 0.1160 | −3.7436 | SD | |
2017–2018 | 11.11% | −0.0864 | −0.0803 | 1.0767 | RC | ||
2018–2019 | 10.12% | 0.3854 | −0.0080 | −48.1417 | SND | ||
2019–2020 | 10.05% | 0.5420 | 0.1698 | 3.1923 | END | ||
36 | 2016–2017 | 10.64% | −0.1190 | 0.4759 | −0.2500 | SD | |
2017–2018 | 11.53% | 0.0008 | 0.1638 | 0.0050 | WD | ||
2018–2019 | 10.59% | −0.0027 | 0.0002 | −16.1790 | SD | ||
2019–2020 | 17.27% | 0.5022 | 0.9216 | 0.5449 | WD | ||
Middle Jiangsu | 17 | 2016–2017 | 10.67% | −0.1410 | 0.0015 | −96.2740 | SD |
2017–2018 | 11.01% | −0.0078 | 0.0222 | −0.3494 | SD | ||
2018–2019 | 9.99% | −0.0170 | −0.0762 | 0.2235 | WND | ||
2019–2020 | 9.39% | 0.0478 | 0.0597 | 0.8008 | EC | ||
26 | 2016–2017 | 16.00% | 0.0450 | 0.1851 | 0.2432 | WD | |
2017–2018 | 16.88% | −0.0826 | 0.0454 | −1.8185 | SD | ||
2018–2019 | 17.37% | 0.1235 | 0.0475 | 2.5987 | END | ||
2019–2020 | 14.30% | 0.0265 | −0.0713 | −0.3720 | SND | ||
37 | 2016–2017 | 14.28% | 3.8703 | −0.0397 | −97.4965 | SND | |
2017–2018 | 12.83% | −0.9376 | −0.1099 | 8.5334 | RD | ||
2018–2019 | 12.76% | 0.0799 | 0.0124 | 6.4478 | END | ||
2019–2020 | 12.18% | 1.0600 | 0.0770 | 13.7650 | END |
Region | Period | d_EI | d_IG | d_G | D | Status |
---|---|---|---|---|---|---|
Southern Jiangsu | 2016–2017 | −26.0549 | 1.166 | −0.0038 | −24.8926 | SND |
2017–2018 | −0.8742 | 1.0073 | 0.1504 | 0.2835 | WND | |
2018–2019 | 0.7979 | 0.6962 | 0.3221 | 1.8163 | END | |
2019–2020 | −5.8709 | −1.7043 | 2.746 | −4.8292 | SND | |
Northern Jiangsu | 2016–2017 | −0.2077 | 0.1023 | 0.8877 | 0.7824 | WD |
2017–2018 | −1.1605 | 0.5622 | 0.3145 | −0.2838 | SD | |
2018–2019 | 0.221 | −18.6649 | 19.6654 | 1.2215 | END | |
2019–2020 | 3.5296 | −0.1967 | 1.4337 | 4.7666 | END | |
Middle Jiangsu | 2016–2017 | −0.6948 | 0.7678 | 0.1702 | 0.2432 | WD |
2017–2018 | −2.7554 | 1.1374 | −0.2004 | −1.8185 | SD | |
2018–2019 | 1.5625 | 0.6375 | 0.3986 | 2.5987 | END | |
2019–2020 | −1.4231 | 2.761 | −1.7099 | −0.372 | SND |
Region | Period | d_EI | d_IG | d_G | D | Status |
---|---|---|---|---|---|---|
Southern Jiangsu | 2016–2017 | −7.2804 | 1.2635 | −0.0007 | −6.0176 | SND |
2017–2018 | −2.009 | 0.5782 | 0.5271 | −0.9038 | SND | |
2018–2019 | 1.191 | 1.331 | −0.3549 | 2.1671 | RD | |
2019–2020 | −1.808 | 0.8766 | 0.2626 | −0.6688 | SND | |
Northern Jiangsu | 2016–2017 | −4.465 | 0.1651 | 0.5563 | −3.7436 | SD |
2017–2018 | 0.08 | 1.8368 | −0.8401 | 1.0767 | RC | |
2018–2019 | −49.3287 | 13.8796 | −12.6926 | −48.1417 | SND | |
2019–2020 | 2.0363 | −0.0491 | 1.205 | 3.1923 | END |
Region | Industry | Period | d_EI | d_IG | d_G | D |
---|---|---|---|---|---|---|
Southern Jiangsu | 39 | 2016–2017 | −2.3895 | 0.7375 | 0.0002 | −1.6518 |
2017–2018 | 2.1507 | −0.4026 | 1.3624 | 3.1106 | ||
2018–2019 | −1.3144 | 0.5937 | 0.3815 | −0.3392 | ||
2019–2020 | −2.2270 | 0.4971 | 0.5789 | −1.1510 | ||
Northern Jiangsu | 36 | 2016–2017 | −1.0183 | 0.6013 | 0.1670 | −0.2500 |
2017–2018 | −0.9215 | 0.4957 | 0.4308 | 0.0050 | ||
2018–2019 | −17.1776 | −512.1090 | 513.1075 | −16.179 | ||
2019–2020 | −0.3297 | 0.6557 | 0.2189 | 0.5449 | ||
Middle Jiangsu | 17 | 2016–2017 | −97.2011 | −18.5937 | 19.5208 | −96.274 |
2017–2018 | −1.3346 | 1.4109 | −0.4257 | −0.3494 | ||
2018–2019 | −0.8078 | 1.2636 | −0.2323 | 0.2235 | ||
2019–2020 | −0.1935 | −1.0687 | 2.0630 | 0.8008 | ||
Middle Jiangsu | 37 | 2016–2017 | −99.9910 | 4.3925 | −1.8980 | −97.4965 |
2017–2018 | 8.1753 | 0.3289 | 0.0292 | 8.5334 | ||
2018–2019 | 5.4148 | −0.4641 | 1.4971 | 6.4478 | ||
2019–2020 | 12.3520 | −0.8803 | 2.2932 | 13.7650 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, P.; Li, H. Carbon Emissions from Manufacturing Sector in Jiangsu Province: Regional Differences and Decomposition of Driving Factors. Sustainability 2022, 14, 9123. https://doi.org/10.3390/su14159123
Zhou P, Li H. Carbon Emissions from Manufacturing Sector in Jiangsu Province: Regional Differences and Decomposition of Driving Factors. Sustainability. 2022; 14(15):9123. https://doi.org/10.3390/su14159123
Chicago/Turabian StyleZhou, Ping, and Hailing Li. 2022. "Carbon Emissions from Manufacturing Sector in Jiangsu Province: Regional Differences and Decomposition of Driving Factors" Sustainability 14, no. 15: 9123. https://doi.org/10.3390/su14159123