Forecasting Rice Status for a Food Crisis Early Warning System Based on Satellite Imagery and Cellular Automata in Malang, Indonesia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sentinel 2-A Data Collection and Pre-Processing
2.3. LULC Classification and Accuracy Assessment
2.4. LULC Simulation and Changes
2.5. Data Collection and Quantification of Rice Status
3. Results
3.1. LULC Classification and Changes
3.2. Prediction of LULC Changes in 2025 Transitional Neural Network and Model Validation
3.3. Rice and Rice Field Status in Malang District
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Ziai, A. Development Discourse and Global History: From Colonialism to the Sustainable Development Goals; Taylor & Francis: New York, NY, USA, 2016. [Google Scholar]
- De Jong, E.; Vijge, M.J. From Millennium to Sustainable Development Goals: Evolving Discourses and Their Reflection in Policy Coherence for Development. Earth Syst. Gov. 2021, 7, 100087. [Google Scholar] [CrossRef]
- Davidson, J. Then and Now: Campaigns to Achieve Rice Self-Sufficiency in Indonesia. Bijdr. Tot Taal-Land-Volkenkd./J. Humanit. Soc. Sci. Southeast Asia 2018, 174, 188–215. [Google Scholar] [CrossRef] [Green Version]
- Pawera, L.; Khomsan, A.; Zuhud, E.A.; Hunter, D.; Ickowitz, A.; Polesny, Z. Wild Food Plants and Trends in Their Use: From Knowledge and Perceptions to Drivers of Change in West Sumatra, Indonesia. Foods 2020, 9, 1240. [Google Scholar] [CrossRef] [PubMed]
- Sarna, K.; Ismail, N.; Supriyono, H. After the Trade Dispute: Is Indonesian Food Sovereignty Threatened? Udayana J. Law Cult. 2020, 4, 171–192. [Google Scholar] [CrossRef]
- Viana, C.M.; Freire, D.; Abrantes, P.; Rocha, J.; Pereira, P. Agricultural Land Systems Importance for Supporting Food Security and Sustainable Development Goals: A Systematic Review. Sci. Total Environ. 2022, 806, 150718. [Google Scholar] [CrossRef] [PubMed]
- Helmer, E.H.; Brown, S.; Cohen, W. Mapping Montane Tropical Forest Successional Stage and Land Use with Multi-Date Landsat Imagery. Int. J. Remote Sens. 2000, 21, 2163–2183. [Google Scholar] [CrossRef]
- Hussain, M.; Chen, D.; Cheng, A.; Wei, H.; Stanley, D. Change Detection from Remotely Sensed Images: From Pixel-Based to Object-Based Approaches. ISPRS J. Photogramm. Remote Sens. 2013, 80, 91–106. [Google Scholar] [CrossRef]
- Jat, M.K.; Garg, P.K.; Khare, D. Monitoring and Modelling of Urban Sprawl Using Remote Sensing and GIS Techniques. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 26–43. [Google Scholar] [CrossRef]
- Pratomoatmojo, N. LanduseSim Algorithm: Land Use Change Modelling by Means of Cellular Automata and Geographic Information System; IOP Publishing: Bristol, UK, 2018; Volume 202, p. 012020. [Google Scholar] [CrossRef]
- Ramírez, M.T.T.; Mejía Carlos, M.; Murguía Ibarra, J.S.; Ontañon García, L.J. Partial Image Encryption Using Cellular Automata. Comput. Sist. 2019, 23, 1575–1582. [Google Scholar] [CrossRef]
- Ghalehteimouri, K.J.; Shamsoddini, A.; Mousavi, M.N.; Ros, F.B.C.; Khedmatzadeh, A. Predicting Spatial and Decadal of Land Use and Land Cover Change Using Integrated Cellular Automata Markov Chain Model Based Scenarios (2019–2049) Zarriné-Rūd River Basin in Iran. Environ. Chall. 2022, 6, 100399. [Google Scholar] [CrossRef]
- Wolfram, S. Statistical Mechanics of Cellular Automata. Rev. Mod. Phys. 1983, 55, 601–644. [Google Scholar] [CrossRef]
- Singh, A.K. Modelling Land Use Land Cover Changes Using Cellular Automata in a Geo-Spatial Environment; ITC: Kolkata, India, 2003. [Google Scholar]
- Susilo, B. Pemodelan Spasial Probabilistik Integrasi Markov Chain Dan Cellular Automata Untuk Kajian Perubahan Penggunaan Lahan Skala Regional Di Provinsi Daerah Istimewa Yogyakarta. J. Geogr. Gea 2011, 11. [Google Scholar] [CrossRef] [Green Version]
- Baig, M.F.; Mustafa, M.R.U.; Baig, I.; Takaijudin, H.B.; Zeshan, M.T. Assessment of Land Use Land Cover Changes and Future Predictions Using CA-ANN Simulation for Selangor, Malaysia. Water 2022, 14, 402. [Google Scholar] [CrossRef]
- Girma, R.; Fürst, C.; Moges, A. Land Use Land cover Change Modeling by Integrating Artificial Neural Network with Cellular Automata-Markov Chain Model in Gidabo River Basin, Main Ethiopian Rift. Environ. Chall. 2022, 6, 100419. [Google Scholar] [CrossRef]
- Munthali, M.G.; Davis, N.; Adeola, A.M.; Botai, J.O.; Kamwi, J.M.; Chisale, H.L.W.; Orimoogunje, O.O.I. Local Perception of Drivers of Land-Use and Land-Cover Change Dynamics across Dedza District, Central Malawi Region. Sustainability 2019, 11, 832. [Google Scholar] [CrossRef] [Green Version]
- Damayanti, F.; Rahma, P.D. Identifikasi Kawasan Slum Area Di Kota Malang. Rekayasa J. Tek. Sipil 2018, 3, 13–20. [Google Scholar]
- Central Bureau of Statistics in Malang Regency. Rice Field Area by District and Type of Irrigation in Malang Regency (Hectare). Available online: https://malangkab.bps.go.id/statictable/2020/06/05/831/luas-lahan-sawah-menurut-kecamatan-dan-jenis-pengairan-di-kabupaten-malang-hektar-2016-2019.html (accessed on 22 May 2022).
- Varon, D.J.; Jervis, D.; McKeever, J.; Spence, I.; Gains, D.; Jacob, D.J. High-Frequency Monitoring of Anomalous Methane Point Sources with Multispectral Sentinel-2 Satellite Observations. Atmos. Meas. Tech. 2021, 14, 2771–2785. [Google Scholar] [CrossRef]
- Ramadhani, F.; Pullanagari, R.; Kereszturi, G.; Procter, J. Automatic Mapping of Rice Growth Stages Using the Integration of SENTINEL-2, MOD13Q1, and SENTINEL-1. Remote Sens. 2020, 12, 3613. [Google Scholar] [CrossRef]
- Putra, A.N.; Nita, I. Reliability of Using High-Resolution Aerial Photography (Red, Green and Blue Bands) for Detecting Available Soil Water in Agricultural Land. J. Degrad. Min. Lands Manag. 2020, 7, 2221. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Shi, W.; Li, Z.; Atkinson, P.M. Fusion of Sentinel-2 Images. Remote Sens. Environ. 2016, 187, 241–252. [Google Scholar] [CrossRef] [Green Version]
- Chavez, J.; Pat, S. Image-Based Atmospheric Corrections—Revisited and Improved. Photogramm. Eng. Remote Sens. 1996, 62, 1025–1036. [Google Scholar]
- Ma, Z.; Liu, Z.; Zhao, Y.; Zhang, L.; Liu, D.; Ren, T.; Zhang, X.; Li, S. An Unsupervised Crop Classification Method Based on Principal Components Isometric Binning. ISPRS Int. J. Geo-Inf. 2020, 9, 648. [Google Scholar] [CrossRef]
- Wang, S.W.; Gebru, B.M.; Lamchin, M.; Kayastha, R.B.; Lee, W.-K. Land Use and Land cover Change Detection and Prediction in the Kathmandu District of Nepal Using Remote Sensing and GIS. Sustainability 2020, 12, 3925. [Google Scholar] [CrossRef]
- Cahyono, B.E.; Febriawan, E.B.; Nugroho, A.T. Analisis Tutupan Lahan Menggunakan Metode Klasifikasi Tidak Terbimbing Citra Landsat di Sawahlunto, Sumatera Barat (Land cover Analysis Using Unsupervised Classification Method of Landsat Imagery in Sawahlunto, West Sumatera). J. Tektonan 2019, 13, 8. [Google Scholar] [CrossRef]
- Nita, I.; Putra, A.N.; Fibrianingtyas, A. Analysis of Drought Hazards in Agricultural Land in Pacitan Regency, Indonesia. SAINS TANAH-J. Soil Sci. Agroclimatol. 2020, 17, 7–15. [Google Scholar] [CrossRef]
- Hakim, A.; Baja, S.; Rampisela, D.; Arif, S. Spatial Dynamic Prediction of Landuse/Landcover Change (Case Study: Tamalanrea Sub-District, Makassar City); IOP Publishing: Bristol, UK, 2019; Volume 280, p. 012023. [Google Scholar] [CrossRef] [Green Version]
- Surya, B.; Ahmad, D.N.A.; Sakti, H.H.; Sahban, H. Land Use Change, Spatial Interaction, and Sustainable Development in the Metropolitan Urban Areas, South Sulawesi Province, Indonesia. Land 2020, 9, 95. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Feng, M.; Biswas, A.; Su, H.; Niu, Y.; Cao, J. Driving Factors and Future Prediction of Land Use and cover Change Based on Satellite Remote Sensing Data by the LCM Model: A Case Study from Gansu Province, China. Sensors 2020, 20, 2757. [Google Scholar] [CrossRef]
- Ikegwuoha, D.C.; Weepener, H.L.; Dinka, M.O. Future Land Use Change Simulations for the Lepelle River Basin Using Cellular Automata Markov Model with Land Change Modeller-Generated Transition Areas. F1000Research 2021, 10, 796. [Google Scholar] [CrossRef]
- Fitriyani, F.; Fitriyani, R.; Rosmawanti, N. Penerapan Algoritma Euclidean Distance Untuk Pemilihan Paket Internet Berdasarkan Wilayah. Progresif: J. Ilm. Komput. 2017, 13, 12. [Google Scholar]
- Ibarra-Bonilla, J.S.; Villarreal-Guerrero, F.; Prieto-Amparán, J.A.; Santellano-Estrada, E.; Pinedo-Alvarez, A. Characterizing the Impact of Land-Use/Land-Cover Changes on a Temperate Forest Using the Markov Model. Egypt. J. Remote Sens. Space Sci. 2021, 24, 1013–1022. [Google Scholar] [CrossRef]
- Gharbia, S.S.; Alfatah, S.A.; Gill, L.; Johnston, P.; Pilla, F. Land Use Scenarios and Projections Simulation Using an Integrated GIS Cellular Automata Algorithms. Modeling Earth Syst. Environ. 2016, 2, 151. [Google Scholar] [CrossRef] [Green Version]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Al-Rubkhi, A.; Talal, A.; Mohammed, A. Land Use Change Analysis and Modeling Using Open Source (QGis)-Case Study: Boasher Willayat. Ph.D. Thesis, College of Arts and Social Science, Department of Geography, Sultan Qaboos University, Muscat, Oman, 2017. [Google Scholar]
- Buğday, E.; Buğday, S.E. Modeling and Simulating Land Use/Cover Change Using Artificial Neural Network from Remotely Sensing Data. Cerne 2019, 25, 246–254. [Google Scholar] [CrossRef]
- Cao, C.; Dragićević, S.; Li, S. Short-Term Forecasting of Land Use Change Using Recurrent Neural Network Models. Sustainability 2019, 11, 5376. [Google Scholar] [CrossRef] [Green Version]
- ESRI. Perform Analysis—ArcGIS Online Help|Documentation. Available online: https://doc.arcgis.com/en/arcgis-online/analyze/perform-analysis.htm (accessed on 22 May 2022).
- Leta, M.K.; Demissie, T.A.; Tränckner, J. Modeling and Prediction of Land Use Land cover Change Dynamics Based on Land Change Modeler (Lcm) in Nashe Watershed, Upper Blue Nile Basin, Ethiopia. Sustainability 2021, 13, 3740. [Google Scholar] [CrossRef]
- Roberts, D.; Mattoo, A. Agriculture Sustainable Agriculture-Enhancing Environmental Benefits, Food Nutritional Quality and Building Crop Resilience to Abiotic and Biotic Stresses. Agriculture 2018, 8, 8. [Google Scholar] [CrossRef] [Green Version]
- Motschenbacher, J.; Brye, K.; Anders, M.; Gbur, E.; Slaton, N.; Evans-White, M. Daily Soil Surface CO2 Flux during Non-Flooded Periods in Flood-Irrigated Rice Rotations. Agron. Sustain. Dev. 2014, 35, 771–782. [Google Scholar] [CrossRef] [Green Version]
- Magagula, B.; Tsvakirai, C.Z. Youth Perceptions of Agriculture: Influence of Cognitive Processes on Participation in Agripreneurship. Dev. Pract. 2020, 30, 234–243. [Google Scholar] [CrossRef] [Green Version]
- United Nations. The Intimate Relationship between Food Security and Land. Available online: https://www.un.org/en/academic-impact/intimate-relationship-between-food-security-and-land (accessed on 22 May 2022).
- USAID. Nutrition, Food Security and Family Planning: Technical Guidance Brief. Available online: https://www.usaid.gov/global-health/health-areas/nutrition/technical-areas/nutrition-food-security-and-family-planning (accessed on 22 May 2022).
- Partoyo; Shrestha, R.P. Chapter 5—Modeling Effect of Conservation and Livelihood Policies on Community Land Use and Management in Yogyakarta. In Redefining Diversity & Dynamics of Natural Resources Management in Asia; Shivakoti, G.P., Pradhan, U., Helmi, Eds.; Elsevier: Amsterdam, The Netherlands, 2017; Volume 1, pp. 67–90. [Google Scholar] [CrossRef]
- Khumairoh, U.; Lantinga, E.A.; Schulte, R.P.; Suprayogo, D.; Groot, J.C. Complex Rice Systems to Improve Rice Yield and Yield Stability in the Face of Variable Weather Conditions. Sci. Rep. 2018, 8, 14746. [Google Scholar] [CrossRef]
Criteria | 2015 | 2017 | 2019 | 2021 | Forecasted 2025 |
---|---|---|---|---|---|
Supply (ton) | |||||
Dehulled rice production (ton) | 543,586 | 646,707 | 664,422 | 547,917 | 536,102 |
Hulled rice production (ton) | 270,558 | 321,885 | 330,702 | 272,714 | 266,834 |
Demand (ton) | |||||
Population | 2,544,315 | 2,560,675 | 2,576,596 | 2,671,073 | 2,739,822 |
Hulled rice (ton) | 241,455 | 243,008 | 244,519 | 253,485 | 260,009 |
Dehulled rice (ton) | 480,727 | 483,818 | 486,826 | 504,677 | 517,667 |
Surplus (ton) | |||||
Hulled rice | 29,103 | 78,877 | 86,183 | 19,229 | 6824 |
Dehulled rice | 62,858 | 162,889 | 177,596 | 43,240 | 18,436 |
Rice field (ha) | |||||
Available rice field | 50,332 | 50,524 | 51,908 | 42,806 | 41,883 |
Required rice field | 37,557 | 37,798 | 38,033 | 39,428 | 41,330 |
Surplus rice field | 12,775 | 12,726 | 13,875 | 3378 | 1440 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sujarwo; Putra, A.N.; Setyawan, R.A.; Teixeira, H.M.; Khumairoh, U. Forecasting Rice Status for a Food Crisis Early Warning System Based on Satellite Imagery and Cellular Automata in Malang, Indonesia. Sustainability 2022, 14, 8972. https://doi.org/10.3390/su14158972
Sujarwo, Putra AN, Setyawan RA, Teixeira HM, Khumairoh U. Forecasting Rice Status for a Food Crisis Early Warning System Based on Satellite Imagery and Cellular Automata in Malang, Indonesia. Sustainability. 2022; 14(15):8972. https://doi.org/10.3390/su14158972
Chicago/Turabian StyleSujarwo, Aditya Nugraha Putra, Raden Arief Setyawan, Heitor Mancini Teixeira, and Uma Khumairoh. 2022. "Forecasting Rice Status for a Food Crisis Early Warning System Based on Satellite Imagery and Cellular Automata in Malang, Indonesia" Sustainability 14, no. 15: 8972. https://doi.org/10.3390/su14158972
APA StyleSujarwo, Putra, A. N., Setyawan, R. A., Teixeira, H. M., & Khumairoh, U. (2022). Forecasting Rice Status for a Food Crisis Early Warning System Based on Satellite Imagery and Cellular Automata in Malang, Indonesia. Sustainability, 14(15), 8972. https://doi.org/10.3390/su14158972