Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (27,321)

Search Parameters:
Keywords = electrical energy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 3543 KiB  
Review
Enhancing the Performance of Active Distribution Grids: A Review Using Metaheuristic Techniques
by Jesús Daniel Dávalos Soto, Daniel Guillen, Luis Ibarra, José Ezequiel Santibañez-Aguilar, Jesús Elias Valdez-Resendiz, Juan Avilés, Meng Yen Shih and Antonio Notholt
Energies 2025, 18(15), 4180; https://doi.org/10.3390/en18154180 (registering DOI) - 6 Aug 2025
Abstract
The electrical power system is composed of three essential sectors, generation, transmission, and distribution, with the latter being crucial for the overall efficiency of the system. Enhancing the capabilities of active distribution networks involves integrating various advanced technologies such as distributed generation units, [...] Read more.
The electrical power system is composed of three essential sectors, generation, transmission, and distribution, with the latter being crucial for the overall efficiency of the system. Enhancing the capabilities of active distribution networks involves integrating various advanced technologies such as distributed generation units, energy storage systems, banks of capacitors, and electric vehicle chargers. This paper provides an in-depth review of the primary strategies for incorporating these technologies into the distribution network to improve its reliability, stability, and efficiency. It also explores the principal metaheuristic techniques employed for the optimal allocation of distributed generation units, banks of capacitors, energy storage systems, electric vehicle chargers, and network reconfiguration. These techniques are essential for effectively integrating these technologies and optimizing the active distribution network by enhancing power quality and voltage level, reducing losses, and ensuring operational indices are maintained at optimal levels. Full article
(This article belongs to the Section K: State-of-the-Art Energy Related Technologies)
Show Figures

Figure 1

22 pages, 4194 KiB  
Article
Grain Boundary Regulation in Aggregated States of MnOx Nanofibres and the Photoelectric Properties of Their Nanocomposites Across a Broadband Light Spectrum
by Xingfa Ma, Xintao Zhang, Mingjun Gao, Ruifen Hu, You Wang and Guang Li
Coatings 2025, 15(8), 920; https://doi.org/10.3390/coatings15080920 (registering DOI) - 6 Aug 2025
Abstract
Improving charge transport in the aggregated state of nanocomposites is challenging due to the large number of defects present at grain boundaries. To enhance the charge transfer and photogenerated carrier extraction of MnOx nanofibers, a MnOx/GO (graphene oxide) nanocomposite was [...] Read more.
Improving charge transport in the aggregated state of nanocomposites is challenging due to the large number of defects present at grain boundaries. To enhance the charge transfer and photogenerated carrier extraction of MnOx nanofibers, a MnOx/GO (graphene oxide) nanocomposite was prepared. The effects of GO content and bias on the optoelectronic properties were studied. Representative light sources at 405, 650, 780, 808, 980, and 1064 nm were used to examine the photoelectric signals. The results indicate that the MnOx/GO nanocomposites have photocurrent switching behaviours from the visible region to the NIR (near-infrared) when the amount of GO added is optimised. It was also found that even with zero bias and storage of the nanocomposite sample at room temperature for over 8 years, a good photoelectric signal could still be extracted. This demonstrates that the MnOx/GO nanocomposites present a strong built-in electric field that drives the directional motion of photogenerated carriers, avoids the photogenerated carrier recombination, and reflect a good photophysical stability. The strength of the built-in electric field is strongly affected by the component ratios of the resulting nanocomposite. The formation of the built-in electric field results from interfacial charge transfer in the nanocomposite. Modulating the charge behaviour of nanocomposites can significantly improve the physicochemical properties of materials when excited by light with different wavelengths and can be used in multidisciplinary applications. Since the recombination of photogenerated electron–hole pairs is the key bottleneck in multidisciplinary fields, this study provides a simple, low-cost method of tailoring defects at grain boundaries in the aggregated state of nanocomposites. These results can be used as a reference for multidisciplinary fields with low energy consumption. Full article
15 pages, 3935 KiB  
Article
Highly Efficient Tribocatalysis of Superhard SiC for Water Purification
by Yuanfang Wang, Zheng Wu, Siqi Hong, Ziqi Zhu, Siqi Wu, Biao Chen and Yanmin Jia
Nanomaterials 2025, 15(15), 1206; https://doi.org/10.3390/nano15151206 - 6 Aug 2025
Abstract
Mechanical friction offers a frequent approach for sustainable energy harvesting, as it can be captured and transformed into electricity by means of the triboelectric phenomenon. Theoretically, this electricity may subsequently be employed to drive electrochemical water purification processes. Herein, the experimental results confirm [...] Read more.
Mechanical friction offers a frequent approach for sustainable energy harvesting, as it can be captured and transformed into electricity by means of the triboelectric phenomenon. Theoretically, this electricity may subsequently be employed to drive electrochemical water purification processes. Herein, the experimental results confirm that the SiC particles effectively trigger the tribocatalytic decomposition of Rhodamine B (RhB). During the tribocatalytic decomposition of dye, mechanical friction is generated at the contact surface between the tribocatalyst and a custom-fabricated polytetrafluoroethylene (PTFE) rotating disk, under varying conditions of stirring speed, temperature, and pH value. Hydroxyl radicals and superoxide radicals are confirmed as the dominant reactive species participating in tribocatalytic dye decomposition, as demonstrated by reactive species inhibition experiments. Furthermore, the SiC particles demonstrate remarkable reusability, even after being subjected to five consecutive recycling processes. The exceptional tribocatalytic performance of SiC particles makes them potentially applicable in water purification by harnessing environmental friction energy. Full article
16 pages, 2899 KiB  
Article
The Coupling Mechanism of the Electricity–Gas System and Assessment of Attack Resistance Based on Interdependent Networks
by Qingyu Zou and Lin Yan
Eng 2025, 6(8), 193; https://doi.org/10.3390/eng6080193 - 6 Aug 2025
Abstract
Natural gas plays a critical role in integrated energy systems. In this context, the present study proposes an optimization model for the electricity–gas coupling system, grounded in the theory of interdependent networks. By integrating network topology parameters with real-time operational metrics, the model [...] Read more.
Natural gas plays a critical role in integrated energy systems. In this context, the present study proposes an optimization model for the electricity–gas coupling system, grounded in the theory of interdependent networks. By integrating network topology parameters with real-time operational metrics, the model substantially enhances system robustness and adaptability. To quantify nodal vulnerability and importance, the study introduces two novel evaluation indicators: the Electric Potential–Closeness Fusion Indicator (EPFI) for power networks and the Pressure Difference–Closeness Comprehensive Indicator (PDCI) for natural gas systems. Leveraging these indicators, three coupling paradigms—assortative, disassortative, and random—are systematically constructed and analyzed. System resilience is assessed through simulation experiments incorporating three attack strategies: degree-based, betweenness centrality-based, and random node removal. Evaluation metrics include network efficiency and the variation in the size of the largest connected subgraph under different coupling configurations. The proposed framework is validated using a hybrid case study that combines the IEEE 118-node electricity network with a 20-node Belgian natural gas system, operating under a unidirectional gas-to-electricity energy flow model. Results confirm that the disassortative coupling configuration, based on EPFI and PDCI indicators, exhibits superior resistance to network perturbations, thereby affirming the effectiveness of the model in improving the robustness of integrated energy systems. Full article
30 pages, 2504 KiB  
Article
Battery Energy Storage Systems: Energy Market Review, Challenges, and Opportunities in Frequency Control Ancillary Services
by Gian Garttan, Sanath Alahakoon, Kianoush Emami and Shantha Gamini Jayasinghe
Energies 2025, 18(15), 4174; https://doi.org/10.3390/en18154174 - 6 Aug 2025
Abstract
Battery energy storage systems (BESS) are considered a good energy source to maintain supply and demand, mitigate intermittency, and ensure grid stability. The primary contribution of this paper is to provide a comprehensive overview of global energy markets and a critical analysis of [...] Read more.
Battery energy storage systems (BESS) are considered a good energy source to maintain supply and demand, mitigate intermittency, and ensure grid stability. The primary contribution of this paper is to provide a comprehensive overview of global energy markets and a critical analysis of BESS’ participation in frequency control ancillary service (FCAS) markets. This review synthesises the current state of knowledge on the evolution of the energy market and the role of battery energy storage systems in providing grid stability, particularly frequency control services, with a focus on their integration into evolving high-renewable-energy-source (RES) market structures. Specifically, solar PV and wind energy are emerging as the main drivers of RES expansion, accounting for approximately 61% of the global market share. A BESS offers greater flexibility in storage capacity, scalability and rapid response capabilities, making it an effective solution to address emerging security risks of the system. Moreover, a BESS is able to provide active power support through power smoothing when coupled with solar photovoltaic (PV) and wind generation. In this paper, we provide an overview of the current status of energy markets, the contribution of battery storage systems to grid stability and flexibility, as well as the challenges that BESS face in evolving electricity markets. Full article
19 pages, 1242 KiB  
Article
Integration of Renewable Energy Sources to Achieve Sustainability and Resilience of Mines in Remote Areas
by Josip Kronja and Ivo Galić
Mining 2025, 5(3), 51; https://doi.org/10.3390/mining5030051 - 6 Aug 2025
Abstract
Mining (1) operations in remote areas (2) face significant challenges related to energy supply, high fuel costs, and limited infrastructure. This study investigates the potential for achieving energy independence (3) and resilience (4) in such environments through the integration of renewable energy sources [...] Read more.
Mining (1) operations in remote areas (2) face significant challenges related to energy supply, high fuel costs, and limited infrastructure. This study investigates the potential for achieving energy independence (3) and resilience (4) in such environments through the integration of renewable energy sources (5) and battery–electric mining equipment. Using the “Studena Vrila” underground bauxite mine as a case study, a comprehensive techno-economic and environmental analysis was conducted across three development models. These models explore incremental scenarios of solar and wind energy adoption combined with electrification of mobile machinery. The methodology includes calculating levelized cost of energy (LCOE), return on investment (ROI), and greenhouse gas (GHG) reductions under each scenario. Results demonstrate that a full transition to RES and electric machinery can reduce diesel consumption by 100%, achieve annual savings of EUR 149,814, and cut GHG emissions by over 1.7 million kg CO2-eq. While initial capital costs are high, all models yield a positive Net Present Value (NPV), confirming long-term economic viability. This research provides a replicable framework for decarbonizing mining operations in off-grid and infrastructure-limited regions. Full article
Show Figures

Figure 1

23 pages, 3036 KiB  
Article
Research on the Synergistic Mechanism Design of Electricity-CET-TGC Markets and Transaction Strategies for Multiple Entities
by Zhenjiang Shi, Mengmeng Zhang, Lei An, Yan Lu, Daoshun Zha, Lili Liu and Tiantian Feng
Sustainability 2025, 17(15), 7130; https://doi.org/10.3390/su17157130 - 6 Aug 2025
Abstract
In the context of the global response to climate change and the active promotion of energy transformation, a number of low-carbon policies coupled with the development of synergies to help power system transformation is an important initiative. However, the insufficient articulation of the [...] Read more.
In the context of the global response to climate change and the active promotion of energy transformation, a number of low-carbon policies coupled with the development of synergies to help power system transformation is an important initiative. However, the insufficient articulation of the green power market, tradable green certificate (TGC) market, and carbon emission trading (CET) mechanism, and the ambiguous policy boundaries affect the trading decisions made by its market participants. Therefore, this paper systematically analyses the composition of the main players in the electricity-CET-TGC markets and their relationship with each other, and designs the synergistic mechanism of the electricity-CET-TGC markets, based on which, it constructs the optimal profit model of the thermal power plant operators, renewable energy manufacturers, power grid enterprises, power users and load aggregators under the electricity-CET-TGC markets synergy, and analyses the behavioural decision-making of the main players in the electricity-CET-TGC markets as well as the electric power system to optimise the trading strategy of each player. The results of the study show that: (1) The synergistic mechanism of electricity-CET-TGC markets can increase the proportion of green power grid-connected in the new type of power system. (2) In the selection of different environmental rights and benefits products, the direct participation of green power in the market-oriented trading is the main way, followed by applying for conversion of green power into China certified emission reduction (CCER). (3) The development of independent energy storage technology can produce greater economic and environmental benefits. This study provides policy support to promote the synergistic development of the electricity-CET-TGC markets and assist the low-carbon transformation of the power industry. Full article
Show Figures

Figure 1

16 pages, 3228 KiB  
Article
Wettability of Two-Dimensional Carbon Allotropes from Molecular Simulations
by Margaret E. Thornton, Serban G. Zamfir and Dusan Bratko
Molecules 2025, 30(15), 3296; https://doi.org/10.3390/molecules30153296 - 6 Aug 2025
Abstract
Force-field Monte Carlo and Molecular Dynamics simulations are used to compare wetting behaviors of model carbon sheets mimicking neat graphene, its saturated derivative, graphane, and related planar allotropes penta-graphene, γ-graphyne, and ψ-graphene in contact with aqueous droplets or an aqueous film [...] Read more.
Force-field Monte Carlo and Molecular Dynamics simulations are used to compare wetting behaviors of model carbon sheets mimicking neat graphene, its saturated derivative, graphane, and related planar allotropes penta-graphene, γ-graphyne, and ψ-graphene in contact with aqueous droplets or an aqueous film confined between parallel carbon sheets. Atomistic and area-integrated surface/water potentials are found to be essentially equivalent in capturing moderate differences between the wetting free energies of tested substrates. Despite notable differences in mechanical and electric properties of distinct allotropes, the predicted allotrope/water contact angles span a narrow window of weakly hydrophilic values. Contact angles in the range of 80 ± 10° indicate modest hydration repulsion incapable of competing with van der Waals attraction between carbon particles. Poor dispersibility in neat water is hence a common feature of studied materials. Full article
Show Figures

Figure 1

25 pages, 77176 KiB  
Article
Advancing Energy Management Strategies for Hybrid Fuel Cell Vehicles: A Comparative Study of Deterministic and Fuzzy Logic Approaches
by Mohammed Essoufi, Mohammed Benzaouia, Bekkay Hajji, Abdelhamid Rabhi and Michele Calì
World Electr. Veh. J. 2025, 16(8), 444; https://doi.org/10.3390/wevj16080444 - 6 Aug 2025
Abstract
The increasing depletion of fossil fuels and their environmental impact have led to the development of fuel cell hybrid electric vehicles. By combining fuel cells with batteries, these vehicles offer greater efficiency and zero emissions. However, their energy management remains a challenge requiring [...] Read more.
The increasing depletion of fossil fuels and their environmental impact have led to the development of fuel cell hybrid electric vehicles. By combining fuel cells with batteries, these vehicles offer greater efficiency and zero emissions. However, their energy management remains a challenge requiring advanced strategies. This paper presents a comparative study of two developed energy management strategies: a deterministic rule-based approach and a fuzzy logic approach. The proposed system consists of a proton exchange membrane fuel cell (PEMFC) as the primary energy source and a lithium-ion battery as the secondary source. A comprehensive model of the hybrid powertrain is developed to evaluate energy distribution and system behaviour. The control system includes a model predictive control (MPC) method for fuel cell current regulation and a PI controller to maintain DC bus voltage stability. The proposed strategies are evaluated under standard driving cycles (UDDS and NEDC) using a simulation in MATLAB/Simulink. Key performance indicators such as fuel efficiency, hydrogen consumption, battery state-of-charge, and voltage stability are examined to assess the effectiveness of each approach. Simulation results demonstrate that the deterministic strategy offers a structured and computationally efficient solution, while the fuzzy logic approach provides greater adaptability to dynamic driving conditions, leading to improved overall energy efficiency. These findings highlight the critical role of advanced control strategies in improving FCHEV performance and offer valuable insights for future developments in hybrid-vehicle energy management. Full article
(This article belongs to the Special Issue Power and Energy Systems for E-Mobility, 2nd Edition)
Show Figures

Figure 1

30 pages, 2873 KiB  
Article
Quasar—A Process Variability-Aware Radiation Robustness Evaluation Tool
by Bernardo Borges Sandoval, Lucas Yuki Imamura, Ana Flávia D. Reis, Leonardo Heitich Brendler, Rafael B. Schvittz and Cristina Meinhardt
Electronics 2025, 14(15), 3131; https://doi.org/10.3390/electronics14153131 - 6 Aug 2025
Abstract
This work presents Quasar, an open-source tool developed to boost the characterization of how variability effects impact radiation sensitivity in digital circuits. Quasar receives a SPICE netlist as input and automatically determines robustness metrics, such as the critical Linear Energy Transfer, for every [...] Read more.
This work presents Quasar, an open-source tool developed to boost the characterization of how variability effects impact radiation sensitivity in digital circuits. Quasar receives a SPICE netlist as input and automatically determines robustness metrics, such as the critical Linear Energy Transfer, for every configuration in which a Single Event Transient fault can propagate an error. The tool can handle ranges from small basic cells to median multi-gate circuits in a few seconds, speeding up the traditional fault injection mechanism based on a large number of electrical simulations. The tool’s workflow explores logical masking to reduce the design space exploration, i.e., reducing the necessary number of electrical simulations, as well as regression methods to speed up variability evaluations. Quasar already has shown the potential to provide useful results, and a prototype has also been published. This work presents a more polished and complete version of the tool, one that optimizes the tool’s search process and allows not only for a fast evaluation of the radiation robustness of a circuit, but also for an analysis of how fabrication process metrics impact this robustness, such as Work Function Fluctuation. Full article
Show Figures

Figure 1

23 pages, 331 KiB  
Article
Revisiting the Nexus Between Energy Consumption, Economic Growth, and CO2 Emissions in India and China: Insights from the Long Short-Term Memory (LSTM) Model
by Bartosz Jóźwik, Siba Prasada Panda, Aruna Kumar Dash, Pritish Kumar Sahu and Robert Szwed
Energies 2025, 18(15), 4167; https://doi.org/10.3390/en18154167 - 6 Aug 2025
Abstract
Understanding how energy use and economic activity shape carbon emissions is pivotal for achieving global climate targets. This study quantifies the dynamic nexus between disaggregated energy consumption, economic growth, and CO2 emissions in India and China—two economies that together account for more [...] Read more.
Understanding how energy use and economic activity shape carbon emissions is pivotal for achieving global climate targets. This study quantifies the dynamic nexus between disaggregated energy consumption, economic growth, and CO2 emissions in India and China—two economies that together account for more than one-third of global emissions. Using annual data from 1990 to 2021, we implement Long Short-Term Memory (LSTM) neural networks, which outperform traditional linear models in capturing nonlinearities and lagged effects. The dataset is split into training (1990–2013) and testing (2014–2021) intervals to ensure rigorous out-of-sample validation. Results reveal stark national differences. For India, coal, natural gas consumption, and economic growth are the strongest positive drivers of emissions, whereas renewable energy exerts a significant mitigating effect, and nuclear energy is negligible. In China, emissions are dominated by coal and petroleum use and by economic growth, while renewable and nuclear sources show weak, inconsistent impacts. We recommend retrofitting India’s coal- and gas-plants with carbon capture and storage, doubling clean-tech subsidies, and tripling annual solar-plus-storage auctions to displace fossil baseload. For China, priorities include ultra-supercritical upgrades with carbon capture, utilisation, and storage, green-bond-financed solar–wind buildouts, grid-scale storage deployments, and hydrogen-electric freight corridors. These data-driven pathways simultaneously cut flagship emitters, decouple GDP from carbon, provide replicable models for global net-zero research, and advance climate-resilient economic growth worldwide. Full article
(This article belongs to the Special Issue Policy and Economic Analysis of Energy Systems)
15 pages, 1541 KiB  
Communication
Effect of Non-Thermal Treatments of Clear Apple Juice on Exogenous Pectinases
by Alberto Zavarise, Alema Puzović, Andres Felipe Moreno Barreto, Dario Pavon Vargas, Manfred Goessinger, Maja Mikulič Petkovšek, Massimiliano Rinaldi, Christian Haselmair-Gosch, Luca Cattani and Heidi Halbwirth
Beverages 2025, 11(4), 113; https://doi.org/10.3390/beverages11040113 - 6 Aug 2025
Abstract
Pulsed electric field (PEF) and high-pressure processing (HPP) are non-thermal treatments, developed to ensure preservation of food products whilst maintaining taste and valuable nutrients. In this study, we investigated their potential for the inactivation of 3 commercial exogenous pectinases (polygalacturonase, pectin transeliminase, pectin [...] Read more.
Pulsed electric field (PEF) and high-pressure processing (HPP) are non-thermal treatments, developed to ensure preservation of food products whilst maintaining taste and valuable nutrients. In this study, we investigated their potential for the inactivation of 3 commercial exogenous pectinases (polygalacturonase, pectin transeliminase, pectin esterase) commonly used in juice processing for clarification of juices. The inactivation of these enzymes after processing is mandatory by European law. Clear apple juice was treated with both non-thermal processing methods, as well as with thermal pasteurization as the standard method. For HPP, 3 pressures (250, 450, and 600 MPa) and different holding times (from 2 to 12 min) were tested. For PEF, 3 electric field intensities (10, 13, and 15 kV/cm) and different specific energy values (from 121 to 417 kJ/kg). Standard thermal pasteurization resulted in a complete inactivation of all tested pectinases. HPP treatment only showed marginal effects on polygalacturonase and pectin transeliminase at the highest pressure and holding times, which are beyond levels used in industrial settings. For PEF, dependence upon high electric field strength and specific energy values was evident; however, here too, the effect was only moderate at the levels attainable within the scope of this study. Assuming a continued linear relationship, usable results could be achieved in an industrial setting, albeit under more extreme conditions. Full article
(This article belongs to the Section Beverage Technology Fermentation and Microbiology)
Show Figures

Graphical abstract

22 pages, 7820 KiB  
Article
A Junction Temperature Prediction Method Based on Multivariate Linear Regression Using Current Fall Characteristics of SiC MOSFETs
by Haihong Qin, Yang Zhang, Yu Zeng, Yuan Kang, Ziyue Zhu and Fan Wu
Sensors 2025, 25(15), 4828; https://doi.org/10.3390/s25154828 - 6 Aug 2025
Abstract
The junction temperature (Tj) is a key parameter reflecting the thermal behavior of Silicon carbide (SiC) MOSFETs and is essential for condition monitoring and reliability assessment in power electronic systems. However, the limited temperature sensitivity of switching characteristics makes it [...] Read more.
The junction temperature (Tj) is a key parameter reflecting the thermal behavior of Silicon carbide (SiC) MOSFETs and is essential for condition monitoring and reliability assessment in power electronic systems. However, the limited temperature sensitivity of switching characteristics makes it difficult for traditional single temperature-sensitive electrical parameters (TSEPs) to achieve accurate estimation. To address this challenge and enable practical thermal sensing applications, this study proposes an accurate, application-oriented Tj estimation method based on multivariate linear regression (MLR) using turn-off current fall time (tfi) and fall loss (Efi) as complementary TSEPs. First, the feasibility of using current fall time and current fall energy loss as TSEPs is demonstrated. Then, a coupled junction temperature prediction model is developed based on multivariate linear regression using tfi and Efi. The proposed method is experimentally validated through comparative analysis. Experimental results demonstrate that the proposed method achieves high prediction accuracy, highlighting its effectiveness and superiority in MLR approach based on the current fall phase characteristics of SiC MOSFETs. This method offers promising prospects for enhancing the condition monitoring, reliability assessment, and intelligent sensing capabilities of power electronics systems. Full article
Show Figures

Figure 1

22 pages, 5509 KiB  
Article
Kinetic Analysis of Thermal Degradation of Styrene–Butadiene Rubber Compounds Under Different Aging Conditions
by Imen Hamouda, Masoud Tayefi, Mostafa Eesaee, Meysam Hassanipour and Phuong Nguyen-Tri
J. Compos. Sci. 2025, 9(8), 420; https://doi.org/10.3390/jcs9080420 - 6 Aug 2025
Abstract
This study examined the impact of storage and operational aging on the thermal stability, structural degradation, and electrical properties of styrene–butadiene rubber (SBR) compound by analyzing three distinct materials: a laboratory-stored sample, an operationally aged one, and an original unaged reference. Thermal degradation [...] Read more.
This study examined the impact of storage and operational aging on the thermal stability, structural degradation, and electrical properties of styrene–butadiene rubber (SBR) compound by analyzing three distinct materials: a laboratory-stored sample, an operationally aged one, and an original unaged reference. Thermal degradation was analyzed through thermogravimetric analysis (TGA), which examined weight loss as a function of temperature and time at different heating rates. Results showed that the onset temperature and peak position in the 457 °C to 483 °C range remained stable. The activation energy (Ea) was determined using the Kissinger–Akahira–Sunose (KAS), Flynn–Wall–Ozawa (FWO), and Friedman methods, with the original unaged sample’s (OUS) Ea averaging 203.7 kJ/mol, decreasing to 163.47 kJ/mol in the laboratory-stored sample (LSS), and increasing to 224.18 kJ/mol in the operationally aged sample (OAS). The Toop equation was applied to estimate the thermal degradation lifetime at a 50% conversion rate. Since the material had been exposed to electricity, the evolution of electrical conductivity was studied and found to have remained stable after storage at around 0.070 S/cm. However, after operational aging, it showed a considerable increase in conductivity, to 0.321 S/cm. Scanning Electron Microscopy (SEM) was employed to analyze microstructural degradation and chemical changes, providing insights into the impact of aging on thermal stability and electrical properties. Full article
(This article belongs to the Special Issue Mechanical Properties of Composite Materials and Joints)
Show Figures

Figure 1

30 pages, 3996 KiB  
Article
Incentive-Compatible Mechanism Design for Medium- and Long-Term/Spot Market Coordination in High-Penetration Renewable Energy Systems
by Sicong Wang, Weiqing Wang, Sizhe Yan and Qiuying Li
Processes 2025, 13(8), 2478; https://doi.org/10.3390/pr13082478 - 6 Aug 2025
Abstract
In line with the goals of “peak carbon emissions and carbon neutrality”, this study aims to develop a market-coordinated operation mechanism to promote renewable energy adoption and consumption, addressing the challenges of integrating medium- and long-term trading with spot markets in power systems [...] Read more.
In line with the goals of “peak carbon emissions and carbon neutrality”, this study aims to develop a market-coordinated operation mechanism to promote renewable energy adoption and consumption, addressing the challenges of integrating medium- and long-term trading with spot markets in power systems with high renewable energy penetration. A three-stage joint operation framework is proposed. First, a medium- and long-term trading game model is established, considering multiple energy types to optimize the benefits of market participants. Second, machine learning algorithms are employed to predict renewable energy output, and a contract decomposition mechanism is developed to ensure a smooth transition from medium- and long-term contracts to real-time market operations. Finally, a day-ahead market-clearing strategy and an incentive-compatible settlement mechanism, incorporating the constraints from contract decomposition, are proposed to link the two markets effectively. Simulation results demonstrate that the proposed mechanism effectively enhances resource allocation and stabilizes market operations, leading to significant revenue improvements across various generation units and increased renewable energy utilization. Specifically, thermal power units achieve a 19.12% increase in revenue, while wind and photovoltaic units show more substantial gains of 38.76% and 47.52%, respectively. Concurrently, the mechanism drives a 10.61% increase in renewable energy absorption capacity and yields a 13.47% improvement in Tradable Green Certificate (TGC) utilization efficiency, confirming its overall effectiveness. This research shows that coordinated optimization between medium- and long-term/spot markets, combined with a well-designed settlement mechanism, significantly strengthens the market competitiveness of renewable energy, providing theoretical support for the market-based operation of the new power system. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

Back to TopTop