Assessment and Prediction of Grain Production Considering Climate Change and Air Pollution in China
Abstract
:1. Introduction
- How do climate change and air pollution affect grain production in 31 provinces of China?
- How will China’s food production potential change in the context of climate change?
2. Methods
2.1. Panel Spatial Error Model
2.2. Climatic Potential Productivity
2.3. Random Forests
3. Study Area and Data
3.1. Study Area
3.2. Data Resources
3.3. Data of Constructed Variables
4. Results
4.1. Estimation Results and Interpretation
4.2. Impact of Climate Change on Food Production
4.3. Influence of Economic Behavior and Technological Progress on Grain Production
4.4. Impact of Air Pollution on Grain Production
4.5. Calculation of Climatic Potential Production in 31 Provinces
- Temperature potential production Yt showed characteristics of minor fluctuations. Temperature production potential fluctuated more moderately from 2005–2021, generally at around 1787.87 kg/hm2. Temperature production potential reached its maximum in 2007 and then began to decline significantly, reaching 2.83% in 2008. The potential picked up between 2017 and 2020, but the increase was limited.
- Precipitation production potential Yr showed characteristics of fluctuation—decline—small rise. Precipitation production potential fluctuated significantly from 2005 to 2021; the difference between the maximum value and minimum value was 455.37 kg/hm2. Fluctuations were more moderate from 2005 to 2009 and more volatile during the period 2016 to 2020. In 2016, precipitation production potential reached its maximum in the entire measurement period and then began to decline significantly.
- Distillation climate potential production (Ye) showed characteristics of minor fluctuations—fluctuating down. The overall climate production potential of distillation decreased by 2.91% from 2005 to 2021. The results also show that Ye fluctuated more in line with Yr, and after a small fluctuation, started to fluctuate downwards in 2020.
- Less change occurs in areas with higher climate production potential. From 2005 to 2021, there was no change in the number of areas with an average climatic productivity potential above 1800 kg/hm2 in China’s major grain-producing areas. There was also no change in the number of areas with high climatic productivity potential in non-grain producing areas, which were concentrated in Hainan and the Pearl River Delta.
- Areas with low climatic productivity potential are expanding. From 2005 to 2015, the areas with climatic productivity potential below 1000 kg/hm2 were mainly in the western Sichuan plateau and western Inner Mongolia desert. However, between 2015 and 2021, areas with climate productivity potential below 1425 kg/hm2 were expanding.
- The spatial difference in climate productivity potential in the middle region has shown a tendency to expand. We refer to the area with a climate production potential value of between 1400 kg/hm2 and 2150 kg/hm2 as the median region. From 2005 to 2021, the distribution range of the median region tended to expand. After 2015, the median zone gradually expanded and became concentrated in central Sichuan Province, southwards in Hebei Province and Hunan Province, and northwards in Hubei Province. The expansion of the median area weakened the spatial differences in the distribution of grain climatic potential productivity.
4.6. Prediction of China’s Climatic Potential Productivity Based on Random Forest
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Con. | t Value | |
---|---|---|
spring | 0.184 * | 1.33 |
summer | 0.558 | 0.58 |
autumn | −0.906 | −0.118 |
winter | −0.575 | −0.561 |
log(spring) | 0.703 * | 0.346 |
log(summer) | 0.575 * | 0.525 |
log(autumn) | 0.433 | 0.563 |
log(winter) | −0.006 | 0.785 |
Observations | 527 | 527 |
Log Likelihood | 589.031 | 605.473 |
AIC | 162.062 | 194.945 |
BIC | 127.925 | 160.808 |
Name | Name | Name |
---|---|---|
Beijing | Zhejiang | Hainan |
Tianjing | Anhui | Chongqing |
Hebei | Fujian | Sichuan |
Shanxi | Jiangxi | Guizhou |
Inner Mongoria | Shandong | Yunnan |
Liaoning | Henan | Tibet |
Jilin | Hubei | Shaanxi |
Heilongjiang | Hunan | Gansu |
Shanghai | Guangdong | Qinghai |
Jiangsu | Guangxi |
References
- Asseng, S.; Ewert, F.; Rosenzweig, C.; Jones, J.W.; Hatfield, J.L.; Ruane, A.C.; Boote, K.; Thorburn, P.J.; Rötter, R.; Cammarano, D.; et al. Uncertainty in simulating wheat yields under climate change. Nat. Clim. Chang. 2013, 3, 827–832. [Google Scholar] [CrossRef] [Green Version]
- Asseng, S.; Foster, I.; Turner, N.C. The impact of temperature variability on wheat yields. Glob. Chang. Biol. 2011, 17, 997–1012. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [Green Version]
- Piao, S.L.; Ciais, P.; Huang, Y.; Shen, Z.H.; Peng, S.S.; Li, J.S.; Zhou, L.P.; Liu, H.Y.; Ma, Y.C.; Ding, Y.H.; et al. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef]
- Lobell, D.B.; Schlenker, W.; Costa-Roberts, J. Climate trends and global crop production since 1980. Science 2011, 333, 616–620. [Google Scholar] [CrossRef] [Green Version]
- Kuang, W.; Hu, Y.; Dai, X.; Song, X. Investigation of changes in water resources and grain production in China: Changing patterns and uncertainties. Theor. Appl. Climatol. 2015, 122, 557–565. [Google Scholar] [CrossRef]
- Xiong, W.; Holman, I.; Lin, E.; Conway, D.; Jiang, J.; Xu, Y.; Li, Y. Climate change, water availability and future cereal production in China. Agric. Ecosyst. Environ. 2010, 135, 58–69. [Google Scholar] [CrossRef]
- Guo, E.L.; Liu, X.P.; Zhang, J.Q.; Wang, Y.F.; Wang, C.L.; Wang, R.; Li, D.J. Assessing spatiotemporal variation of drought and its impact on maize yield in Northeast China. J. Hydrol. 2017, 553, 231–247. [Google Scholar] [CrossRef]
- Holst, R.; Yu, X.; Grün, C. Climate Change, Risk and Grain Yields in China. J. Integr. Agric. 2013, 12, 1279–1291. [Google Scholar] [CrossRef]
- Lobell David, B.; Burke Marshall, B.; Tebaldi, C.; Mastrandrea Michael, D.; Falcon Walter, P.; Naylor Rosamond, L. Prioritizing Climate Change Adaptation Needs for Food Security in 2030. Science 2008, 319, 607–610. [Google Scholar] [CrossRef] [PubMed]
- Rosenzweig, C.; Elliott, J.; Deryng, D.; Ruane, A.C.; Müller, C.; Arneth, A.; Boote, K.J.; Folberth, C.; Glotter, M.; Khabarov, N.; et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl. Acad. Sci. USA 2014, 111, 3268–3273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidhuber, J.; Tubiello, F.N. Global food security under climate change. Proc. Natl. Acad. Sci. USA 2007, 104, 19703–19708. [Google Scholar] [CrossRef] [Green Version]
- Pittelkow, C.M.; Liang, X.Q.; Linquist, B.A.; van Groenigen, K.J.; Lee, J.; Lundy, M.E.; van Kessel, C. Productivity limits and potentials of the principles of conservation agriculture. Nature 2015, 517, 365–368. [Google Scholar] [CrossRef]
- Miraglia, M.; Marvin, H.; Kleter, G.; Battilani, P.; Brera, C.; Coni, E.; Cubadda, F.; Croci, L.; De Santis, B.; Dekkers, S.; et al. Climate change and food safety: An emerging issue with special focus on Europe. Food Chem. Toxicol. 2009, 47, 1009–1021. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.J.; Tao, F.L. Spatio-temporal distributions of climate disasters and the response of wheat yields in China from 1983 to 2008. Nat. Hazards 2014, 74, 569–583. [Google Scholar] [CrossRef]
- Wu, H.; Hou, W.; Qian, Z.H.; Hu, J.G. The research on the sensitivity of climate change in China in recent 50 years based on composite index. Acta Phys. Sin. 2012, 61, 562–571. [Google Scholar] [CrossRef]
- Wang, B.; Hong, G.; Cui, C.Q.; Yu, H.; Murty, T. Comprehensive analysis on China’s National Climate Change Assessment Reports: Action and emphasis. Front. Eng. Manag. 2019, 6, 52–61. [Google Scholar] [CrossRef]
- Shen, D.J. Climate change and water resources: Evidence and estimate in China. Curr. Sci. 2010, 98, 1063–1068. [Google Scholar]
- Li, R.L.; Shu, G. Impacts of Climate Change on Agriculture and Adaptive Strategies in China. J. Integr. Agric. 2013, 12, 1402–1408. [Google Scholar] [CrossRef]
- Chen, S.A.; Chen, X.G.; Xu, J.T. Impacts of climate change on agriculture: Evidence from China. J. Environ. Econ. Manag. 2016, 76, 105–124. [Google Scholar] [CrossRef]
- Shi, W.J.; Tao, F.L.; Liu, J.Y. Changes in quantity and quality of cropland and the implications for grain production in the Huang-Huai-Hai Plain of China. Food Secur. 2013, 5, 69–82. [Google Scholar] [CrossRef]
- Li, T.T.; Long, H.L.; Zhang, Y.N.; Tu, S.S.; Ge, D.Z.; Li, Y.R.; Hu, B.Q. Analysis of the spatial mismatch of grain production and farmland resources in China based on the potential crop rotation system. Land Use Policy 2017, 60, 26–36. [Google Scholar] [CrossRef]
- Wang, C.Y.; Linderholm, H.W.; Song, Y.L.; Wang, F.; Liu, Y.J.; Tian, J.F.; Ren, G.Y. Impacts of Drought on Maize and Soybean Production in Northeast China During the Past Five Decades. Int. J. Environ. Res. Public Health 2020, 17, 2459. [Google Scholar] [CrossRef] [Green Version]
- Yu, M.X.; Li, Q.F.; Hayes, M.J.; Svoboda, M.D.; Heim, R.R. Are droughts becoming more frequent or severe in China based on the Standardized Precipitation Evapotranspiration Index: 1951–2010? Int. J. Climatol. 2014, 34, 545–558. [Google Scholar] [CrossRef]
- Shao, Y.; Dong, C.H. A review on East Asian dust storm climate, modelling and monitoring. Glob. Planet Chang. 2006, 52, 1–22. [Google Scholar] [CrossRef]
- Shi, P.J.; Sun, S.; Wang, M.; Li, N.; Wang, J.A.; Jin, Y.Y.; Yin, W.X. Climate change regionalization in China (1961–2010). Sci. China Earth Sci. 2014, 57, 2676–2689. [Google Scholar] [CrossRef]
- Tong, S.L.; Berry, H.L.; Ebi, K.; Hilary, B.; Hu, W.B.; Green, D.; Butler, C.D. Climate change, food, water and population health in China. Bull. World Health Organ. 2016, 94, 759–765. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Q.; Lei, C.X.; Deng, A.X.; Qian, C.R.; Hoogmoed, W.; Zhang, W.J. Will higher minimum temperatures increase corn production in Northeast China? An analysis of historical data over 1965–2008. Agric. For. Meteorol. 2011, 151, 1580–1588. [Google Scholar] [CrossRef]
- Yin, P.H.; Fang, X.Q.; Yun, Y.R. Regional differences of vulnerability of food security in China. J. Geogr. Sci. 2009, 19, 532–544. [Google Scholar] [CrossRef]
- Feng, S.F.; Hao, Z.C. Quantifying likelihoods of extreme occurrences causing maize yield reduction at the global scale. Sci. Total Environ. 2020, 704, 135250. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.L.; Zhang, Z.; Chen, Y.; Wei, X.; Song, X. Exposure, vulnerability, and adaptation of major maize-growing areas to extreme temperature. Nat. Hazards 2018, 91, 1257–1272. [Google Scholar] [CrossRef]
- Wang, J.X.; Yang, Y.; Huang, J.K.; Adhikari, B. Adaptive irrigation measures in response to extreme weather events: Empirical evidence from the North China plain. Reg. Environ. Chang. 2019, 19, 1009–1022. [Google Scholar] [CrossRef]
- Shi, W.J.; Wang, M.L.; Liu, Y.T. Crop yield and production responses to climate disasters in China. Sci. Total Environ. 2021, 750, 141147. [Google Scholar] [CrossRef]
- Huang, J.; Lei, Y.D.; Zhang, F.M.; Hu, Z.H. Spatio-temporal analysis of meteorological disasters affecting rice, using multi-indices, in Jiangsu province, Southeast China. Food Secur. 2017, 9, 661–672. [Google Scholar] [CrossRef]
- Guan, X.J.; Zang, Y.W.; Meng, Y.; Liu, Y.; Lv, H.; Yan, D.H. Study on spatiotemporal distribution characteristics of flood and drought disaster impacts on agriculture in China. Int. J. Disaster Risk Reduct. 2021, 64, 102504. [Google Scholar] [CrossRef]
- Lawless, C.; Semenov, M.A. Assessing lead-time for predicting wheat growth using a crop simulation model. Agric. For. Meteorol. 2005, 135, 302–313. [Google Scholar] [CrossRef]
- Singh, K.K.; Kalra, N. Simulating impact of climatic variability and extreme climatic events on crop production. Mausam 2016, 67, 113–130. [Google Scholar] [CrossRef]
- You, L.Z.; Rosegrant, M.W.; Wood, S.; Sun, D.S. Impact of growing season temperature on wheat productivity in China. Agric. For. Meteorol. 2009, 149, 1009–1014. [Google Scholar] [CrossRef]
- Xie, W.; Huang, J.K.; Wang, J.X.; Cui, Q.; Robertson, R.; Chen, K. Climate change impacts on China’s agriculture: The responses from market and trade. China Econ. Rev. 2020, 62, 101256. [Google Scholar] [CrossRef]
- Schlenker, W.; Hanemann, W.M.; Fisher, A.C. The impact of global warming on US agriculture: An econometric analysis of optimal growing conditions. Rev. Econ. Stat. 2006, 88, 113–125. [Google Scholar] [CrossRef]
- Yuan, W.P.; Liu, S.G.; Liu, W.; Zhao, S.Q.; Dong, W.J.; Tao, F.L.; Lin, H. Opportunistic Market-Driven Regional Shifts of Cropping Practices Reduce Food Production Capacity of China. Earths Future 2018, 6, 634–642. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.G.; Chen, F.; Lin, X.M.; Liu, Z.J.; Zhang, H.L.; Zhao, J.; Tang, H.J. Potential benefits of climate change for crop productivity in China. Agric. For. Meteorol. 2015, 208, 76–84. [Google Scholar] [CrossRef]
- Deschenes, O.; Greenstone, M. The economic impacts of climate change: Evidence from agricultural output and random fluctuations in weather. Am. Econ. Rev. 2007, 97, 354–385. [Google Scholar] [CrossRef] [Green Version]
- Nordhaus, W. Climate Change: The Ultimate Challenge for Economics. Am. Econ. Rev. 2019, 109, 1991–2014. [Google Scholar] [CrossRef]
- Mendelsohn, R.; Nordhaus, W.D.; Shaw, D. The Impact of Global Warming on Agriculture: A Ricardian Analysis. Am. Econ. Rev. 1994, 84, 753–771. [Google Scholar] [CrossRef]
- Welch, J.R.; Vincent, J.R.; Auffhammer, M.; Moya, P.F.; Dobermann, A.; Dawe, D. Rice yields in tropical/subtropical Asia exhibit large but opposing sensitivities to minimum and maximum temperatures. Proc. Natl. Acad. Sci. USA 2010, 107, 14562–14567. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Gong, B.L. Response and adaptation of agriculture to climate change: Evidence from China. J. Dev. Econ. 2021, 148, 102557. [Google Scholar] [CrossRef]
- Baskerville, G.L.; Emin, P. Rapid Estimation of Heat Accumulation from Maximum and Minimum Temperatures. Ecology 1969, 50, 514–517. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Z.; Wang, P.; Song, X.; Wei, X.; Tao, F.L. Identifying the impact of multi-hazards on crop yield-A case for heat stress and dry stress on winter wheat yield in northern China. Eur. J. Agron. 2016, 73, 55–63. [Google Scholar] [CrossRef]
- Schlenker, W.; Roberts, M.J. Nonlinear Temperature Effects Indicate Severe Damages to US Crop Yields under Climate Change. Proc. Natl. Acad. Sci. USA 2009, 106, 15594–15598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vlachokostas, C.; Nastis, S.A.; Achillas, C.; Kalogeropoulos, K.; Karmiris, I.; Moussiopoulos, N.; Limperi, N. Economic damages of ozone air pollution to crops using combined air quality and GIS modelling. Atmos. Environ. 2010, 44, 3352–3361. [Google Scholar] [CrossRef]
- Blandino, M.; Badeck, F.W.; Giordano, D.; Marti, A.; Rizza, F.; Scarpino, V.; Vaccino, P. Elevated CO2 Impact on Common Wheat (Triticum aestivum L.) Yield, Wholemeal Quality, and Sanitary Risk. J. Agric. Food Chem. 2020, 68, 10574–10585. [Google Scholar] [CrossRef] [PubMed]
- De la Torre, D. Relative Yield Loss Calculations in Wheat due to Ozone Exposure. Sci. World J. 2010, 10, 103–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mola-Yudego, B. Regional Potential Yields of Short Rotation Willow Plantations on Agricultural Land in Northern Europe. Silva Fenn. 2010, 44, 63–76. [Google Scholar] [CrossRef] [Green Version]
- Gonsamo, A.; Chen, J.M.; Lombardozzi, D. Global vegetation productivity response to climatic oscillations during the satellite era. Glob. Chang. Biol. 2016, 22, 3414–3426. [Google Scholar] [CrossRef]
- Yuan, B.; Guo, J.P.; Ye, M.Z.; Zhao, J.F. Variety distribution pattern and climatic potential productivity of spring maize in Northeast China under climate change. Sci. Bull. 2012, 57, 3497–3508. [Google Scholar] [CrossRef] [Green Version]
- He, D.; Wang, J.; Dai, T.; Feng, L.P.; Zhang, J.P.; Pan, X.B.; Pan, Z.H. Impact of Climate Change on Maize Potential Productivity and the Potential Productivity Gap in Southwest China. J. Meteorol. Res. 2014, 28, 1155–1167. [Google Scholar] [CrossRef]
- Jun-Fang, Z.; Jian-Ping, G.; Ding-Rong, W.; Shi-Bo, F.; You-Hao, E. Climatic potential productivity of winter wheat and summer maize in Huanghuaihai Plain in 2011–2050. J. Appl. Ecol. 2011, 22, 3189–3195. [Google Scholar]
- Richardson, A.D.; Keenan, T.F.; Migliavacca, M.; Ryu, Y.; Sonnentag, O.; Toomey, M. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. For. Meteorol. 2013, 169, 156–173. [Google Scholar] [CrossRef]
- Cheng, J.Q.; Yin, S.Y. Evaluation of Population-Food Relationship from the Perspective of Climate Productivity Potential: A Case Study of Eastern Gansu in Northwest China. Atmosphere 2022, 13, 287. [Google Scholar] [CrossRef]
- Luo, R.L.; Zhang, B.L.; Gao, J.L.; Wang, Z.G.; Sun, J.Y.; Yu, X.F. Climate change impacts on corn production as evidenced by a model and historical yields in Inner Mongolia, China. J. Food. Agric. Environ. 2012, 10, 976–983. [Google Scholar]
- Wang, R.J.; Feng, Q.S.; Jin, Z.R.; Liang, T.A. The Restoration Potential of the Grasslands on the Tibetan Plateau. Remote Sens. 2022, 14, 80. [Google Scholar] [CrossRef]
- Yin, L.; Dai, E.F.; Zheng, D.; Wang, Y.H.; Ma, L.; Tong, M. What drives the vegetation dynamics in the Hengduan Mountain region, southwest China: Climate change or human activity? Ecol. Indic. 2020, 112, 106013. [Google Scholar] [CrossRef]
- Box, E. Geographical dimensions of terrestrial net and gross primary productivity. Radiat. Environ. Biophys. 1978, 15, 305–322. [Google Scholar] [CrossRef]
- Lin, H.L.; Ma, H.L.; Nyandwi, C.; Feng, Q.S.; Liang, T.G. A new net primary productivity model and new management strategy of grassland classification based on CSCS in China. Rangel. J. 2021, 43, 285–295. [Google Scholar] [CrossRef]
- Hasegawa, T.; Fujimori, S.; Shin, Y.; Tanaka, A.; Takahashi, K.; Masui, T. Consequence of Climate Mitigation on the Risk of Hunger. Environ. Sci. Technol. 2015, 49, 7245–7253. [Google Scholar] [CrossRef]
- Grogan, D.; Frolking, S.; Wisser, D.; Prusevich, A.; Glidden, S. Global gridded crop harvested area, production, yield, and monthly physical area data circa 2015. Sci. Data 2022, 9, 15. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Gromping, U. Variable Importance Assessment in Regression: Linear Regression versus Random Forest. Am. Stat. 2009, 63, 308–319. [Google Scholar] [CrossRef]
- Gregorutti, B.; Michel, B.; Saint-Pierre, P. Correlation and variable importance in random forests. Stat. Comput. 2017, 27, 659–678. [Google Scholar] [CrossRef] [Green Version]
- Ishwaran, H.; Malley, J.D. Synthetic learning machines. BioData Min. 2014, 7, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, S.; Li, J.; Qian, G.Q.; Feng, B.L. Association between the yield and the main agronomic traits of Tartary buckwheat evaluated using the random forest model. Crop Sci. 2020, 60, 2394–2407. [Google Scholar] [CrossRef]
- Pang AL, X.; Chang MW, L.; Chen, Y. Evaluation of Random Forests (RF) for Regional and Local-Scale Wheat Yield Prediction in Southeast Australia. Sensors 2022, 22, 717. [Google Scholar] [CrossRef] [PubMed]
- Shahhosseini, M.; Martinez-Feria, R.A.; Hui, G.P.; Archontoulis, S.V. Maize yield and nitrate loss prediction with machine learning algorithms. Environ. Res. Lett. 2019, 14, 124026. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.H.; Fu, Y.S.; Hao, F.H.; Zhang, X.; Wu, W.X.; Jin, X.L.; Senthilnath, J. Integrated phenology and climate in rice yields prediction using machine learning methods. Ecol. Indic. 2021, 120, 106935. [Google Scholar] [CrossRef]
- Engen, M.; Sando, E.; Sjolander BL, O.; Arenberg, S.; Gupta, R.; Goodwin, M. Farm-Scale Crop Yield Prediction from Multi-Temporal Data Using Deep Hybrid Neural Networks. Agronomy 2021, 11, 2576. [Google Scholar] [CrossRef]
- Dasgupta, S.; Robinson, E.J.Z. Attributing changes in food insecurity to a changing climate. Sci. Rep. 2022, 12, 4709. [Google Scholar] [CrossRef]
- Fujimori, S.; Wu, W.; Doelman, J.; Frank, S. Land-based climate change mitigation measures can affect agricultural markets and food security. Nat. Food 2022, 3, 110–121. [Google Scholar] [CrossRef]
- Hasegawa, T.; Sakurai, G.; Fujimori, S.; Takahashi, K.; Hijioka, Y.; Masui, T. Extreme climate events increase risk of global food insecurity and adaptation needs. Nat. Food 2021, 2, 587–595. [Google Scholar] [CrossRef]
- Köberle, A.C. Food security in climate mitigation scenarios. Nat. Food 2022, 3, 98–99. [Google Scholar] [CrossRef]
- Lee, E.K.; Zhang, W.-J.; Zhang, X.; Adler, P.R. Projecting life-cycle environmental impacts of corn production in the U.S. Midwest under future climate scenarios using a machine learning approach. Sci. Total Environ. 2020, 714, 136697. [Google Scholar] [CrossRef] [PubMed]
- Nelson Gerald, C.; Valin, H.; Sands Ronald, D. Climate change effects on agriculture: Economic responses to biophysical shocks. Proc. Natl. Acad. Sci. USA 2014, 111, 3274–3279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, F.; Feng, Z.; Tang, H.; Chen, Y.; Kobayashi, K. Effects of climate change, CO2 and O3 on wheat productivity in Eastern China, singly and in combination. Atmos. Environ. 2017, 153, 182–193. [Google Scholar] [CrossRef] [Green Version]
Variables | Label | Mean | Std. Dev. |
---|---|---|---|
Dependent Variable | |||
Grain yield per unit (kg/hm2) | Yields | 5033.4 | 1010.03 |
Climate Variable | |||
Extremely cold (Accumulated days) | CTD −0 °C | 46.28 | 51.72 |
Interval accumulated temperature 0–5 °C (Accumulated days) | IATD 0–5 °C | 33.65 | 19.51 |
Interval accumulated temperature 5–10 °C (Accumulated days) | IATD 5–10 °C | 45.35 | 18.62 |
Interval accumulated temperature 10–15 °C (Accumulated days) | IATD 10–15 °C | 50.12 | 18.2 |
Interval accumulated temperature 15–20 °C (Accumulated days) | IATD 15–20 °C | 59.97 | 20.55 |
Interval accumulated temperature 20–25 °C (Accumulated days) | IATD 20–25 °C | 65.91 | 22.16 |
Interval accumulated temperature 25–30 °C (Accumulated days) | IATD 25–30 °C | 52.35 | 41.62 |
Interval accumulated temperature 30–35 °C (Accumulated days) | IATD 30–35 °C | 10.72 | 14.43 |
Extremely hot (Accumulated days) | EHD 40 °C+ | 0.04 | 0.29 |
Effective accumulated temperature (Degrees Centigrade) | EAT | 4202.194 | 1945.896 |
Active accumulated temperature (Degrees Centigrade) | AAT | 2177.124 | 1206.035 |
Precipitation (mm) | PRE | 920.28 | 449.18 |
Annual Sunshine Hours (Hours) | ASH | 2453.253 | 705.14 |
Economic signals Variable | |||
Cost-benefit ratio (%) | CBR | 1.02 | 0.1 |
Effective irrigation ratio (%) | EIR | 0.76 | 0.52 |
Technological progress Variable | |||
Total power of agricultural machinery (kw/hm2) | TPAM | 9.71 | 5.42 |
Year-end ownership of farmland infrastructure machinery (10,000 sets) | YOFIM | 1.2 | 1.5 |
Air pollution Variable | |||
Nitrogen dioxide (mg/m3) | NO2 | 41.01 | 12.01 |
Sulfur dioxide (mg/m3) | SO2 | 35.06 | 23.09 |
Inhalable particulate matter PM 2.5 (mg/m3) | PM 2.5 | 46.18 | 18.28 |
Inhalable particulate matter PM 10 (mg/m3) | PM 10 | 94.96 | 32.43 |
Test Coefficient | n = 31 |
---|---|
Moran’s-I | 0.685 * |
LM test | 2403.331 *** |
LR test | 113.81 * |
Wald’s test | 57.64 * |
Hausman test | 25.34 ** |
Variables | Equation (1) | Equation (2) | Equation (3) |
---|---|---|---|
CTD−0 °C | −0.0818 *** (0.098) | −1.811 *** (0.058) | −0.77 *** (−1.45) |
IATD 0–5 °C | 0.00005 *** (0.0946) | −1.448 *** (0.086) | −0.195 *** (0.549) |
IATD 5–10 °C | −0.0001 *** (0.0835) | −4.355 *** (0.073) | −0.6 *** (0.243) |
IATD 10–15 °C | −4.51 ** (0.066) | −3.289 ** (0.0583) | −0.763 *** (0.026) |
IATD 15–20 °C | −0.00037 *** (0.083) | −0.001 *** (0.0613) | −1.171 *** (0.024) |
IATD 20–25 °C | −0.0005 ** (0.054) | 0.002 *** (0.0814) | −1.121 *** (0.0262) |
IATD 25–30 °C | −0.0004 *** (0.058) | 1.213 *** (0.0019) | −0.9 *** (0.003) |
IATD 30–35 °C | −0.0003 ** (0.066) | −4.72 *** (0.0731) | −0.839 *** (0.006) |
EHD 40 °C+ | −0.001 (0.149) | −13.54 (0.052) | −0.347 *** (0.072) |
EFT | −0.0003 (0.069) | 0.036 (0.001) | 0.197 *** (0.07) |
AAT | −0.0001 (0.027) | 0.0019 (0.001) | −0.31 *** (0.075) |
PRE | 0.009 (0.263) | 0.103 (0.207) | 0.06 * (0.624) |
ASH | 0.0001 * (0.061) | 1.174 * (0.046) | 0.179 *** (0.034) |
TPAM | 0.0016 ** (0.0983) | 0.18 *** (0.0007) | |
CBR | 106.9 *** (0.001) | −2.16 *** (0.163) | |
EIR | 0.004 (0.202) | 1.12 *** (0.071) | |
YOFIM | 0.0363471 *** (0.001) | 0.004 *** (−0.39) | |
log (NO2) | −0.0066 *** (0.1691) | ||
log (SO2) | 0.019 * (0.009) | ||
log (PM10) | −0.05 * (0.0023) | ||
log (PM2.5) | −0.031 *** (0.0232) | ||
Observation | 527 | 527 | 527 |
Rho (ρ) | 0.78 *** | 0.177 *** | 0.6235 *** |
Lambda (λ) | 0.3848 *** | 0.6359 *** | 0.486 *** |
Log likelihood | 3675.16 | 3373.34 | 3643.98 |
Model | r2 (0–1) | MSE (0–1) | MAE (0–1) |
---|---|---|---|
Random forest | 0.9965 | 0.039 | 0.232 |
Linear regression | 0.8894 | 0.416 | 0.214 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Liu, H.; Ma, R. Assessment and Prediction of Grain Production Considering Climate Change and Air Pollution in China. Sustainability 2022, 14, 9088. https://doi.org/10.3390/su14159088
Wang H, Liu H, Ma R. Assessment and Prediction of Grain Production Considering Climate Change and Air Pollution in China. Sustainability. 2022; 14(15):9088. https://doi.org/10.3390/su14159088
Chicago/Turabian StyleWang, Hengli, Hong Liu, and Rui Ma. 2022. "Assessment and Prediction of Grain Production Considering Climate Change and Air Pollution in China" Sustainability 14, no. 15: 9088. https://doi.org/10.3390/su14159088