# Experimental Study of Varying Heat Transfer Fluid Parameters within a Latent Heat Thermal Energy Storage System Enhanced by Fins

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

^{2}. Hashem Zadeh et al. [21] numerically coupled an aluminum foam matrix and copper oxide nanoparticles within a shell and tube LHTES system. The main thermal enhancement mechanism was the aluminum matrix, as it improved the melting rate of the PCM by 41%, while the nanoparticles had only a 2% impact. Guo et al. [22] experimentally utilized fins and copper foam within a shell and tube LHTES system. Notably, the melting time was reduced by 83.35% with respect to the same system, without heat transfer enhancement.

## 2. Materials and Methods

## 3. Results

#### 3.1. Ten Annular Fin Configuration

#### 3.2. Twenty Annular Fin Configuration

#### 3.3. System Energy Response

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Chocontá Bernal, D.; Muñoz, E.; Manente, G.; Sciacovelli, A.; Ameli, H.; Gallego-Schmid, A. Environmental Assessment of Latent Heat Thermal Energy Storage Technology System with Phase Change Material for Domestic Heating Applications. Sustainability
**2021**, 13, 11265. [Google Scholar] [CrossRef] - Bagazi, M.S.; Melaibari, A.A.; Khoshaim, A.B.; Abu-Hamdeh, N.H.; Alsaiari, A.O.; Abulkhair, H. Using Phase Change Materials (PCMs) in a Hot and Humid Climate to Reduce Heat Gain and Energy Consumption. Sustainability
**2021**, 13, 10965. [Google Scholar] [CrossRef] - Khoury, S.; Maatouk, C.; Khoury, K.E.; Khatounian, F. Optimization methodology of thermal energy storage systems for domestic water heating applications with different configurations. J. Energy Storage
**2022**, 50, 104530. [Google Scholar] [CrossRef] - Cerezal-Mezquita, P.; Bugueño-Muñoz, W. Drying of Carrot Strips in Indirect Solar Dehydrator with Photovoltaic Cell and Thermal Energy Storage. Sustainability
**2022**, 14, 2147. [Google Scholar] [CrossRef] - Catapano, F.; Frazzica, A.; Freni, A.; Manzan, M.; Micheli, D.; Palomba, V.; Sementa, P.; Vaglieco, B.M. Development and experimental testing of an integrated prototype based on Stirling, ORC and a latent thermal energy storage system for waste heat recovery in naval application. Appl. Energy
**2022**, 311, 118673. [Google Scholar] [CrossRef] - Selimefendigil, F.; Şirin, C.; Öztop, H.F. Experimental Performance Analysis of a Solar Desalination System Modified with Natural Dolomite Powder Integrated Latent Heat Thermal Storage Unit. Sustainability
**2022**, 14, 2650. [Google Scholar] [CrossRef] - Sarbu, I.; Sebarchievici, C. A Comprehensive Review of Thermal Energy Storage. Sustainability
**2018**, 10, 191. [Google Scholar] [CrossRef] [Green Version] - Khalifa, A.; Tan, L.; Mahony, D.; Date, A.; Akbarzadeh, A. Numerical analysis of latent heat thermal energy storage using miniature heat pipes: A potential thermal enhancement for CSP plant development. Appl. Therm. Eng.
**2016**, 108, 93–103. [Google Scholar] [CrossRef] - Tiari, S.; Mahdavi, M. Computational study of a latent heat thermal energy storage system enhanced by highly conductive metal foams and heat pipes. J. Therm. Anal. Calorim.
**2020**, 141, 1741–1751. [Google Scholar] [CrossRef] - Amin, M.; Ariantara, B.; Putra, N.; Sandi, A.F.; Abdullah, N.A. Thermal Management of Electric Vehicle Batteries Using Heat Pipe and Phase Change Materials. E3S Web Conf.
**2018**, 67, 3034. [Google Scholar] [CrossRef] - Putra, N.; Sandi, A.F.; Ariantara, B.; Abdullah, N.; Indra Mahlia, T.M. Performance of beeswax phase change material (PCM) and heat pipe as passive battery cooling system for electric vehicles. Case Stud. Therm. Eng.
**2020**, 21, 100655. [Google Scholar] [CrossRef] - Nitsas, M.; Koronaki, I.P. Performance analysis of nanoparticles-enhanced PCM: An experimental approach. Therm. Sci. Eng. Prog.
**2021**, 25, 100963. [Google Scholar] [CrossRef] - Manoj Kumar, P.; Sudarvizhi, D.; Stalin, P.M.J.; Aarif, A.; Abhinandhana, R.; Renuprasanth, A.; Sathya, V.; Ezhilan, N.T. Thermal characteristics analysis of a phase change material under the influence of nanoparticles. Mater. Today Proc.
**2021**, 45, 7876–7880. [Google Scholar] [CrossRef] - Manoj Kumar, P.; Mylsamy, K.; Prakash, K.B.; Nithish, M.; Anandkumar, R. Investigating thermal properties of Nanoparticle Dispersed Paraffin (NDP) as phase change material for thermal energy storage. Mater. Today Proc.
**2021**, 45, 745–750. [Google Scholar] [CrossRef] - Sandeep Kumar, M.; Murali Krishna, V. Experimental Investigation on Performance of Hybrid PCM’s on Addition of Nano Particles in Thermal Energy Storage. Mater. Today Proc.
**2019**, 17, 271–276. [Google Scholar] [CrossRef] - Mahdavi, M.; Tiari, S.; Pawar, V. A numerical study on the combined effect of dispersed nanoparticles and embedded heat pipes on melting and solidification of a shell and tube latent heat thermal energy storage system. J. Energy Storage
**2020**, 27, 101086. [Google Scholar] [CrossRef] - Tofani, K.; Tiari, S. Nano-Enhanced Phase Change Materials in Latent Heat Thermal Energy Storage Systems: A Review. Energies
**2021**, 14, 3821. [Google Scholar] [CrossRef] - Mohammed, H.I.; Talebizadehsardari, P.; Mahdi, J.M.; Arshad, A.; Sciacovelli, A.; Giddings, D. Improved melting of latent heat storage via porous medium and uniform Joule heat generation. J. Energy Storage
**2020**, 31, 101747. [Google Scholar] [CrossRef] - Prasanth, N.; Sharma, M.; Yadav, R.N.; Jain, P. Designing of latent heat thermal energy storage systems using metal porous structures for storing solar energy. J. Energy Storage
**2020**, 32, 101990. [Google Scholar] [CrossRef] - Rehman, T.; Ali, H.M.; Saieed, A.; Pao, W.; Ali, M. Copper foam/PCMs based heat sinks: An experimental study for electronic cooling systems. Int. J. Heat Mass Transf.
**2018**, 127, 381–393. [Google Scholar] [CrossRef] - Hashem Zadeh, S.M.; Ghodrat, M.; Raahemifar, K.; Younis, O.; Ghalambaz, M. Charging optimization of multi-tube latent heat storage comprising composite aluminum foam/nano-enhanced coconut oil. Int. J. Heat Mass Transf.
**2021**, 180, 121757. [Google Scholar] [CrossRef] - Guo, J.; Liu, Z.; Du, Z.; Yu, J.; Yang, X.; Yan, J. Effect of fin-metal foam structure on thermal energy storage: An experimental study. Renew. Energy
**2021**, 172, 57–70. [Google Scholar] [CrossRef] - Ge, R.; Li, Q.; Li, C.; Liu, Q. Evaluation of different melting performance enhancement structures in a shell-and-tube latent heat thermal energy storage system. Renew. Energy
**2022**, 187, 829–843. [Google Scholar] [CrossRef] - Gil, A.; Peiró, G.; Oró, E.; Cabeza, L.F. Experimental analysis of the effective thermal conductivity enhancement of PCM using finned tubes in high temperature bulk tanks. Appl. Therm. Eng.
**2018**, 142, 736–744. [Google Scholar] [CrossRef] - Gürtürk, M.; Kok, B. A new approach in the design of heat transfer fin for melting and solidification of PCM. Int. J. Heat Mass Transf.
**2020**, 153, 119671. [Google Scholar] [CrossRef] - Rezaee, M.; Taheri, A.A.; Jafari, M. Experimental study of natural heat transfer enhancement in a rectangular finned surface by EHD method. Int. Commun. Heat Mass Transf.
**2020**, 119, 104969. [Google Scholar] [CrossRef] - Tiari, S.; Hockins, A.; Mahdavi, M. Numerical study of a latent heat thermal energy storage system enhanced by varying fin configurations. Case Stud. Therm. Eng.
**2021**, 25, 100999. [Google Scholar] [CrossRef] - Tiari, S.; Hockins, A. An experimental study on the effect of annular and radial fins on thermal performance of a latent heat thermal energy storage unit. J. Energy Storage
**2021**, 44, 103541. [Google Scholar] [CrossRef] - Rubitherm PCM RT-LINE. Available online: https://www.rubitherm.eu/en/index.php/productcategory/organische-pcm-rt (accessed on 26 April 2022).
- Tan, F.L. Constrained and unconstrained melting inside a sphere. Int. Commun. Heat Mass Transf.
**2008**, 35, 466–475. [Google Scholar] [CrossRef]

**Figure 1.**(

**a**) LHTES system schematic (

**b**) Experimental setup (

**c**) Annular fin configurations: 10 (left) and 20 fins (right).

**Figure 2.**Measured temperatures during (

**a**) 70 °C, 3 gpm charging and (

**b**) 15 °C, 1.5 gpm discharging for the system assisted with 10 annular fins.

**Figure 3.**Melting behavior of PCM during charging with HTF at 70 °C temperature and 3 gpm flow rate for the system assisted with 10 annular fins.

**Figure 4.**Measured temperatures during (

**a**) 70 °C, 3 gpm charging and (

**b**) 15 °C, 1.5 gpm discharging for the system assisted with 20 annular fins.

**Figure 5.**Melting behavior of PCM during charging with HTF at 70 °C temperature and 3 gpm flow rate for the system assisted with 20 annular fins.

**Table 1.**Thermophysical properties of Rubitherm RT55 [29] and copper.

Property | Units | Rubitherm RT55 (PCM) | Copper (Pipe & Fins) |
---|---|---|---|

Melting Temperature, T_{m} | °C | 51–57 | - |

Latent Heat of Fusion, h_{sl} | kJ/kg | 170 +/− 7.5% | - |

Density, ρ | kg/m^{3} | 800 (solid)–770 (liquid) | 8960 |

Specific Heat, C_{p} | J/kg ∗ K | 2000 | 376.8 |

Thermal Conductivity, k | W/m ∗ K | 0.2 | 385 |

Volume Expansion | % | 14 | - |

Charging | Discharging | ||||
---|---|---|---|---|---|

HTF Temperature (°C) | HTF Flow Rate (gpm) | HTF Flow Rate (L/min) | HTF Temperature (°C) | HTF Flow Rate (gpm) | HTF Flow Rate (L/min) |

65 | 1 | 3.79 | 15 | 0.5 | 1.89 |

2 | 7.57 | 1 | 3.79 | ||

3 | 11.36 | 1.5 | 5.68 | ||

70 | 1 | 3.79 | 20 | 0.5 | 1.89 |

2 | 7.57 | 1 | 3.79 | ||

3 | 11.36 | 1.5 | 5.68 |

**Table 3.**Total charging and discharging times for 10 annular fins at various HTF temperatures and flow rates.

Charging | Discharging | ||||
---|---|---|---|---|---|

HTF Temperature (°C) | HTF Flow Rate (gpm) | Charging Time (h) | HTF Temperature (°C) | HTF Flow Rate (gpm) | Discharging Time (h) |

65 | 1 | 13.57 | 15 | 0.5 | 11.78 |

2 | 12.46 | 1 | 11.17 | ||

3 | 10.96 | 1.5 | 11.13 | ||

70 | 1 | 8.23 | 20 | 0.5 | 14.78 |

2 | 7.38 | 1 | 14.55 | ||

3 | 6.90 | 1.5 | 13.85 |

**Table 4.**Total charging and discharging times for 20 annular fins at various HTF temperatures and flow rates.

Charging | Discharging | ||||
---|---|---|---|---|---|

HTF Temperature (°C) | HTF Flow Rate (gpm) | Charging Time (h) | HTF Temperature (°C) | HTF Flow Rate (gpm) | Discharging Time (h) |

65 | 1 | 11.00 | 15 | 0.5 | 10.64 |

2 | 9.81 | 1 | 10.28 | ||

3 | 9.45 | 1.5 | 10.20 | ||

70 | 1 | 6.94 | 20 | 0.5 | 13.68 |

2 | 6.63 | 1 | 13.21 | ||

3 | 6.25 | 1.5 | 13.15 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Shank, K.; Bernat, J.; Regal, E.; Leise, J.; Ji, X.; Tiari, S.
Experimental Study of Varying Heat Transfer Fluid Parameters within a Latent Heat Thermal Energy Storage System Enhanced by Fins. *Sustainability* **2022**, *14*, 8920.
https://doi.org/10.3390/su14148920

**AMA Style**

Shank K, Bernat J, Regal E, Leise J, Ji X, Tiari S.
Experimental Study of Varying Heat Transfer Fluid Parameters within a Latent Heat Thermal Energy Storage System Enhanced by Fins. *Sustainability*. 2022; 14(14):8920.
https://doi.org/10.3390/su14148920

**Chicago/Turabian Style**

Shank, Kyle, Jessica Bernat, Ethan Regal, Joel Leise, Xiaoxu Ji, and Saeed Tiari.
2022. "Experimental Study of Varying Heat Transfer Fluid Parameters within a Latent Heat Thermal Energy Storage System Enhanced by Fins" *Sustainability* 14, no. 14: 8920.
https://doi.org/10.3390/su14148920