Interprovincial Metal and GHG Transfers Embodied in Electricity Transmission across China: Trends and Driving Factors
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Quantifying Metal and GHG Transfers Embodied in Power Trade Based on QIO Model
3.2. Identifying Features of Metal and GHG Transfer Networks Based on Complex Network Theory
3.3. Exploring Factors Influencing Metal and GHG Transfer Networks Based on QAP Method
3.4. Materials
4. Results and Discussion
4.1. Changes in Metal and GHG Embodied in Electricity Consumption
4.2. Trends of Inter-Provincial Metal and GHG Transfers in China
4.3. Characteristics of Metal and GHG Transfer Networks
4.4. Influencing Factors on Metal and GHG Transfer Networks
4.5. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IEA. An Energy Sector Roadmap to Carbon Neutrality in China; International Energy Agency: Paris, France, 2021. [Google Scholar]
- IEA. Net Zero by 2050 A Roadmap for the the Global Energy Sector; International Energy Agency: Paris, France, 2021. [Google Scholar]
- Li, Y.; Lan, S.; Ryberg, M.; Pérez-Ramírez, J.; Wang, X. A quantitative roadmap for China towards carbon neutrality in 2060 using methanol and ammonia as energy carriers. iScience 2021, 24, 102513. [Google Scholar] [CrossRef] [PubMed]
- IEA. World Energy Outlook Special Report-the Role of Critical Minerals in Clean Energy Transitions; International Energy Agency: Paris, France, 2021. [Google Scholar]
- Wang, P.; Li, N.; Li, J.; Chen, W.-Q. Metal-energy nexus in the global energy transition calls for cooperative actions. In The Material Basis of Energy Transitions; Academic Press: Cambridge, MA, USA, 2020; pp. 27–47. [Google Scholar] [CrossRef]
- Tokimatsu, K.; Wachtmeister, H.; McLellan, B.; Davidsson, S.; Murakami, S.; Höök, M.; Yasuoka, R.; Nishio, M. Energy modeling approach to the global energy-mineral nexus: A first look at metal requirements and the 2 °C target. Appl. Energy 2017, 207, 494–509. [Google Scholar] [CrossRef]
- Watari, T.; Nansai, K.; Nakajima, K. Major metals demand, supply, and environmental impacts to 2100: A critical review. Resour. Conserv. Recycl. 2021, 164, 105107. [Google Scholar] [CrossRef]
- Wang, F.; Shackman, J.; Liu, X. Carbon emission flow in the power industry and provincial CO2 emissions: Evidence from cross-provincial secondary energy trading in China. J. Clean. Prod. 2017, 159, 397–409. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, L.; Zhou, P.; Chang, Y.; Zhou, D.; Pang, M.; Yin, H. Assessing the environmental externalities for biomass- and coal-fired electricity generation in China: A supply chain perspective. J. Environ. Manag. 2019, 246, 758–767. [Google Scholar] [CrossRef]
- Zafirakis, D.; Chalvatzis, K.J.; Baiocchi, G. Embodied CO2 emissions and cross-border electricity trade in Europe: Rebalancing burden sharing with energy storage. Appl. Energy 2015, 143, 283–300. [Google Scholar] [CrossRef]
- Wang, L.; Fan, Y.V.; Jiang, P.; Varbanov, P.S.; Klemeš, J.J. Virtual water and CO2 emission footprints embodied in power trade: EU-27. Energy Policy 2021, 155, 112348. [Google Scholar] [CrossRef]
- Zhai, M.; Huang, G.; Liu, L.; Zheng, B.; Guan, Y. Inter-regional carbon flows embodied in electricity transmission: Network simulation for energy-carbon nexus. Renew. Sustain. Energy Rev. 2020, 118, 109511. [Google Scholar] [CrossRef]
- Valero, A.; Valero, A.; Calvo, G.; Ortego, A. Material bottlenecks in the future development of green technologies. Renew. Sustain. Energy Rev. 2018, 93, 178–200. [Google Scholar] [CrossRef]
- Elshkaki, A.; Shen, L. Energy-material nexus: The impacts of national and international energy scenarios on critical metals use in China up to 2050 and their global implications. Energy 2019, 180, 903–917. [Google Scholar] [CrossRef]
- Jowitt, S.M.; Mudd, G.M.; Thompson, J.F.H. Future availability of non-renewable metal resources and the influence of environmental, social, and governance conflicts on metal production. Commun. Earth Environ. 2020, 1, 13. [Google Scholar] [CrossRef]
- Weinzettel, J.; Wood, R. Environmental Footprints of Agriculture Embodied in International Trade: Sensitivity of Harvested Area Footprint of Chinese Exports. Ecol. Econ. 2018, 145, 323–330. [Google Scholar] [CrossRef]
- Wiedmann, T. A first empirical comparison of energy Footprints embodied in trade-MRIO versus PLUM. Ecol. Econ. 2009, 7, 1975–1990. [Google Scholar] [CrossRef]
- Lv, K.; Feng, X.; Kelly, S.; Zhu, L.; Deng, M. A study on embodied carbon transfer at the provincial level of China from a social network perspective. J. Clean. Prod. 2019, 225, 1089–1104. [Google Scholar] [CrossRef]
- Gao, T.; Fang, D.; Chen, B. Multi-regional input-output and linkage analysis for water-PM2.5 nexus. Appl. Energy 2020, 268, 115018. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, M.; Hubacek, K.; Feng, K.; Wu, W.; Liu, Y.; Jiang, H.; Bi, J.; Wang, J. Virtual flows of aquatic heavy metal emissions and associated risk in China. J. Environ. Manag. 2019, 249, 109400. [Google Scholar] [CrossRef]
- Plank, B.; Eisenmenger, N.; Schaffartzik, A.; Wiedenhofer, D. International Trade Drives Global Resource Use: A Structural Decomposition Analysis of Raw Material Consumption from 1990-2010. Environ. Sci. Technol. 2018, 52, 4190–4198. [Google Scholar] [CrossRef]
- Han, M.; Dunford, M.; Chen, G.; Liu, W.; Li, Y.; Liu, S. Global water transfers embodied in Mainland China’s foreign trade: Production- and consumption-based perspectives. J. Clean. Prod. 2017, 161, 188–199. [Google Scholar] [CrossRef]
- Chen, W.; Kang, J.N.; Han, M.S. Global environmental inequality: Evidence from embodied land and virtual water trade. Sci. Total Environ. 2021, 783, 146992. [Google Scholar] [CrossRef]
- Costanza, R. Embodied energy and economic valuation. Science 1980, 210, 1219–1224. [Google Scholar] [CrossRef]
- Wang, X.; Wei, W.; Ge, J.; Wu, B.; Bu, W.; Li, J.; Yao, M.; Guan, Q. Embodied rare earths flow between industrial sectors in China: A complex network approach. Resour. Conserv. Recycl. 2017, 125, 363–374. [Google Scholar] [CrossRef]
- Liang, S.; Wang, Y.; Zhang, T.; Yang, Z. Structural analysis of material flows in China based on physical and monetary input-output models. J. Clean. Prod. 2017, 158, 209–217. [Google Scholar] [CrossRef]
- Wang, F.; Li, Y.; Zhang, W.; He, P.; Jiang, L.; Cai, B.; Zhang, J.; Zhang, P.; Pan, H.; Jiang, H. China’s Trade-Off Between Economic Benefits and Sulfur Dioxide Emissions in Changing Global Trade. Earth’s Future 2020, 8, e2019EF001354. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Pan, D.; Davis, S.J.; Zhang, Q.; He, K.; Wang, C.; Streets, D.G.; Wuebbles, D.J.; Guan, D. China’s international trade and air pollution in the United States. Proc. Natl. Acad. Sci. USA 2014, 111, 1736–1741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Han, M. Embodied water demands, transfers and imbalance of China’s mega-cities. J. Clean. Prod. 2018, 172, 1336–1345. [Google Scholar] [CrossRef]
- Liang, X.; Yang, X.; Yan, F.; Li, Z. Exploring global embodied metal flows in international trade based combination of multi-regional input-output analysis and complex network analysis. Resour. Policy 2020, 67, 101661. [Google Scholar] [CrossRef]
- Di, J.; Wen, Z.; Jiang, M.; Miatto, A. Patterns and Features of Embodied Environmental Flow Networks in the International Trade of Metal Resources: A Study of Aluminum. SSRN Electron. J. 2022, 77, 102767. [Google Scholar] [CrossRef]
- Chini, C.M.; Djehdian, L.A.; Lubega, W.N.; Stillwell, A.S. Virtual water transfers of the US electric grid. Nat. Energy 2018, 3, 1115–1123. [Google Scholar] [CrossRef]
- Chini, C.M.; Stillwell, A.S. The changing virtual water trade network of the European electric grid. Appl. Energy 2020, 260, 114151. [Google Scholar] [CrossRef]
- Liu, L.; Yin, Z.; Wang, P.; Gan, Y.; Liao, X. Water-carbon trade-off for inter-provincial electricity transmissions in China. J. Environ. Manag. 2020, 268, 110719. [Google Scholar] [CrossRef]
- Qu, S.; Li, Y.; Liang, S.; Yuan, J.; Xu, M. Virtual CO2 Emission Flows in the Global Electricity Trade Network. Environ. Sci. Technol. 2018, 52, 6666–6675. [Google Scholar] [CrossRef] [PubMed]
- Ma, L. Inter-provincial power transmission and its embodied carbon flow in China: Uneven green energy transition road to east and west. Energies 2022, 15, 176. [Google Scholar] [CrossRef]
- Zhao, Y.; Cao, Y.; Shi, X.; Wang, S.; Yang, H.; Shi, L.; Li, H.; Zhang, J. Critical transmission paths and nodes of carbon emissions in electricity supply chain. Sci. Total Environ. 2021, 755, 142530. [Google Scholar] [CrossRef]
- Kodra, E.; Sheldon, S.; Dolen, R.; Zik, O. The North American Electric Grid as an Exchange Network: An Approach for Evaluating Energy Resource Composition and Greenhouse Gas Mitigation. Environ. Sci. Technol. 2015, 49, 13692–13698. [Google Scholar] [CrossRef] [PubMed]
- Qu, S.; Wang, H.; Liang, S.; Shapiro, A.M.; Suh, S.; Sheldon, S.; Zik, O.; Fang, H.; Xu, M. A Quasi-Input-Output model to improve the estimation of emission factors for purchased electricity from interconnected grids. Appl. Energy 2017, 200, 249–259. [Google Scholar] [CrossRef]
- Peng, X.; Tao, X.; Zhang, H.; Chen, J.; Feng, K. CO2 emissions from the electricity sector during China’s economic transition: From the production to the consumption perspective. Sustain. Prod. Consum. 2021, 27, 1010–1020. [Google Scholar] [CrossRef]
- Qu, S.; Liang, S.; Xu, M. CO2 Emissions Embodied in Interprovincial Electricity Transmissions in China. Environ. Sci. Technol. 2017, 51, 10893–10902. [Google Scholar] [CrossRef]
- Yao, T.; Geng, Y.; Sarkis, J.; Xiao, S.; Gao, Z. Dynamic neodymium stocks and flows analysis in China. Resour. Conserv. Recycl. 2021, 174, 105752. [Google Scholar] [CrossRef]
- Li, Q.; Zhong, W.; Wang, G.; Cheng, J.; Dai, T.; Wen, B.; Liang, L.; Yang, Q. Material and value flows of iron in Chinese international trade from 2010 to 2016. Resour. Policy 2018, 59, 139–147. [Google Scholar] [CrossRef]
- van der Voet, E.; Heijungs, R.; Mulder, P.; Huele, R.; Kleijn, R.; van Oers, L. Substance flows through the economy and environment of a region: Part II: Modelling. Environ. Sci. Pollut. Res. 1995, 2, 137–144. [Google Scholar] [CrossRef]
- Kalmykova, Y.; Rosado, L.; Patrício, J. Resource consumption drivers and pathways to reduction: Economy, policy and lifestyle impact on material flows at the national and urban scale. J. Clean. Prod. 2016, 132, 70–80. [Google Scholar] [CrossRef] [Green Version]
- Nagashima, F. Critical structural paths of residential PM2.5 emissions within the Chinese provinces. Energy Econ. 2018, 70, 465–471. [Google Scholar] [CrossRef]
- Li, Q.; Wu, S.; Lei, Y.; Li, S.; Li, L. Evolutionary path and driving forces of inter-industry transfer of CO2 emissions in China: Evidence from structural path and decomposition analysis. Sci. Total Environ. 2021, 765, 142773. [Google Scholar] [CrossRef] [PubMed]
- Defourny, J.; Thorbecke, E. Structural Path Analysis and Multiplier Decomposition within a Social Accounting Matrix Framework. Econ. J. 1984, 94, 111–136. [Google Scholar] [CrossRef]
- Lenzen, M. Structural path analysis of ecosystem networks. Ecol. Model. 2007, 200, 334–342. [Google Scholar] [CrossRef]
- Liang, S.; Qu, S.; Xu, M. Betweenness-Based Method to Identify Critical Transmission Sectors for Supply Chain Environmental Pressure Mitigation. Environ. Sci. Technol. 2016, 50, 1330–1337. [Google Scholar] [CrossRef]
- Hanaka, T.; Kagawa, S.; Ono, H.; Kanemoto, K. Finding environmentally critical transmission sectors, transactions, and paths in global supply chain networks. Energy Econ. 2017, 68, 44–52. [Google Scholar] [CrossRef]
- Kagawa, S.; Suh, S.; Hubacek, K.; Wiedmann, T.; Nansai, K.; Minx, J. CO2 emission clusters within global supply chain networks: Implications for climate change mitigation. Glob. Environ. Chang. 2015, 35, 486–496. [Google Scholar] [CrossRef]
- Maeno, K.; Tokito, S.; Kagawa, S. CO2 mitigation through global supply chain restructuring. Energy Econ. 2022, 105, 105768. [Google Scholar] [CrossRef]
- Tokito, S.; Kagawa, S.; Nansai, K. Understanding international trade network complexity of platinum: The case of Japan. Resour. Policy 2016, 49, 415–421. [Google Scholar] [CrossRef]
- Wu, R.; Geng, Y.; Dong, H.; Fujita, T.; Tian, X. Changes of CO2 emissions embodied in China-Japan trade: Drivers and implications. J. Clean. Prod. 2016, 112, 4151–4158. [Google Scholar] [CrossRef]
- Kim, T.J.; Tromp, N. Carbon emissions embodied in China-Brazil trade: Trends and driving factors. J. Clean. Prod. 2021, 293, 126206. [Google Scholar] [CrossRef]
- Li, M.; Gao, Y.; Meng, B.; Yang, Z. Managing the mitigation: Analysis of the effectiveness of target-based policies on China’s provincial carbon emission and transfer. Energy Policy 2021, 151, 112189. [Google Scholar] [CrossRef]
- Zhong, Z.; Guo, Z.; Zhang, J. Does the participation in global value chains promote interregional carbon emissions transferring via trade? Evidence from 39 major economies. Technol. Forecast. Soc. Change 2021, 169, 120806. [Google Scholar] [CrossRef]
- Zhang, C.; Fu, J.; Pu, Z. A study of the petroleum trade network of countries along “The Belt and Road Initiative”. J. Clean. Prod. 2019, 222, 593–605. [Google Scholar] [CrossRef]
- Bai, C.; Zhou, L.; Xia, M.; Feng, C. Analysis of the spatial association network structure of China’s transportation carbon emissions and its driving factors. J. Environ. Manag. 2020, 253, 109765. [Google Scholar] [CrossRef]
- Zheng, H.; Gao, X.; Sun, Q.; Han, X.; Wang, Z. The impact of regional industrial structure differences on carbon emission differences in China: An evolutionary perspective. J. Clean. Prod. 2020, 257, 120506. [Google Scholar] [CrossRef]
- Li, W.; Yang, M.; Long, R.; He, Z.; Zhang, L.; Chen, F. Assessment of greenhouse gasses and air pollutant emissions embodied in cross-province electricity trade in China. Resour. Conserv. Recycl. 2021, 171, 105623. [Google Scholar] [CrossRef]
- Mi, Z.; Meng, J.; Guan, D.; Shan, Y.; Song, M.; Wei, Y.M.; Liu, Z.; Hubacek, K. Chinese CO2 emission flows have reversed since the global financial crisis. Nat. Commun. 2017, 8, 1712. [Google Scholar] [CrossRef]
- Wang, Y.; Lei, Y.; Fan, F.; Li, L.; Liu, L.; Wang, H. Inter-provincial sectoral embodied CO2 net-transfer analysis in China based on hypothetical extraction method and complex network analysis. Sci. Total Environ. 2021, 786, 147211. [Google Scholar] [CrossRef]
- Blondel, V.D.; Guillaume, J.L.; Lambiotte, R.; Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008, 2008, P10008. [Google Scholar] [CrossRef] [Green Version]
- Schultz, J.V.; Hubert, L. A Nonparametric Test for the Correspondence Between Two Proximity Matrices. J. Educ. Stat. 1976, 1, 59–67. [Google Scholar] [CrossRef]
- Kabir, M.; Salim, R.; Al-Mawali, N. The gravity model and trade flows: Recent developments in econometric modeling and empirical evidence. Econ. Anal. Policy 2017, 56, 60–71. [Google Scholar] [CrossRef]
- China Electricity Council. Compilation of Statistical Data of Power Industry; China Electricity Council: Beijing, China, 2016. [Google Scholar]
- China Electricity Council. Compilation of Statistical Data of Power Industry; China Electricity Council: Beijing, China, 2018. [Google Scholar]
- China Electricity Council. Compilation of Statistical Data of Power Industry; China Electricity Council: Beijing, China, 2019. [Google Scholar]
- China Electricity Council. Compilation of Statistical Data of Power Industry; China Electricity Council: Beijing, China, 2020. [Google Scholar]
- China Electricity Council. Compilation of Statistical Data of Power Industry; China Electricity Council: Beijing, China, 2017. [Google Scholar]
- de Koning, A.; Kleijn, R.; Huppes, G.; Sprecher, B.; van Engelen, G.; Tukker, A. Metal supply constraints for a low-carbon economy? Resour. Conserv. Recycl. 2018, 129, 202–208. [Google Scholar] [CrossRef]
- Watari, T.; McLellan, B.C.; Giurco, D.; Dominish, E.; Yamasue, E.; Nansai, K. Total material requirement for the global energy transition to 2050: A focus on transport and electricity. Resour. Conserv. Recycl. 2019, 148, 91–103. [Google Scholar] [CrossRef]
- World Nuclear Association Comparison of Lifecycle Greenhouse Gas Emissions of Various Electricity Generation Sources; WNA: London, UK, 2011.
- da Silva, G.A.; de Miranda Ribeiro, F.; Kulay, L.A. Hydropower life-cycle inventories: Methodological considerations and results based on a brazilian experience. In Green Energy and Technology; Springer: London, UK, 2013; pp. 241–267. [Google Scholar] [CrossRef]
- Dolan, S.L.; Heath, G.A. Life Cycle Greenhouse Gas Emissions of Utility-Scale Wind Power. J. Ind. Ecol. 2012, 16, S136–S154. [Google Scholar] [CrossRef]
- Ashby, M.F. Materials for low-carbon power. In Materials and the Environment; Elsevier: Amsterdam, The Netherlands, 2013; pp. 349–413. [Google Scholar]
- Peck, D.; Kandachar, P.; Tempelman, E. Critical materials from a product design perspective. Mater. Des. 2015, 65, 147–159. [Google Scholar] [CrossRef]
- Jesse, B.; Dexter, G. North American Wind Energy Copper Content Analysis; Navigant Consulting, Inc.: Chicago, IL, USA, 2018. [Google Scholar]
- National Bureau of Statistics. China Statistical Yearbook; China Statistics Press: Beijing, China, 2016.
- National Bureau of Statistics. China Statistical Yearbook; China Statistics Press: Beijing, China, 2017.
- National Bureau of Statistics. China Statistical Yearbook; China Statistics Press: Beijing, China, 2018.
- National Bureau of Statistics. China Statistical Yearbook; China Statistics Press: Beijing, China, 2019.
- National Bureau of Statistics. China Statistical Yearbook; China Statistics Press: Beijing, China, 2020.
- Yu, C. China Electric Power Yearbook; China Electric Power Press: Beijing, China, 2016. [Google Scholar]
- Yu, C. China Electric Power Yearbook; China Electric Power Press: Beijing, China, 2017. [Google Scholar]
- Yu, C. China Electric Power Yearbook; China Electric Power Press: Beijing, China, 2018. [Google Scholar]
- Yu, C. China Electric Power Yearbook; China Electric Power Press: Beijing, China, 2019. [Google Scholar]
- Department of Urban Society and Economic Statistics Producer Price Indices for Industrial Products by Branch and Region. In China Price Statistical Yearbook; China Statistics Press: Beijing, China, 2016.
- Department of Urban Society and Economic Statistics Producer Price Indices for Industrial Products by Branch and Region. In China Price Statistical Yearbook; China Statistics Press: Beijing, China, 2017.
- Department of Urban Society and Economic Statistics Producer Price Indices for Industrial Products by Branch and Region. In China Price Statistical Yearbook; China Statistics Press: Beijing, China, 2018.
- Department of Urban Society and Economic Statistics Producer Price Indices for Industrial Products by Branch and Region. In China Price Statistical Yearbook; China Statistics Press: Beijing, China, 2019.
- Department of Urban Society and Economic Statistics Producer Price Indices for Industrial Products by Branch and Region. In China Price Statistical Yearbook; China Statistics Press: Beijing, China, 2020.
- Liu, L.; Wang, Y.; Wang, Z.; Li, S.; Li, J.; He, G.; Li, Y.; Liu, Y.; Piao, S.; Gao, Z.; et al. Potential contributions of wind and solar power to China’s carbon neutrality. Resour. Conserv. Recycl. 2022, 180, 106155. [Google Scholar] [CrossRef]
- Su, B.; Ang, B.W. Input-output analysis of CO2 emissions embodied in trade: A multi-region model for China. Appl. Energy 2014, 114, 377–384. [Google Scholar] [CrossRef]
- Shields, M.; Beiter, P.; Nunemaker, J.; Cooperman, A.; Duffy, P. Impacts of turbine and plant upsizing on the levelized cost of energy for offshore wind. Appl. Energy 2021, 298, 117189. [Google Scholar] [CrossRef]
Influential Factors | Variables | Measurement | Abbreviation |
---|---|---|---|
Provincial difference in decarbonization effort | Investment on low-carbon electricity 1 | Low-carbon electricity investment’s share in power generation investment | PI |
Elimination of backward thermal production capacity | The proportion of the capacity of thermal power plant retirements in total installed capacity of thermal power | RC | |
Innovation in low-carbon power technologies | The number of authorized green patents related to electricity 2 | PT | |
Provincial difference in power generation characteristic | Total power generation | Total electricity generated locally | PG |
Power generation structure | Share of low-carbon electricity in total electricity generation mix | PS | |
Power price | Weighted average of on-grid price of different types of electricity. (The weight is percentage of electricity production that comes from different fuels) | PP | |
Provincial difference in economic development | Economic scale | Gross domestic product | GDP |
Grid connection between provinces | Whether there is direct power transmission relationship between provinces | \ | RE |
Communities | 2015 | 2016 | 2017 | 2018 | 2019 |
---|---|---|---|---|---|
North | Beijing, Tianjin, Hebei, Shanxi, Inner Mongolia | Beijing, Tianjin, Hebei, Shanxi, Inner Mongolia, Shaanxi | Beijing, Tianjin, Hebei, Shanxi, Inner Mongolia, Shaanxi | Beijing, Tianjin, Hebei, Shanxi, Inner Mongolia | Beijing, Tianjin, Hebei, Shanxi, Inner Mongolia, Liaoning, Jilin, Heilongjiang |
Northeast | Liaoning, Jilin, Heilongjiang | Liaoning, Jilin, Heilongjiang | Liaoning, Jilin, Heilongjiang | Liaoning, Jilin, Heilongjiang | |
Southeast | Shanghai, Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi, Hubei, Chongqing, Sichuan | Shanghai, Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi, Hubei, Chongqing, Sichuan | Shanghai, Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi, Shandong, Hubei, Chongqing, Sichuan, Ningxia | Shanghai, Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi, Shandong, Hubei, Chongqing, Sichuan, Ningxia | Shanghai, Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi, Shandong, Hubei, Chongqing, Sichuan, Ningxia |
South | Guangdong, Guangxi, Hainan, Guizhou, Yunnan, Hunan | Guangdong, Guangxi, Hainan, Guizhou, Yunnan, Hunan | Guangdong, Guangxi, Hainan, Guizhou, Yunnan | Guangdong, Guangxi, Hainan, Guizhou, Yunnan | Guangdong, Guangxi, Hainan, Guizhou, Yunnan |
West-(1) | Shaanxi, Shandong, Ningxia, Tibet, Gansu, Qinghai | Henan, Xinjiang, Tibet, Gansu, Qinghai | Henan, Xinjiang, Tibet, Gansu, Qinghai, Hunan | Henan, Xinjiang, Hunan, Tibet, Shaanxi, Gansu, Qinghai | Hunan, Tibet, Shaanxi, Gansu, Qinghai |
West-(2) | Henan, Xinjiang | Shandong, Ningxia | Henan, Xinjiang |
Communities | 2015 | 2016 | 2017 | 2018 | 2019 |
---|---|---|---|---|---|
North | Beijing, Tianjin, Hebei, Shanxi, Inner Mongolia, Shaanxi | Beijing, Tianjin, Hebei, Shanxi, Inner Mongolia, Shaanxi | Beijing, Tianjin, Hebei, Shanxi, Inner Mongolia, Shaanxi | Beijing, Tianjin, Hebei, Shanxi, Inner Mongolia, Shaanxi | Beijing, Tianjin, Hebei, Shanxi, Inner Mongolia, Shaanxi |
Northeast | Liaoning, Jilin, Heilongjiang | Liaoning, Jilin, Heilongjiang, Shandong, Ningxia | Liaoning, Jilin, Heilongjiang | Liaoning, Jilin, Heilongjiang | Liaoning, Jilin, Heilongjiang |
Southeast | Shanghai, Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi, Hubei, Chongqing, Sichuan | Shanghai, Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi, Hubei, Sichuan | Shanghai, Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi, Hubei, Sichuan | Shanghai, Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi, Hubei, Chongqing, Sichuan, Ningxia, Shandong | Shanghai, Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi, Hubei, Sichuan, Ningxia, Shandong |
South | Guangdong, Guangxi, Hainan, Guizhou, Yunnan, Hunan | Chongqing, Guangdong, Guangxi, Hainan, Guizhou, Yunnan, Hunan | Chongqing, Guangdong, Guangxi, Hainan, Guizhou, Yunnan, Hunan | Guangdong, Guangxi, Hainan, Guizhou, Yunnan, Hunan, Tibet, Gansu, Qinghai | Chongqing, Guangdong, Guangxi, Hainan, Guizhou, Yunnan |
West-(1) | Henan, Xinjiang, Tibet, Gansu, Qinghai | Henan, Xinjiang, Tibet, Gansu, Qinghai | Henan, Xinjiang, Tibet, Gansu, Qinghai | Hunan, Henan, Xinjiang, Tibet, Gansu, Qinghai | |
West-(2) | Shandong, Ningxia | Shandong, Ningxia | Henan, Xinjiang |
Influencing Factors and Determination Coefficients | QAP Regression Analysis (Metal Transfer Network) | QAP Regression Analysis (GHG Transfer Network) | |||
---|---|---|---|---|---|
Standardized Coefficient | Significance (p Value) | Standardized Coefficient | Significance (p Value) | ||
Difference in decarbonization effort | PI | 0.0689 * | 0.084 | 0.0454 | 0.181 |
RC | −0.0297 | 0.277 | −0.0204 | 0.356 | |
PT | −0.0727 | 0.136 | −0.0289 | 0.370 | |
Difference in power generation characteristic | PG | −0.0329 | 0.239 | −0.0122 | 0.422 |
PS | −0.1016 ** | 0.013 | −0.1195 *** | 0.006 | |
PP | 0.1106 ** | 0.033 | 0.0773 * | 0.083 | |
Difference in economic development | GDP | 0.1418 ** | 0.012 | 0.0976 * | 0.055 |
Grid connection | RE | 0.5452 *** | 0.000 | 0.5284 *** | 0.000 |
R2 | 0.327 | 0.311 | |||
Adjusted R2 | 0.322 | 0.306 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Y.; Xing, W.; Hao, H.; Du, X.; Liu, C. Interprovincial Metal and GHG Transfers Embodied in Electricity Transmission across China: Trends and Driving Factors. Sustainability 2022, 14, 8898. https://doi.org/10.3390/su14148898
Han Y, Xing W, Hao H, Du X, Liu C. Interprovincial Metal and GHG Transfers Embodied in Electricity Transmission across China: Trends and Driving Factors. Sustainability. 2022; 14(14):8898. https://doi.org/10.3390/su14148898
Chicago/Turabian StyleHan, Yawen, Wanli Xing, Hongchang Hao, Xin Du, and Chongyang Liu. 2022. "Interprovincial Metal and GHG Transfers Embodied in Electricity Transmission across China: Trends and Driving Factors" Sustainability 14, no. 14: 8898. https://doi.org/10.3390/su14148898