An Integrated Approach for Developing an Urban Livability Composite Index—A Cities’ Ranking Road Map to Achieve Urban Sustainability
Abstract
:1. Introduction
Literature Review
2. Materials and Methods
2.1. Study Area
2.2. Conceptual Framework and Selection of Indicators
2.2.1. Conceptual Framework
2.2.2. Indicators
2.2.3. Selection of Indicators
2.3. Data Acquisition and Processing
2.3.1. Data Creation Using GIS and Remote Sensing
2.3.2. Data Processing and Methods
- Firstly, the ‘Normalization of the Indicators/Variables’ was performed to obtain the normalized value at a single scale unit. This was followed by the AHP method, which was used to find the weights of all respective indicators in each dimensional Index.
- The weights of each dimension in the final composite index were also assigned using AHP.
- Thirdly, the final composite was prepared using a weighted sum statistical equation to aggregate the dimension indices into a composition index.
2.3.3. Assigning Weightage to Each Dimension: Analytical Hierarchical Process
Structure of Questionnaire
2.3.4. Composite Livability Index: Aggregation of Dimension Indices into Composite Index
2.3.5. Assigning Weights to Dimensions Using AHP Technique
3. Results and Discussions
3.1. Livability and Index Ranking
3.2. Composite Livability Score
4. Conclusions
5. Limitation and Future Scope
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Okulicz-Kozaryn, A. City life: Rankings (livability) versus perceptions (satisfaction). Soc. Indic. Res. 2013, 110, 433–451. [Google Scholar] [CrossRef]
- Brown, G.G.; Pullar, D.V. An evaluation of the use of points versus polygons in public participation geographic information systems using quasi-experimental design and Monte Carlo simulation. Int. J. Geogr. Inf. Sci. 2012, 26, 231–246. [Google Scholar] [CrossRef]
- Kashef, M. Urban livability across disciplinary and professional boundaries. Front. Archit. Res. 2016, 5, 239–253. [Google Scholar] [CrossRef] [Green Version]
- Burt, J.E.; Barber, G.M.; David, L.R. Elementary Statistics for Geographers, 3rd ed.; Guilford Press: New York, NY, USA, 2009; pp. 1–653. [Google Scholar]
- Clark, P.J.; Evans, F.C. Distance to Nearest Neighbor as a Measure of Spatial Relationships in Populations. Ecology 1954, 35, 445–453. [Google Scholar] [CrossRef]
- Fairbairn, D.; Al-Bakri, M. Using geometric properties to evaluate possible integration of authoritative and volunteered geographic information. ISPRS Int. J. Geo-Inf. 2013, 2, 349–370. [Google Scholar] [CrossRef] [Green Version]
- Faka, A. Assessing Quality of Life Inequalities. A Geographical Approach. ISPRS Int. J. Geo-Inf. 2020, 9, 600. [Google Scholar] [CrossRef]
- Pacione, M. Urban environmental quality and human wellbeing—A social geographical perspective. Landsc. Urban Plan. 2003, 65, 19–30. [Google Scholar] [CrossRef]
- Lovell, R.; Wheeler, B.W.; Higgins, S.L.; Irvine, K.N.; Depledge, M.H. A systematic review of the health and well-being benefits of biodiverse environments. J. Toxicol. Environ. Health. Part B Crit. Rev. 2014, 17, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Balsas, C.J. Measuring the livability of an urban centre: An exploratory study of key performance indicators. Plan. Pract. Res. 2004, 19, 101–110. [Google Scholar] [CrossRef]
- Blomquist, G.C.; Berger, M.C.; Hoehn, J.P. New estimates of quality of life in urban areas. Am. Econ. Rev. 1988, 78, 89–107. [Google Scholar]
- Chabuk, A.J.; Al-Ansari, N.; Hussain, H.M.; Knutsson, S.; Pusch, R. GIS-based assessment of combined AHP and SAW methods for selecting suitable sites for landfill in Al-Musayiab Qadhaa, Babylon, Iraq. Environ. Earth Sci. 2017, 76, 209. [Google Scholar] [CrossRef] [Green Version]
- Antognelli, S.; Vizzari, M. Landscape liveability spatial assessment integrating ecosystem and urban services with their perceived importance by stakeholders. Ecol. Indic. 2017, 72, 703–725. [Google Scholar] [CrossRef]
- Giffinger, R.; Fertner, C.; Kramar, H.; Meijers, E. City-ranking of European medium-sized cities. Cent. Reg. Sci. Vienna UT 2007, 9, 1–12. [Google Scholar]
- Faircloth, C.A. Epilepsies, identities, and difference: Horizons of meaning for individuals with an epilepsy. Qual. Health Res. 1998, 8, 602–617. [Google Scholar] [CrossRef]
- Walljasper, J. A quest for jobs in San Antonio. Nation 1997, 265, 30–32. [Google Scholar]
- Ruth, M.; Franklin, R.S. Livability for all? Conceptual limits and practical implications. Appl. Geogr. 2014, 49, 18–23. [Google Scholar] [CrossRef] [Green Version]
- Paul, A. Developing a methodology for assessing livability potential: An evidence from a metropolitan urban agglomeration (MUA) in Kolkata, India. Habitat Int. 2020, 105, 102263. [Google Scholar] [CrossRef]
- Cipollone, A.; Patacchini, E.; Vallanti, G. Female labour market participation in Europe: Novel evidence on trends and shaping factors. IZA J. Eur. Labor Stud. 2014, 3, 18. [Google Scholar] [CrossRef] [Green Version]
- Anselin, L. Local indicators of spatial association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Pandey, R.U.; Garg, Y.K.; Bharat, A. Understanding qualitative conceptions of livability: An Indian perspective. Int. J. Res. Eng. Technol. 2013, 2, 374–380. [Google Scholar]
- Azapagic, A.; Perdan, S. Indicators of sustainable development for industry: A general framework. Process Saf. Environ. Prot. 2000, 78, 243–261. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.; Zhizhin, M.; Hsu, F.C.; Ghosh, T. VIIRS night-time lights. Int. J. Remote Sens. 2017, 38, 5860–5879. [Google Scholar] [CrossRef]
- Ellis, P.; Roberts, M. Leveraging Urbanization for Greater Prosperity and Livability. 2015. Available online: https://openknowledge.worldbank.org/bitstream/handle/10986/22549/9781464806629.pdf?sequence=4 (accessed on 2 February 2022).
- Franek, J.; Kresta, A. Judgment scales and consistency measure in AHP. Procedia Econ. Financ. 2014, 12, 164–173. [Google Scholar] [CrossRef] [Green Version]
- Zhan, D.; Kwan, M.P.; Zhang, W.; Fan, J.; Yu, J.; Dang, Y. Assessment and determinants of satisfaction with urban livability in China. Cities 2018, 79, 92–101. [Google Scholar] [CrossRef]
- Stević, S. International Encyclopedia of Statistical Science; Lovric, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 608–609. [Google Scholar] [CrossRef]
- Hasan, A. Migration, small towns and social transformations in Pakistan. Environ. Urban. 2010, 22, 33–50. [Google Scholar] [CrossRef]
- Haseeb, A.; Saleemi, A.; Haseeb, Z.; Amin, S.; Islam, H.S. Spatial Analysis for the Identification of High-Risk Locations of Road Accidents with Pedestrian Fatalities in Lahore. Pak. J. Sci. 2018, 70, 317. [Google Scholar]
- Kovacs-Györi, A.; Cabrera-Barona, P.; Resch, B.; Mehaffy, M.; Blaschke, T. Assessing and representing livability through the analysis of residential preference. Sustainability 2019, 11, 4934. [Google Scholar] [CrossRef] [Green Version]
- Giap, T.K.; Thye, W.W.; Aw, G. A new approach to measuring the liveability of cities: The Global Liveable Cities Index. World Rev. Sci. Technol. Sustain. Dev. 2014, 11, 176–196. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Zhong, S.; Guo, F.; Guo, X.; Guo, X. Paying for the quality of life: The impacts of urban livability on CEO compensation. Habitat Int. 2021, 116, 102416. [Google Scholar] [CrossRef]
- Patro, S.G.K.; Sahu, K.K. Normalization: A Preprocessing Stage. Int. Adv. Res. J. Sci. Eng. Technol. 2015, 2, 20–22. [Google Scholar] [CrossRef]
- Sieber, R. Public participation geographic information systems: A literature review and framework. Ann. Assoc. Am. Geogr. 2006, 96, 491–507. [Google Scholar] [CrossRef]
- Arksey, H.; O’Malley, L. Scoping studies: Towards a methodological framework. Int. J. Soc. Res. Methodol. 2005, 8, 19–32. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.G.; Lee, J.H. A Study on the Spatial Characteristics Analysis of the Urban Public Space, applying a Pattern Language. J. Korea Acad. Ind. Coop. Soc. 2015, 16, 5608–5618. [Google Scholar]
- Veefkind, J.P.; Aben, I.; McMullan, K.; Förster, H.; De Vries, J.; Otter, G.; Claas, J.; Eskes, H.J.; De Haan, J.F.; Kleipool, Q.; et al. TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sens. Environ. 2012, 120, 70–83. [Google Scholar] [CrossRef]
- Malczewski, J. Multiple Criteria Decision Analysis and Geographic Information Systems. In Trends in Multiple Criteria Decision Analysis; Ehrgott, M., Figueira, J., Greco, S., Eds.; Springer: Boston, MA, USA, 2010; pp. 369–395. [Google Scholar]
- Henderi, H.; Wahyuningsih, T.; Rahwanto, E. Comparison of Min-Max normalization and Z-Score Normalization in the K-nearest neighbor (kNN) Algorithm to Test the Accuracy of Types of Breast Cancer. Int. J. Inform. Inf. Syst. 2021, 4, 13–20. [Google Scholar] [CrossRef]
- Soleymani, F.; Sharifi, M.; Shateyi, S.; Khaksar Haghani, F. An algorithm for computing geometric mean of two Hermitian positive definite matrices via matrix sign. Abstr. Appl. Anal. 2014, 2014, 978629. [Google Scholar] [CrossRef]
- Mushtaha, E.; Alsyouf, I.; Al Labadi, L. Application of AHP and a mathematical index to estimate livability in tourist districts: The case of Al Qasba in Sharjah. Front. Archit. Res. 2020, 9, 872–889. [Google Scholar] [CrossRef]
- Thomas, M.R. A GIS-based decision support system for brownfield redevelopment. Landsc. Urban Plan. 2002, 58, 7–23. [Google Scholar] [CrossRef]
- Yin, Z.; Wu, Y.; Jin, Z.; Zhang, X. Research on livable community evaluation based on GIS. Proc. IOP Conf. Ser. Earth Environ. Sci. 2018, 108, 042075. [Google Scholar] [CrossRef] [Green Version]
- Vitianingsih, A.; Choiron, A.; Cahyono, D.; Suyanto, S. Weighted Sum Model for Spatial Analysis in Classification of Areas Prone to Diphtheria Tetanus. In Proceedings of the 1st Asian Conference on Humanities, Industry, and Technology for Society, Surabaya, Indonesia, 30–31 July 2019. [Google Scholar]
- Saaty, T.L.; Vatgas, L.G. Methods, Models, Concepts & Applications of the Analytic Hierarchy Process; Springer Science and Business Media: New York, NY, USA, 2012. [Google Scholar] [CrossRef]
- Basu, T.; Das, A.; Pereira, P. Urban livability index assessment based on land-use changes in an Indian medium-sized city (Raiganj). Geocarto Int. 2021, 1–25. [Google Scholar] [CrossRef]
- Al-Hanbali, A.; Alsaaideh, B.; Kondoh, A. Using GIS-based weighted linear combination analysis and remote sensing techniques to select optimum solid waste disposal sites within Mafraq city, Jordan. J. Geogr. Inf. Syst. 2011, 3, 267–278. [Google Scholar] [CrossRef] [Green Version]
- Badland, H.; Whitzman, C.; Lowe, M.; Davern, M.; Aye, L.; Butterworth, I.; Hes, D.; Giles-Corti, B. Urban liveability: Emerging lessons from Australia for exploring the potential for indicators to measure the social determinants of health. Soc. Sci. Med. 2014, 111, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Marshall, W.E. An evaluation of livability in creating transit-enriched communities for improved regional benefits. Res. Transp. Bus. Manag. 2013, 7, 54–68. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Geographically Weighted Regression and Associated Techniques; Wiley: Chichester, UK, 2002; pp. 1–288. [Google Scholar]
- Leach, J.M.; Lee, S.E.; Hunt, D.V.; Rogers, C.D. Improving city-scale measures of livable sustainability: A study of urban measurement and assessment through application to the city of Birmingham, UK. Cities 2017, 71, 80–87. [Google Scholar] [CrossRef]
- Fu, B.; Yu, D.; Zhang, Y. The livable urban landscape: GIS and remote sensing extracted land use assessment for urban livability in Changchun proper, China. Land Use Policy 2019, 87, 104048. [Google Scholar] [CrossRef]
- Liu, J.; Nijkamp, P.; Huang, X.; Lin, D. Urban livability and tourism development in China: Analysis of sustainable development by means of spatial panel data. Habitat Int. 2017, 68, 99–107. [Google Scholar] [CrossRef]
- Onnom, W.; Tripathi, N.; Nitivattananon, V.; Ninsawat, S. Development of a liveable city index (LCI) using multi criteria geospatial modelling for medium class cities in developing countries. Sustainability 2018, 10, 520. [Google Scholar] [CrossRef] [Green Version]
Indicator | Relevant References |
---|---|
Spatial Characteristics | [19,20,21,22,23,24,25] |
Individual Wellbeing | [26,27] |
Urban Economy | [28] |
Connectivity and Infrastructure | [29,30] |
Quality of life | [31] |
Urban Environment | [27,32,33,34] |
Dimensions of Livability of Cities | Preferred Indicator (A or B) | Scoring of Preferred Indicator | ||
---|---|---|---|---|
A | B | Less Important | More Important | |
Spatial Growth and Development | Individual Wellbeing | |||
Spatial Growth and Development | Urban Economy | |||
Spatial Growth and Development | Connectivity and Infrastructure | |||
Spatial Growth and Development | Quality of Life | |||
Spatial Growth and Development | Urban Environment | |||
Individual Wellbeing | Urban Economy | |||
Individual Wellbeing | Connectivity and Infrastructure | |||
Individual Wellbeing | Quality of1 Life | |||
Individual Wellbeing | Urban Environment | |||
Urban Economy | Connectivity and Infrastructure | |||
Urban Economy | Quality of Life | |||
Urban Economy | Urban Environment | |||
Connectivity and Infrastructure | Quality of Life | |||
Connectivity and Infrastructure | Urban Environment | |||
Quality of Life | Urban environment |
n = | 6 | Number of Criteria (2 to 10) | Scale: | 1 | AHP 1-9 | |||||||||||
n = | 20 | Number of Participants (1 to 20) | α: | 0.1 | Consensus: | 48.0% | ||||||||||
p = | 0 | Selected Participant (0 = consol.) | 2 | 7 | Consolidated | |||||||||||
Date | Thresh: | 1 × 10−8 | Iterations: | 5 | EVM check: | 1.4 × 10−9 | ||||||||||
Criterion | Weights | +/− | ||||||||||||||
1 | Spatial Gr & Dev | Spatial Growth and Development | 10.9% | 1.9% | ### | |||||||||||
2 | Individual Wellbeing | Individual Wellbeing | 16.7% | 4.5% | ### | |||||||||||
3 | Urban Economy | Urban Economy | 12.3% | 2.5% | ### | |||||||||||
4 | Connectivity & Inf | Connectivity & Infrastructure | 14.5% | 5.2% | ### | |||||||||||
5 | Quality of Life | Quality of Life | 30.1% | 9.9% | ### | |||||||||||
6 | Urban Env | Urban Environment | 15.3% | 3.2% | ### | |||||||||||
Result | Eigenvalue | Lambda: | 6.177 | MRE: | 26.5% | |||||||||||
Consistency Ratio | 0.37 | GCI: | 0.11 | Psi: | 26.7% | CR: | 2.8% | MRE est | 26.6% |
Participant 1 | |||||||
α: 0.1 | CR: 25% | ||||||
Name | Weight | Date | Consistency Ratio | ||||
Criteria | More Important? | Scale | |||||
i | i | A | B | A or B | (1–9) | ||
1 | 2 | Spatial Gr & Dev | Individual Wellbeing | B | 7 | ||
1 | 3 | Urban Economy | B | 9 | |||
1 | 4 | Connectivity & Inf | B | 5 | 3 | ||
1 | 5 | Quality of Life | B | 7 | |||
1 | 6 | Urban Env | A | 7 | 1 | ||
1 | 7 | B | 7 | ||||
1 | 8 | A | 7 | ||||
2 | 3 | Individual Wellbeing | Urban Economy | B | 7 | ||
2 | 4 | Connectivity & Inf | A | 7 | 2 | ||
2 | 5 | Quality of Life | B | 4 | |||
2 | 6 | Urban Env | A | 5 | |||
2 | 7 | ||||||
2 | 8 | ||||||
3 | 4 | Urban Economy | Connectivity & Inf | A | 5 | ||
3 | 5 | Quality of Life | A | 5 | |||
3 | 6 | Urban Env | A | 9 | |||
3 | 7 | ||||||
3 | 8 | ||||||
4 | 5 | Connectivity & Inf | Quality of Life | B | 7 | ||
4 | 6 | Urban Env | A | 7 | |||
4 | 7 | ||||||
4 | 8 | ||||||
5 | 6 | Quality of Life | Urban Env | A | 4 | ||
5 | 7 | ||||||
5 | 8 |
City | Spatial Characteristics and Demographics | Weightages 10.9% | Individual Well Being- | Weightages 16.7% | Urban Economy | Weightages 12.3% | Connectivity and Infrastructure | Weightages 14.5% | Quality of Life | Weightages 30.1% | Urban Environment | Weightages 15.3% | Final Livability Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bahawalpur | 0.01 | 0.11 | 0.49 | 8.11 | 0.00 | 0.00 | 0.37 | 5.30 | 0.00 | 0.00 | 0.04 | 0.54 | 14.06 |
Faisalabad | 0.67 | 7.3 4 | 0.68 | 11.41 | 0.43 | 5.26 | 1.00 | 14.50 | 0.68 | 20.58 | 0.00 | 0.00 | 59.08 |
Gujranwala | 0.51 | 5.61 | 0.00 | 0.00 | 0.03 | 0.43 | 0.28 | 4.11 | 1.00 | 30.10 | 0.64 | 9.75 | 50.00 |
Lahore | 1.00 | 10.93 | 0.38 | 6.33 | 1.00 | 12.30 | 0.20 | 2.86 | 0.95 | 28.59 | 1.00 | 15.30 | 76.31 |
Multan | 0.01 | 0.09 | 0.23 | 3.89 | 0.39 | 4.77 | 0.48 | 6.98 | 0.36 | 10.86 | 0.03 | 0.42 | 27.01 |
Rawalpindi | 0.20 | 2.18 | 0.96 | 16.08 | 0.56 | 6.89 | 0.37 | 5.34 | 0.96 | 28.80 | 0.72 | 11.09 | 70.39 |
Sargodha | 0.07 | 0.73 | 1.00 | 16.70 | 0.01 | 0.14 | 0.00 | 0.00 | 0.50 | 14.96 | 0.02 | 0.38 | 32.90 |
Sialkot | 0.04 | 0.40 | 0.07 | 1.23 | 0.00 | 0.06 | 0.22 | 3.22 | 0.27 | 8.22 | 0.31 | 4.77 | 17.90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saeed, U.; Ahmad, S.R.; Mohey-ud-din, G.; Butt, H.J.; Ashraf, U. An Integrated Approach for Developing an Urban Livability Composite Index—A Cities’ Ranking Road Map to Achieve Urban Sustainability. Sustainability 2022, 14, 8755. https://doi.org/10.3390/su14148755
Saeed U, Ahmad SR, Mohey-ud-din G, Butt HJ, Ashraf U. An Integrated Approach for Developing an Urban Livability Composite Index—A Cities’ Ranking Road Map to Achieve Urban Sustainability. Sustainability. 2022; 14(14):8755. https://doi.org/10.3390/su14148755
Chicago/Turabian StyleSaeed, Urooj, Sajid Rashid Ahmad, Ghulam Mohey-ud-din, Hira Jannat Butt, and Uzma Ashraf. 2022. "An Integrated Approach for Developing an Urban Livability Composite Index—A Cities’ Ranking Road Map to Achieve Urban Sustainability" Sustainability 14, no. 14: 8755. https://doi.org/10.3390/su14148755
APA StyleSaeed, U., Ahmad, S. R., Mohey-ud-din, G., Butt, H. J., & Ashraf, U. (2022). An Integrated Approach for Developing an Urban Livability Composite Index—A Cities’ Ranking Road Map to Achieve Urban Sustainability. Sustainability, 14(14), 8755. https://doi.org/10.3390/su14148755