# Generalized Predictive Control Scheme for a Wind Turbine System

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

- Modulating the current of the rotor-side converter (RSC), using the GPC speed regulator in order to track the optimal wind turbine speed by applying Maximum Power Point Tracking (MPPT);
- Truncated Newton (TNC) optimizer is incorporated into the controller design process [27]. TNC uses a truncated Newton algorithm to minimize the rotor current to the bounds;
- Highlighting the out-performance of the proposed method compared to the existing techniques by using Matlab/Simulink.

## 2. GPC Design for Mechanical Speed of DFIG

#### 2.1. Turbine Model

#### 2.2. DFIG Model

#### 2.3. Research Gap

#### 2.4. GPC Design

#### 2.5. Constraints on Rotor Windings

## 3. Simulation Validation

## 4. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Wind Energy Technologies Office. Wind Energy and the Environment. 2020. Available online: https://www.eia.gov/energyexplained/wind/wind-energy-and-the-environment.php (accessed on 17 December 2021).
- Sample, C. Principles of Doubly-Fed Induction Generators (Dfig); Festo Didactic Ltee/Ltd. May 2011 Canada. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.726.2750&rep=rep1&type=pdf (accessed on 24 May 2022).
- Barambones, O.; Cortajarena, J.A.; Calvo, I.; de Durana, J.M.G.; Alkorta, P.; Karami-Mollaee, A. Real time observer and control scheme for a Wind Turbine System based on a high order sliding modes. J. Frankl. Inst.
**2021**, 358, 5795–5819. [Google Scholar] [CrossRef] - Alzain, O.B.; Liu, X.; Kong, X. Optimized Sliding Mode Regulation based on PSO Algorithm for Nonlinear DFIG-WT. J. Control Eng. Appl. Inform.
**2021**, 23, 33–45. [Google Scholar] - Benbouhenni, H.; Bizon, N.; Colak, I.; Thounthong, P.; Takorabet, N. Simplified Super Twisting Sliding Mode Approaches of the Double-Powered Induction Generator-Based Multi-Rotor Wind Turbine System. Sustainability
**2022**, 14, 5014. [Google Scholar] [CrossRef] - Wang, J.; Bo, D. Adaptive fixed-time sensorless maximum power point tracking control scheme for DFIG wind energy conversion system. Int. J. Electr. Power Energy Syst.
**2022**, 135, 107424. [Google Scholar] [CrossRef] - Peng, B.; Zhang, F.; Liang, J.; Ding, L.; Liang, Z.; Wu, Q. Coordinated control strategy for the short-term frequency response of a DFIG-ES system based on wind speed zone classification and fuzzy logic control. Int. J. Electr. Power Energy Syst.
**2019**, 107, 363–378. [Google Scholar] [CrossRef] - Belmokhtar, K.; Doumbia, M.L.; Agbossou, K. Novel fuzzy logic based sensorless maximum power point tracking strategy for wind turbine systems driven DFIG (doubly-fed induction generator). Energy
**2014**, 76, 679–693. [Google Scholar] [CrossRef] - Sahri, Y.; Tamalouzt, S.; Lalouni Belaid, S.; Bacha, S.; Ullah, N.; Ahamdi, A.A.A.; Alzaed, A.N. Advanced Fuzzy 12 DTC Control of Doubly Fed Induction Generator for Optimal Power Extraction in Wind Turbine System under Random Wind Conditions. Sustainability
**2021**, 13, 11593. [Google Scholar] [CrossRef] - Khoete, S.; Manabe, Y.; Kurimoto, M.; Funabashi, T.; Kato, T. Robust H-infinity Control for DFIG to Enhance Transient Stability during Grid Faults. In Proceedings of the World Congress on Engineering and Computer Science, San Francisco, CA, USA, 19–21 October 2016. [Google Scholar]
- Wei, J.; Li, C.; Wu, Q.; Zhou, B.; Xu, D.; Huang, S. MPC-based DC-link voltage control for enhanced high-voltage ride-through of offshore DFIG wind turbine. Int. J. Electr. Power Energy Syst.
**2021**, 126, 106591. [Google Scholar] [CrossRef] - Abdelrahem, M.; Hackl, C.; Kennel, R.; Rodriguez, J. Low Sensitivity Predictive Control for Doubly-Fed Induction Generators Based Wind Turbine Applications. Sustainability
**2021**, 13, 9150. [Google Scholar] [CrossRef] - Qin, S.J.; Badgwell, T.A. A survey of industrial model predictive control technology. Control Eng. Pract.
**2003**, 11, 733–764. [Google Scholar] [CrossRef] - Zhang, H.; Hao, J.; Wu, C.; Li, Y.; Sahab, A. A novel LMI-based robust adaptive model predictive control for DFIG-based wind energy conversion system. Syst. Sci. Control Eng.
**2019**, 7, 311–320. [Google Scholar] [CrossRef] - Darabian, M.; Jalilvand, A. Predictive control strategy to improve stability of DFIG-based wind generation connected to a large-scale power system. Int. Trans. Electr. Energy Syst.
**2017**, 27, e2300. [Google Scholar] [CrossRef] - Zhi, D.; Xu, L.; Williams, B.W. Model-based predictive direct power control of doubly fed induction generators. IEEE Trans. Power Electron.
**2009**, 25, 341–351. [Google Scholar] - Fezazi, O.; Ahmed, M. Predictive Control of Doubly Fed Induction Generator Used for Wind Energy. Ph.D. Thesis, Djillali Liabès University, Sidi Bel Abbès, Algeria, 2017. [Google Scholar]
- Kou, P.; Liang, D.; Li, J.; Gao, L.; Ze, Q. Finite-control-set model predictive control for DFIG wind turbines. IEEE Trans. Autom. Sci. Eng.
**2017**, 15, 1004–1013. [Google Scholar] [CrossRef] - Nguyen, T.A.; Nguyen, H.T.; Phan, G.A.V.; Pham, V.; Vo, V.O.; Doan, P.T.; Pham, V.T.; Nguyen, K.A.; Rodriguez-Ayerbe, P.; Ngo, V.Q.B. An efficient model predictive control based on Lyapunov function for doubly fed induction generator fed by a T-type inverter. Electr. Eng.
**2021**, 103, 663–676. [Google Scholar] [CrossRef] - Ghodbane-Cherif, M.; Skander-Mustapha, S.; Slama-Belkhodja, I. An improved predictive control for parallel grid-connected doubly fed induction generator-based wind systems under unbalanced grid conditions. Wind Eng.
**2019**, 43, 377–391. [Google Scholar] [CrossRef] - Abad, G.; Rodriguez, M.A.; Poza, J. Two-level VSC based predictive direct torque control of the doubly fed induction machine with reduced torque and flux ripples at low constant switching frequency. IEEE Trans. Power Electron.
**2008**, 23, 1050–1061. [Google Scholar] [CrossRef] - Izanlo, A.; Kazemi, M.V.; Gholamian, A. A new method of predictive direct torque control for doubly fed induction generator under unbalanced grid voltage. Rev. Roum. Sci. Techn.-Electrotechn. Energ.
**2018**, 63, 332–337. [Google Scholar] - Kennel, R.; Linder, A.; Linke, M. Generalized predictive control (GPC)-ready for use in drive applications? In Proceedings of the 2001 IEEE 32nd Annual Power Electronics Specialists Conference (IEEE Cat. No. 01CH37230), Vancouver, BC, Canada, 17–21 June 2001; Volome 4, pp. 1839–1844. [Google Scholar]
- Solís-Chaves, J.S.; Rodrigues, L.L.; Rocha-Osorio, C.; Sguarezi Filho, A.J. A long-range generalized predictive control algorithm for a DFIG based wind energy system. IEEE/CAA J. Autom. Sin.
**2019**, 6, 1209–1219. [Google Scholar] [CrossRef] - Rodrigues, L.L.; Vilcanqui, O.A.; Guerero, J.M.; Sguarezi Filho, A.J. Generalized Predictive Control applied to the DFIG power control using state-space model and voltage constraints. Electr. Power Syst. Res.
**2020**, 182, 106227. [Google Scholar] [CrossRef] - Zhang, J.; Wang, H.; Hou, G.; Zhang, J. Generalized predictive control for wind turbine systems. In Proceedings of the 2010 5th IEEE Conference on Industrial Electronics and Applications, Taichung, Taiwan, 15–17 June 2010; pp. 679–683. [Google Scholar]
- Roy, J.S. TNC: A Non Linear Optimization Package. 2004. Available online: http://js2007.free.fr/code/index.html (accessed on 24 May 2022).
- Akhmatov, V. Variable-speed wind turbines with doubly-fed induction generators: Part i: Modelling in dynamic simulation tools. Wind Eng.
**2002**, 26, 85–108. [Google Scholar] [CrossRef] - Song, Y.; Dhinakaran, B.; Bao, X. Variable speed control of wind turbines using nonlinear and adaptive algorithms. J. Wind Eng. Ind. Aerodyn.
**2000**, 85, 293–308. [Google Scholar] [CrossRef] - Rakovic, S.V. Robust Model-Predictive Control. 2015. Available online: https://www.researchgate.net/profile/Sasa-V-Rakovic/publication/291956851_Robust_Model_Predictive_Control/links/5aa2cf79aca272d448b5a493/Robust-Model-Predictive-Control.pdf (accessed on 16 January 2018).
- Camacho, E.F.; Alba, C.B. Model Predictive Control; Springer Science & Business Media: Cham, Switzerland, 2013. [Google Scholar]
- Gomma, H.W.; Owens, D.H. Stability analysis for generalized predictive control (GPC) and time varying weighting generalized predictive control (TGPC). In Proceedings of the 2004 IEEE International Conference on Control Applications, Taipei, Taiwan, 2–4 September 2004; Volume 2, pp. 1662–1667. [Google Scholar]
- Mohan, N. Advanced Electric Drives: Analysis, Control, and Modeling Using MATLAB/Simulink; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]

Parameters | Rated Value |
---|---|

Stator Voltage | 380 V |

Rotor voltage | 190 V |

Rated stator current | 18 A |

Rated rotor current | 24 A |

Rated speed | 1447 rpm@50 Hz |

Rated power | 7.5 kW@50 Hz |

Rated torque | 50 Nm |

Stator resistance | 0.42 $\Omega $ |

Rotor resistance | 0.14 $\Omega $ |

Magnetizing inductance | 0.063 H |

Stator leakage inductance | 0.0018 H |

Rotor leakage inductance | 0.0023 H |

Inertia moment | 0.07 Kg·m^{2} |

Viscous friction coefficient | 0.0136 N·m·s |

Parameters | Rated Value |
---|---|

${\lambda}_{opt}$ | $3.6$ |

R | 2.25 m |

$\rho $ | 1.22 kg/m^{3} |

${c}_{1}$, ${c}_{2}$, ${c}_{3}$, ${c}_{4}$, ${c}_{5}$ and ${c}_{6}$ | $15.9$, 16, $0.02$, 5, 21 and 9.12 × 10${}^{-3}$, respectively |

Inertia moment | 5 kg·m^{2} |

Viscous friction coefficient | 0.001 N·m·s |

Gearbox relation | $8.2$ |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Shiravani, F.; Cortajarena, J.A.; Alkorta, P.; Barambones, O.
Generalized Predictive Control Scheme for a Wind Turbine System. *Sustainability* **2022**, *14*, 8865.
https://doi.org/10.3390/su14148865

**AMA Style**

Shiravani F, Cortajarena JA, Alkorta P, Barambones O.
Generalized Predictive Control Scheme for a Wind Turbine System. *Sustainability*. 2022; 14(14):8865.
https://doi.org/10.3390/su14148865

**Chicago/Turabian Style**

Shiravani, Fahimeh, Jose Antonio Cortajarena, Patxi Alkorta, and Oscar Barambones.
2022. "Generalized Predictive Control Scheme for a Wind Turbine System" *Sustainability* 14, no. 14: 8865.
https://doi.org/10.3390/su14148865