Electrical Energy Dilemma and CO2 Emission in Pakistan: Decomposing the Positive and Negative Shocks by Using an Asymmetric Technique
Abstract
:1. Introduction
2. Literature Review
3. Methods and Data
Model for the Study Variables
4. Empirical Findings and Discussion
4.1. Summary and Correlation Analysis
4.2. Unit Root Testing
4.3. Lag Selection
4.4. Bounds Tests for the Specification of Cointegration
4.5. Asymmetric Technique Outcomes
5. Concluding Remarks and Policy Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rehman, A. The nexus of electricity access, population growth, economic growth in Pakistan and projection through 2040: An ARDL to co-integration approach. Int. J. Energy Sect. Manag. 2019, 13, 747–763. [Google Scholar] [CrossRef]
- GOP. Pakistan Economic Survey (2020–21). 2021. Available online: https://www.finance.gov.pk/survey/chapters_21/14-Energy.pdf (accessed on 2 April 2022).
- Rehman, A.; Ma, H.; Ozturk, I.; Radulescu, M. Revealing the dynamic effects of fossil fuel energy, nuclear energy, renewable energy, and carbon emissions on Pakistan’s economic growth. Environ. Sci. Pollut. Res. 2022, 29, 48784–48794. [Google Scholar] [CrossRef] [PubMed]
- Rehman, A.; Alam, M.M.; Radulescu, M.; Alvarado, R.; Mihai, D.; Brutu, M. A Novel Investigation to Explore the Impact of Renewable Energy, Urbanization, and Trade on Carbon Emission in Bhutan. Energies 2022, 15, 2984. [Google Scholar] [CrossRef]
- Luqman, M.; Ahmad, N.; Bakhsh, K. Nuclear energy, renewable energy and economic growth in Pakistan: Evidence from non-linear autoregressive distributed lag model. Renew. Energy 2019, 139, 1299–1309. [Google Scholar] [CrossRef]
- Ibrahim-Shwilima, A.J. Economic growth and nonrenewable resources: An empirical investigation. Asian J. Empir. Res. 2016, 6, 26–41. [Google Scholar]
- Saudi, M.H.M.; Sinaga, O.; Roespinoedji, D.; Razimi, M.S.A. The role of renewable, non-renewable electricity consumption and carbon emission in development in Indonesia: Evidence from Distributed Lag Tests. Int. J. Energy Econ. Policy 2019, 9, 46. [Google Scholar] [CrossRef]
- Aftab, S.; Ahmed, A.; Chandio, A.A.; Korankye, B.A.; Ali, A.; Fang, W. Modeling the nexus between carbon emissions, energy consumption, and economic progress in Pakistan: Evidence from cointegration and causality analysis. Energy Rep. 2021, 7, 4642–4658. [Google Scholar] [CrossRef]
- GOP. Pakistan Economic Survey (2019–20). 2020. Available online: https://www.finance.gov.pk/survey/chapter_20/14_Energy.pdf (accessed on 20 March 2022).
- GOP. Pakistan Economic Survey (2018–19). 2019. Available online: https://www.finance.gov.pk/survey/chapters_19/14-Energy.pdf (accessed on 10 March 2022).
- Rehman, A.; Deyuan, Z. Investigating the linkage between economic growth, electricity access, energy use, and population growth in Pakistan. Appl. Sci. 2018, 8, 2442. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Imran, M.; Wu, M.; Moon, H.C.; Liu, X. Alternative to oil and gas: Review of economic benefits and potential of wind power in Pakistan. Math. Probl. Eng. 2020, 2020, 8884228. [Google Scholar] [CrossRef]
- Saghir, M.; Zafar, S.; Tahir, A.; Ouadi, M.; Siddique, B.; Hornung, A. Unlocking the potential of biomass energy in Pakistan. Front. Energy Res. 2019, 7, 24. [Google Scholar] [CrossRef]
- GOP. Pakistan Economic Survey (2015–16). 2016. Available online: https://www.finance.gov.pk/survey/chapters_16/14_Energy.pdf (accessed on 5 March 2022).
- Sineviciene, L.; Sotnyk, I.; Kubatko, O. Determinants of energy efficiency and energy consumption of Eastern Europe post-communist economies. Energy Environ. 2017, 28, 870–884. [Google Scholar] [CrossRef]
- Gao, M.; He, K.; Li, L.; Wang, Q.; Liu, C. A review on energy consumption, energy efficiency and energy saving of metal forming processes from different hierarchies. Processes 2019, 7, 357. [Google Scholar] [CrossRef] [Green Version]
- Qu, W.H.; Xu, L.; Qu, G.H.; Yan, Z.J.; Wang, J.X. The impact of energy consumption on environment and public health in China. Nat. Hazards 2017, 87, 675–697. [Google Scholar] [CrossRef]
- Mujtaba, A.; Jena, P.K.; Bekun, F.V.; Sahu, P.K. Symmetric and asymmetric impact of economic growth, capital formation, renewable and non-renewable energy consumption on environment in OECD countries. Renew. Sustain. Energy Rev. 2022, 160, 112300. [Google Scholar] [CrossRef]
- Holmberg, K.; Erdemir, A. Global impact of friction on energy consumption, economy and environment. FME Trans. 2015, 43, 181–185. [Google Scholar]
- Abbas, S.; Kousar, S.; Yaseen, M.; Mayo, Z.A.; Zainab, M.; Mahmood, M.J.; Raza, H. Impact assessment of socioeconomic factors on dimensions of environmental degradation in Pakistan. SN Appl. Sci. 2020, 2, 468. [Google Scholar] [CrossRef] [Green Version]
- Siyal, M.Y.; Chowdhry, B.S.; Rajput, A.Q. Socio-economic factors and their influence on the adoption of e-commerce by comsumers in Singapore. Int. J. Inf. Technol. Decis. Mak. 2006, 5, 317–329. [Google Scholar] [CrossRef]
- Zhu, Q.; Peng, X.; Wu, K. Calculation and decomposition of indirect carbon emissions from residential consumption in China based on the input–output model. Energy Policy 2012, 48, 618–626. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, W.; Yin, J. Driving forces of indirect carbon emissions from household consumption in China: An input–output decomposition analysis. Nat. Hazards 2015, 75, 257–272. [Google Scholar] [CrossRef]
- Ozcan, B.; Tzeremes, P.; Dogan, E. Re-estimating the interconnectedness between the demand of energy consumption, income, and sustainability indices. Environ. Sci. Pollut. Res. 2019, 26, 26500–26516. [Google Scholar] [CrossRef]
- Ulucak, R.; Ozcan, B. Relationship between energy consumption and environmental sustainability in OECD countries: The role of natural resources rents. Resour. Policy 2020, 69, 101803. [Google Scholar] [CrossRef]
- Kang, S.H.; Islam, F.; Tiwari, A.K. The dynamic relationships among CO2 emissions, renewable and non-renewable energy sources, and economic growth in India: Evidence from time-varying Bayesian VAR model. Struct. Chang. Econ. Dyn. 2019, 50, 90–101. [Google Scholar] [CrossRef]
- Ulucak, R.; Apergis, N. Does convergence really matter for the environment? An application based on club convergence and on the ecological footprint concept for the EU countries. Environ. Sci. Policy 2018, 80, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Rehman, A.; Ma, H.; Chishti, M.Z.; Ozturk, I.; Irfan, M.; Ahmad, M. Asymmetric investigation to track the effect of urbanization, energy utilization, fossil fuel energy and CO2 emission on economic efficiency in China: Another outlook. Environ. Sci. Pollut. Res. 2021, 28, 17319–17330. [Google Scholar] [CrossRef]
- Khoshnevis Yazdi, S.; Shakouri, B. Renewable energy, nonrenewable energy consumption, and economic growth. Energy Sources Part B Econ. Plan. Policy 2017, 12, 1038–1045. [Google Scholar] [CrossRef]
- Ahmed, M.; Azam, M. Causal nexus between energy consumption and economic growth for high, middle and low income countries using frequency domain analysis. Renew. Sustain. Energy Rev. 2016, 60, 653–678. [Google Scholar] [CrossRef]
- Khan, M.K.; Teng, J.Z.; Khan, M.I. Effect of energy consumption and economic growth on carbon dioxide emissions in Pakistan with dynamic ARDL simulations approach. Environ. Sci. Pollut. Res. 2019, 26, 23480–23490. [Google Scholar] [CrossRef]
- Nasreen, S.; Saidi, S.; Ozturk, I. Assessing links between energy consumption, freight transport, and economic growth: Evidence from dynamic simultaneous equation models. Environ. Sci. Pollut. Res. 2018, 25, 16825–16841. [Google Scholar] [CrossRef]
- Jamel, L.; Derbali, A. Do energy consumption and economic growth lead to environmental degradation? Evidence from Asian economies. Cogent Econ. Financ. 2016, 4, 1170653. [Google Scholar] [CrossRef] [Green Version]
- Rafindadi, A.A. Econometric prediction on the effects of financial development and trade openness on the German energy consumption: A startling revelation from the data set. Int. J. Energy Econ. Policy 2015, 5, 182–196. [Google Scholar]
- Michieka, N.M.; Fletcher, J.; Burnett, W. An empirical analysis of the role of China’s exports on CO2 emissions. Appl. Energy 2015, 104, 258–267. [Google Scholar] [CrossRef] [Green Version]
- Mirza, F.M.; Kanwal, A. Energy consumption, carbon emissions and economic growth in Pakistan: Dynamic causality analysis. Renew. Sustain. Energy Rev. 2017, 72, 1233–1240. [Google Scholar] [CrossRef]
- Pablo-Romero, M.D.P.; De Jesús, J. Economic growth and energy consumption: The energy-environmental Kuznets curve for Latin America and the Caribbean. Renew. Sustain. Energy Rev. 2016, 60, 1343–1350. [Google Scholar] [CrossRef]
- He, X.; Adebayo, T.S.; Kirikkaleli, D.; Umar, M. Analysis of dual adjustment approach: Consumption-based carbon emissions in Mexico. Sustain. Prod. Consum 2021, 27, 947–957. [Google Scholar] [CrossRef]
- Dong, K.; Hochman, G.; Zhang, Y.; Sun, R.; Li, H.; Liao, H. CO2 emissions, economic and population growth, and renewable energy: Empirical evidence across regions. Energy Econ. 2018, 75, 180–192. [Google Scholar] [CrossRef]
- Bekhet, H.A.; Matar, A.; Yasmin, T. CO2 emissions, energy consumption, economic growth, and financial development in GCC countries: Dynamic simultaneous equation models. Renew. Sustain. Energy Rev. 2017, 70, 117–132. [Google Scholar] [CrossRef]
- Shahbaz, M.; Solarin, S.A.; Hammoudeh, S.; Shahzad, S.J.H. Bounds testing approach to analyzing the environment Kuznets curve hypothesis with structural beaks: The role of biomass energy consumption in the United States. Energy Econ. 2017, 68, 548–565. [Google Scholar] [CrossRef] [Green Version]
- Neagu, O.; Teodoru, M.C. The relationship between economic complexity, energy consumption structure and greenhouse gas emission: Heterogeneous panel evidence from the EU countries. Sustainability 2019, 11, 497. [Google Scholar] [CrossRef] [Green Version]
- Rudolph, A.; Figge, L. Determinants of ecological footprints: What is the role of globalization? Ecol. Indic. 2017, 81, 348–361. [Google Scholar] [CrossRef]
- Usman, M.; Jahanger, A. Heterogeneous effects of remittances and institutional quality in reducing environmental deficit in the presence of EKC hypothesis: A global study with the application of panel quantile regression. Environ. Sci. Pollut. Res. 2021, 28, 37292–37310. [Google Scholar] [CrossRef]
- Shahbaz, M.; Tiwari, A.K.; Nasir, M. The effects of financial development, economic growth, coal consumption and trade openness on CO2 emissions in South Africa. Energy Policy 2013, 61, 1452–1459. [Google Scholar] [CrossRef] [Green Version]
- Kasman, A.; Duman, Y.S. CO2 emissions, economic growth, energy consumption, trade and urbanization in new EU member and candidate countries: A panel data analysis. Econ. Model. 2015, 44, 97–103. [Google Scholar] [CrossRef]
- Pesaran, M.H.; Shin, Y.; Smith, R.J. Bounds testing approaches to the analysis of level relationships. J. Appl. Econom. 2001, 16, 289–326. [Google Scholar] [CrossRef]
- Shin, Y.; Yu, B.; Greenwood-Nimmo, M. Modelling asymmetric cointegration and dynamic multipliers in a nonlinear ARDL framework. In Festschrift in Honor of Peter Schmidt; Springer: New York, NY, USA, 2014; pp. 281–314. [Google Scholar]
- Dickey, D.A.; Fuller, W.A. Distribution of the estimators for autoregressive time series with a unit root. J. Am. Stat. Assoc. 1979, 74, 427–431. [Google Scholar]
- Phillips, P.C.; Perron, P. Testing for a unit root in time series regression. Biometrika 1988, 75, 335–346. [Google Scholar] [CrossRef]
- Johansen, S.; Juselius, K. Maximum likelihood estimation and inference on cointegration—With appucations to the demand for money. Oxf. Bull. Econ. Stat. 1990, 52, 169–210. [Google Scholar] [CrossRef]
- Garcia, J.M.; Coelho LM, R. Energy efficiency strategies in refrigeration systems of large supermarkets. Int. J. Energy Environ. 2010, 4, 63–70. [Google Scholar]
- Javed, M.S.; Raza, R.; Hassan, I.; Saeed, R.; Shaheen, N.; Iqbal, J.; Shaukat, S.F. The energy crisis in Pakistan: A possible solution via biomass-based waste. J. Renew. Sustain. Energy 2016, 8, 043102. [Google Scholar] [CrossRef]
- GOP. Pakistan Economic Survey (2017–18). 2018. Available online: https://www.finance.gov.pk/survey/chapters_18/14-Energy.pdf (accessed on 2 March 2022).
- Rehman, A.; Ozcan, R.; Badshah, W.; Radulescu, M.; Ozturk, I. Symmetric and Asymmetric Impacts of Commercial Energy Distribution from Key Sources on Economic Progress in Pakistan. Sustainability 2021, 13, 12670. [Google Scholar] [CrossRef]
- Jaforullah, M.; King, A. Does the use of renewable energy sources mitigate CO2 emissions? A reassessment of the US evidence. Energy Econ. 2015, 49, 711–717. [Google Scholar] [CrossRef]
- Kirikkaleli, D.; Adebayo, T.S. Do renewable energy consumption and financial development matter for environmental sustainability? New global evidence. Sustain. Dev. 2021, 29, 583–594. [Google Scholar] [CrossRef]
- Ahmed, Z.; Wang, Z.; Mahmood, F.; Hafeez, M.; Ali, N. Does globalization increase the ecological footprint? Empirical evidence from Malaysia. Environ. Sci. Pollut. Res. 2019, 26, 18565–18582. [Google Scholar] [CrossRef] [PubMed]
- Pata, U.K. Renewable and non-renewable energy consumption, economic complexity, CO2 emissions, and ecological footprint in the USA: Testing the EKC hypothesis with a structural break. Environ. Sci. Pollut. Res. 2021, 28, 846–861. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, B.; Khan, M.K.; Khan, M.I.; Khan, S. Impact of foreign direct investment, natural resources, renewable energy consumption, and economic growth on environmental degradation: Evidence from BRICS, developing, developed and global countries. Environ. Sci. Pollut. Res. 2021, 28, 21789–21798. [Google Scholar] [CrossRef] [PubMed]
- Ali, R.; Bakhsh, K.; Yasin, M.A. Impact of urbanization on CO2 emissions in emerging economy: Evidence from Pakistan. Sustain. Cities Soc. 2019, 48, 101553. [Google Scholar] [CrossRef]
- Bologna, S. Energy and Sustainable Economic Development. In Renewable Energy for Unleashing Sustainable Development; Springer: Cham, Switzerland, 2013; pp. 181–193. [Google Scholar]
- Ahmed, M.M.; Shimada, K. The effect of renewable energy consumption on sustainable economic development: Evidence from emerging and developing economies. Energies 2019, 12, 2954. [Google Scholar] [CrossRef] [Green Version]
- Bayar, Y.; Sasmaz, M.U.; Ozkaya, M.H. Impact of trade and financial globalization on renewable energy in EU transition economies: A bootstrap panel granger causality test. Energies 2020, 14, 19. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, B.; Wang, B. Renewable energy consumption, economic growth and human development index in Pakistan: Evidence form simultaneous equation model. J. Clean. Prod. 2018, 184, 1081–1090. [Google Scholar] [CrossRef]
- Mirza, I.A.; Khalil, M.S. Renewable energy in Pakistan: Opportunities and challenges. Sci. Vis. 2011, 16, 13–20. [Google Scholar]
- Rahman, M.M.; Velayutham, E. Renewable and non-renewable energy consumption-economic growth nexus: New evidence from South Asia. Renew. Energy 2020, 147, 399–408. [Google Scholar] [CrossRef]
- GOP. Government of Pakistan Ministry of Climate Change. 2012. Available online: http://www.gcisc.org.pk/National_Climate_Change_Policy_2012.pdf (accessed on 10 April 2022).
Variables for the Analysis | Short Form | Measurements (Units) | Sources of Data | Web. Links |
---|---|---|---|---|
CO2 emission | CO2e | In kt (kiloton) | WDI | https://data.worldbank.org/country/Pakistan, (accessed on 15 April 2022) |
Electricity production from oil sources | EPO | In % of total | WDI | |
Electricity production from nuclear sources | EPN | In % of total | WDI | |
Electricity production from natural gas sources | EPG | In % of total | WDI | |
Electricity production from coal sources | EPC | In % of total | WDI |
Variables | Mean | Median | Maximum | Minimum | Std. Dev. | Skewness | Kurtosis | Jarque–Bera | Probability |
---|---|---|---|---|---|---|---|---|---|
CO2e | 11.182 | 11.341 | 12.247 | 9.848 | 0.721 | −0.379 | 1.885 | 3.783 | 0.150 |
EPO | 2.812 | 3.295 | 3.817 | −1.192 | 1.117 | −1.686 | 5.650 | 38.342 | 0.000 |
EPN | 0.496 | 0.701 | 1.805 | −4.315 | 1.075 | −2.143 | 9.894 | 137.301 | 0.000 |
EPG | 3.488 | 3.440 | 3.220 | 3.220 | 0.182 | 0.627 | 2.398 | 4.034 | 0.133 |
EPC | −1.797 | −1.876 | 0.194 | −5.275 | 1.262 | −0.690 | 3.632 | 4.809 | 0.090 |
CO2e | EPO | EPN | EPG | EPC | |
---|---|---|---|---|---|
CO2e | 1.000 | 0.810 | 0.228 | −0.518 | −0.564 |
EPO | 0.810 | 1.000 | 0.280 | −0.617 | −0.378 |
EPN | 0.228 | 0.280 | 1.000 | −0.011 | −0.056 |
EPG | −0.518 | −0.617 | −0.011 | 1.000 | 0.376 |
EPC | −0.564 | −0.378 | −0.056 | 0.376 | 1.000 |
ADF at Level | ADF at 1st Diff. | P-P at Level | P-P at 1st Diff. | |||||
---|---|---|---|---|---|---|---|---|
t-Statistics | p-Values | t-Statistics | p-Values | t-Statistics | p-Values | t-Statistics | p-Values | |
None | ||||||||
CO2e | 4.714 | 1.000 | −2.544 | 0.012 | 4.714 | 0.000 | −4.810 | 0.000 |
EPO | −0.317 | 0.565 | −4.824 | 0.000 | 0.092 | 0.926 | −4.824 | 0.000 |
EPN | −0.649 | 0.429 | −1.891 | 0.056 | −3.280 | 0.001 | −9.072 | 0.000 |
EPG | −0.928 | 0.308 | −3.472 | 0.000 | −0.787 | 0.435 | −6.547 | 0.000 |
EPC | 0.990 | 0.912 | −9.695 | 0.000 | 0.043 | 0.965 | −9.695 | 0.000 |
Intercept | ||||||||
CO2e | −3.423 | 0.0155 | −7.564 | 0.000 | −1.047 | 0.300 | −7.564 | 0.000 |
EPO | −2.291 | 0.1788 | −4.813 | 0.000 | −1.607 | 0.114 | −4.813 | 0.000 |
EPN | −1.221 | 0.6557 | −2.072 | 0.256 | −3.716 | 0.000 | −8.978 | 0.000 |
EPG | −2.618 | 0.097 | −3.558 | 0.010 | −2.238 | 0.030 | −6.537 | 0.000 |
EPC | −0.548 | 0.872 | −9.944 | 0.000 | −1.517 | 0.135 | −9.944 | 0.000 |
Trend and Intercept | ||||||||
CO2e | −0.958 | 0.9403 | −4.420 | 0.005 | −0.958 | 0.342 | −8.159 | 0.000 |
EPO | −3.604 | 0.0400 | −4.765 | 0.001 | −2.269 | 0.028 | −4.765 | 0.000 |
EPN | −1.636 | 0.759 | −1.551 | 0.793 | −3.950 | 0.000 | −8.882 | 0.000 |
EPG | −3.041 | 0.133 | −3.554 | 0.046 | −2.312 | 0.025 | −6.493 | 0.000 |
EPC | −1.148 | 0.909 | −9.919 | 0.000 | −2.221 | 0.031 | −9.919 | 0.000 |
Lag | LogL | LR | FPE | AIC | SC | HQ |
---|---|---|---|---|---|---|
0 | −198.095 | NA | 0.004 | 8.830 | 9.029 | 8.904 |
1 | 3.356 | 350.351 | 2.21 × 10−6 | 1.158 | 2.351 * | 1.605 |
2 | 39.438 | 54.907 * | 1.42 × 10−6 * | 0.676 * | 2.863 | 1.495 * |
3 | 62.036 | 29.475 | 1.75 × 10−6 | 0.781 | 3.961 | 1.972 |
4 | 75.355 | 14.477 | 3.59 × 10−6 | 1.288 | 5.462 | 2.852 |
F-Bounds Test | N-Hypothesis: (No Levels Relationship) | ||
---|---|---|---|
T-Stat (Value) | Significance | At I(0) | At I(1) |
F-stat (4.756) | 10% | (1.85) | (2.85) |
K (8) | 5% | (2.11) | (3.15) |
2.5% | (2.33) | (3.42) | |
1% | (2.62) | (3.77) |
Hypothesized No. of CE(s) | E-Value | T-Statistic | C-Value at (0.05) | Prob.** | E-Value | Max-E-Statistic | C-Value at (0.05) | Prob.** |
---|---|---|---|---|---|---|---|---|
None * | 0.554 | 73.194 | 69.818 | 0.026 | 0.554 | 38.847 | 33.876 | 0.011 |
At most 1 | 0.278 | 34.346 | 47.856 | 0.483 | 0.278 | 15.658 | 27.584 | 0.694 |
At most 2 | 0.195 | 18.688 | 29.797 | 0.515 | 0.195 | 10.458 | 21.131 | 0.700 |
At most 3 | 0.120 | 8.229 | 15.494 | 0.441 | 0.120 | 6.152 | 14.264 | 0.593 |
At most 4 | 0.042 | 2.076 | 3.841 | 0.149 | 0.042 | 2.076 | 3.841 | 0.149 |
Short-Run Estimation | ||||
---|---|---|---|---|
Variables | Coefficients | S-Error | t-Stat | Prob. |
C | 3.801 | 1.057 | 3.595 | 0.001 |
CO2e(−1) | −0.370 | 0.106 | −3.481 | 0.001 |
EPO_POS | 0.033 | 0.022 | 1.499 | 0.142 |
EPO_NEG | 0.011 | 0.015 | 0.716 | 0.478 |
EPN_POS(−1) | −0.043 | 0.021 | −2.068 | 0.046 |
EPN_NEG(−1) | −0.048 | 0.019 | −2.507 | 0.017 |
EPG_POS(−1) | 0.349 | 0.093 | 3.758 | 0.000 |
EPG_NEG(−1) | −0.026 | 0.057 | −0.455 | 0.651 |
EPC_POS | 0.022 | 0.012 | 1.845 | 0.073 |
EPC_NEG | 0.019 | 0.011 | 1.717 | 0.095 |
D(EPN_POS) | −0.063 | 0.024 | −2.545 | 0.015 |
D(EPN_NEG) | 0.003 | 0.014 | 0.245 | 0.807 |
D(EPG_POS) | 0.065 | 0.126 | 0.516 | 0.608 |
D(EPG_NEG) | 0.205 | 0.132 | 1.549 | 0.130 |
CointEq(−1) | −0.370 | 0.047 | −7.755 | 0.000 |
Long-Run Estimation | ||||
Variables | Coefficients | S-Error | t-Stat | Prob. |
EPO_POS | 0.089 | 0.065 | 1.367 | 0.180 |
EPO_NEG | 0.030 | 0.041 | 0.746 | 0.460 |
EPN_POS | −0.117 | 0.065 | −1.783 | 0.083 |
EPN_NEG | −0.130 | 0.053 | −2.418 | 0.021 |
EPG_POS | 0.943 | 0.276 | 3.415 | 0.001 |
EPG_NEG | −0.070 | 0.150 | −0.470 | 0.640 |
EPC_POS | 0.060 | 0.027 | 2.220 | 0.033 |
EPC_NEG | 0.053 | 0.038 | 1.375 | 0.178 |
C | 10.255 | 0.144 | 71.027 | 0.000 |
R2 (0.997) Adj-R2 (0.996) Log-likelihood (92.858) | Akaike info criterion (−3.285) S-criterion (−2.740) H-Quinn criter. (−3.079) D-Watson stat (1.912) |
Breusch–Godfrey Serial Correlation LM Test | Heteroskedasticity Test (Harvey) |
---|---|
F-statistic (0.199) | F-statistic (1.516) |
R-squared (0.592) | R-squared (17.620) |
Prob. (0.743) | Prob. (0.000) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rehman, A.; Cismas, L.M.; Otil, M.D. Electrical Energy Dilemma and CO2 Emission in Pakistan: Decomposing the Positive and Negative Shocks by Using an Asymmetric Technique. Sustainability 2022, 14, 8957. https://doi.org/10.3390/su14148957
Rehman A, Cismas LM, Otil MD. Electrical Energy Dilemma and CO2 Emission in Pakistan: Decomposing the Positive and Negative Shocks by Using an Asymmetric Technique. Sustainability. 2022; 14(14):8957. https://doi.org/10.3390/su14148957
Chicago/Turabian StyleRehman, Abdul, Laura Mariana Cismas, and Maria Daniela Otil. 2022. "Electrical Energy Dilemma and CO2 Emission in Pakistan: Decomposing the Positive and Negative Shocks by Using an Asymmetric Technique" Sustainability 14, no. 14: 8957. https://doi.org/10.3390/su14148957