An Impact Path Analysis of Russo–Ukrainian Conflict on the World and Policy Response Based on the Input–Output Network
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Methods
2.2.1. Regional Perspective
2.2.2. Industrial Perspective
2.2.3. Critical Paths
3. An Impact Path Analysis of Russo–Ukrainian Conflict from the Regional Perspective
3.1. Overview of the Economic Structure of Russia
3.2. IAEIC and AI of Russia and Other Countries in the World
3.3. IREIC between RUS and Other Countries
4. An Impact Path Analysis of Russo–Ukrainian Conflict from the Industrial Perspective
4.1. The Ability of the Center to Transform Resources of Industries in RUS
4.2. The Ability of the Center to Transform Resources for Links between All Industries in RUS
4.3. The Roles as Suppliers or Consumers of Industries in RUS
4.4. Symmetry and Clustering of Industries in RUS
5. A Critical Path Analysis of Russo–Ukrainian Conflict
6. Conclusions and Policy Implications
7. Limitations of this Study and Directions of Further Research
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Number | Country | Abbreviation | Yes or No-OECD | Number | Country | Abbreviation | Yes or No-OECD |
---|---|---|---|---|---|---|---|
1 | Australia | AUS | Yes | 39 | Argentina | ARG | No |
2 | Austria | AUT | Yes | 40 | Brazil | BRA | No |
3 | Belgium | BEL | Yes | 41 | Brunei Darussalam | BRN | No |
4 | Canada | CAN | Yes | 42 | Bulgaria | BGR | No |
5 | Chile | CHL | Yes | 43 | Cambodia | KHM | No |
6 | Colombia | COL | Yes | 44 | China (People’s Republic of) | CHN | No |
7 | Costa Rica | CRI | Yes | 45 | Croatia | HRV | No |
8 | Czech Republic—Czechia | CZE | Yes | 46 | Cyprus2 | CYP | No |
9 | Denmark | DNK | Yes | 47 | India | IND | No |
10 | Estonia | EST | Yes | 48 | Indonesia | IDN | No |
11 | Finland | FIN | Yes | 49 | Hong Kong, China | HKG | No |
12 | France | FRA | Yes | 50 | Kazakhstan | KAZ | No |
13 | Germany | DEU | Yes | 51 | Lao People’s Democratic Republic | LAO | No |
14 | Greece | GRC | Yes | 52 | Malaysia | MYS | No |
15 | Hungary | HUN | Yes | 53 | Malta | MLT | No |
16 | Iceland | ISL | Yes | 54 | Morocco | MAR | No |
17 | Ireland | IRL | Yes | 55 | Myanmar | MMR | No |
18 | Israel | ISR | Yes | 56 | Peru | PER | No |
19 | Italy | ITA | Yes | 57 | Philippines | PHL | No |
20 | Japan | JPN | Yes | 58 | Romania | ROU | No |
21 | South Korea | KOR | Yes | 59 | Russian Federation | RUS | No |
22 | Latvia | LVA | Yes | 60 | Saudi Arabia | SAU | No |
23 | Lithuania | LTU | Yes | 61 | Singapore | SGP | No |
24 | Luxembourg | LUX | Yes | 62 | South Africa | ZAF | No |
25 | Mexico | MEX | Yes | 63 | Chinese Taipei | TWN | No |
26 | Netherlands | NLD | Yes | 64 | Thailand | THA | No |
27 | New Zealand | NZL | Yes | 65 | Tunisia | TUN | No |
28 | Norway | NOR | Yes | 66 | Viet Nam | VNM | No |
29 | Poland | POL | Yes | 67 | Rest of the World | ROW | No |
30 | Portugal | PRT | Yes | ||||
31 | Slovak Republic | SVK | Yes | ||||
32 | Slovenia | SVN | Yes | ||||
33 | Spain | ESP | Yes | ||||
34 | Sweden | SWE | Yes | ||||
35 | Switzerland | CHE | Yes | ||||
36 | Turkey | TUR | Yes | ||||
37 | United Kingdom | GBR | Yes | ||||
38 | United States | USA | Yes |
Number | ISIC Rev.4 | Industry | Abbreviation |
---|---|---|---|
1 | D01T02 | Agriculture, hunting, forestry | AGR |
2 | D03 | Fishing and aquaculture | FA |
3 | D05T06 | Mining and quarrying, energy producing products | MQE |
4 | D07T08 | Mining and quarrying, non-energy producing products | MQN |
5 | D09 | Mining support service activities | MSS |
6 | D10T12 | Food products, beverages, and tobacco | FBT |
7 | D13T15 | Textiles, textile products, leather, and footwear | TTP |
8 | D16 | Wood and products of wood and cork | WWC |
9 | D17T18 | Paper products and printing | PPP |
10 | D19 | Coke and refined petroleum products | CRP |
11 | D20 | Chemical and chemical products | CCP |
12 | D21 | Pharmaceuticals, medicinal chemical, and botanical products | PMB |
13 | D22 | Rubber and plastics products | RPP |
14 | D23 | Other non-metallic mineral products | OMP |
15 | D24 | Basic metals | BM |
16 | D25 | Fabricated metal products | FMP |
17 | D26 | Computer, electronic and optical equipment | CEO |
18 | D27 | Electrical equipment | EE |
19 | D28 | Machinery and equipment, nec | MAC |
20 | D29 | Motor vehicles, trailers, and semi-trailers | MTS |
21 | D30 | Other transport equipment | OTE |
22 | D31T33 | Manufacturing nec; repair and installation of machinery and equipment | MAN |
23 | D35 | Electricity, gas, steam and air conditioning supply | EGS |
24 | D36T39 | Water supply; sewerage, waste management and remediation activities | WSW |
25 | D41T43 | Construction | CON |
26 | D45T47 | Wholesale and retail trade; repair of motor vehicles | WRR |
27 | D49 | Land transport and transport via pipelines | LR |
28 | D50 | Water transport | WR |
29 | D51 | Air transport | AR |
30 | D52 | Warehousing and support activities for transportation | TS |
31 | D53 | Postal and courier activities | PCA |
32 | D55T56 | Accommodation and food service activities | AFS |
33 | D58T60 | Publishing, audiovisual and broadcasting activities | PAB |
34 | D61 | Telecommunications | TEL |
35 | D62T63 | IT and other information services | IT |
36 | D64T66 | Financial and insurance activities | FIA |
37 | D68 | Real estate activities | RS |
38 | D69T75 | Professional, scientific, and technical activities | PST |
39 | D77T82 | Administrative and support services | ASS |
40 | D84 | Public administration and defence; compulsory social security | PD |
41 | D85 | Education | EDU |
42 | D86T88 | Human health and social work activities | HS |
43 | D90T93 | Arts, entertainment, and recreation | AER |
44 | D94T96 | Other service activities | OS |
45 | D97T98 | Activities of households as employers; undifferentiated goods- and services-producing activities of households for own use | HOU |
References
- James, M.; Brian, D.F.; Gerald, S. Network structure of inter-industry flows. Phys. A Stat. Mech. Its Appl. 2013, 392, 6427–6441. [Google Scholar]
- Liang, S.; Qi, Z.; Qu, S.; Zhu, J.; Chiu, A.S.F.; Jia, X.; Xu, M. Scaling of global input–output networks. Phys. A Stat. Mech. Its Appl. 2016, 452, 311–319. [Google Scholar] [CrossRef]
- Inomata, S.; Owen, A. Comparative evaluation of MRIO database. Econ. Syst. Res. 2014, 26, 239–244. [Google Scholar] [CrossRef]
- Wiedmann, T. A review of recent multi-region input-output models used for consumption-based emission and resource accounting. Ecol. Econ. 2009, 69, 211–222. [Google Scholar] [CrossRef]
- Defourny, J.; Thorbecke, E. Structural path analysis and multiplier decomposition within a social accounting matrix framework. Econ. J. 1984, 94, 111–136. [Google Scholar] [CrossRef]
- Lenzen, M. Structural path analysis of ecosystem networks. Ecol. Model. 2007, 200, 334–342. [Google Scholar] [CrossRef]
- Seung, C.K. Untangling economic impacts for alaska fisheries: A structural path analysis. Mar. Resour. Econ. 2015, 30, 331–347. [Google Scholar] [CrossRef]
- Ben Hassine, H.; Boudier, F.; Mathieu, C. The two ways of FDI R&D spillovers: Evidence from the French manufacturing industry. Appl. Econ. 2017, 49, 2395–2408. [Google Scholar]
- Harada, T. Changing productive relations, linkage effects, and industrialization. Econ. Syst. Res. 2015, 27, 374–390. [Google Scholar] [CrossRef]
- Xu, M.; Liang, S. Input–output networks offer new insights of economic structure. Phys. A Stat. Mech. Its Appl. 2019, 527, 121178. [Google Scholar] [CrossRef]
- Barabási, A.-L.; Albert, R. Emergence of scaling in random networks. Science 1999, 286, 509–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newman, M.E.J. The structure and function of complex networks. SIAM Rev. 2003, 45, 167–256. [Google Scholar] [CrossRef] [Green Version]
- Strogatz, S.H. Exploring complex networks. Nature 2001, 410, 268–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, D.L.; Shneiderman, B.; Smith, M.A. Chapter 3-social network analysis: Measuring, mapping, and modeling collections of connections. In Analyzing Social Media Networks with NodeXL; Hansen, D.L., Shneiderman, B., Smith, M.A., Eds.; Morgan Kaufmann: Boston, MA, USA, 2011; pp. 31–50. [Google Scholar]
- Li, W.; Wang, A.; Zhong, W.; Xing, W.; Liu, J. The role of mineral-related industries in Chinese industrial pattern. Resour. Policy 2022, 76, 102590. [Google Scholar] [CrossRef]
- Sharma, D.; Surolia, A. Degree Centrality. In Encyclopedia of Systems Biology; Dubitzky, W., Wolkenhauer, O., Cho, K.-H., Yokota, H., Eds.; Springer: New York, NY, USA, 2013; p. 558. [Google Scholar]
- Dekker, A.H. Conceptual Distance in Social Network Analysis. J. Soc. Struct. 2005, 6, 31. [Google Scholar]
- Freeman, L.C. A set of measures of centrality based upon betweenness. Sociometry 1977, 40, 35–41. [Google Scholar] [CrossRef]
- Stolz, S.; Schlereth, C. Predicting Tie Strength with Ego Network Structures. J. Interact. Mark. 2021, 54, 40–52. [Google Scholar] [CrossRef]
- Landau, E. Zur relativen Wertbemessung der Turnierresultate. Dtsch. Wochenschach. 1895, 11, 3. [Google Scholar]
- Zaki, M.J.; Meira, W., Jr.; Meira, W. Data Mining and Analysis: Fundamental Concepts and Algorithms; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Defays, D. An efficient algorithm for a complete link method. Comput. J. 1977, 20, 364–366. [Google Scholar] [CrossRef] [Green Version]
- Newman, M.E. Fast algorithm for detecting community structure in networks. Phys. Rev. E Stat. Nonlin Soft Matter Phys. 2004, 69, 66133. [Google Scholar] [CrossRef] [Green Version]
- Girvan, M.; Newman, M.E.J. Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 2002, 99, 7821–7826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acemoglu, D.; Carvalho, V.M.; Ozdaglar, A.; Tahbaz-Salehi, A. The network origins of aggregate fluctuations. Econometrica 2012, 80, 1977–2016. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, V. Aggregate Fluctuations and the Network Structure of Intersectoral Trade; CREI and U. Pompeu Fabra; The University of Chicago: Chicago, IL, USA, 2009. [Google Scholar]
- Harvey, E.P.; O’Neale, D.R.J. Using Network Science to Quantify Economic Disruptions in Regional Input-Output Networks. In Proceedings of the NetSci-X 2020: Sixth International Winter School and Conference on Network Science; Springer: Cham, Switzerland, 2020; pp. 259–270. [Google Scholar]
- Ando, S. Measuring US sectoral shocks in the world input–output network. Econ. Lett. 2014, 125, 204–207. [Google Scholar] [CrossRef]
- Grazzini, J.; Spelta, A. An Empirical Analysis of the Global Input-Output Network and Its Evolution; DISCE, Working Papers del Dipartimento di Economia e Finanza; Catholic University of the Sacred Heart: Milano, Italy, 2015. [Google Scholar]
- Li, W.; Kenett, D.Y.; Yamasaki, K.; Stanley, H.E.; Havlin, S. Ranking the economic importance of countries and industries. Quant. Financ. 2014, 3, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Xing, L.; Ye, Q.; Guan, J. Spreading Effect in Industrial Complex Network Based on Revised Structural Holes Theory. PLoS ONE 2016, 11, e0156270. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Han, Y.; Wang, D. An impact path analysis of COVID-19 outbreak in China and policy response. Manag. World 2020, 36, 1–12. [Google Scholar]
- Wolfe, A.W. Social network analysis: Methods and applications. Contemp. Sociol. 1995, 91, 219–220. [Google Scholar] [CrossRef]
- Fagiolo, G. Clustering in complex directed networks. Phys. Rev. E 2007, 76, 026107. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Shi, Q.; Zhang, W. Structural path and sensitivity analysis of the CO2 emissions in the construction industry. Environ. Impact Assess. Rev. 2022, 92, 106679. [Google Scholar] [CrossRef]
- Nagashima, F. Critical structural paths of residential PM2.5 emissions within the Chinese provinces. Energy Econ. 2018, 70, 465–471. [Google Scholar] [CrossRef]
- Owen, A.; Wood, R.; Barrett, J.; Evans, A. Explaining value chain differences in MRIO databases through structural path decomposition. Econ. Syst. Res. 2016, 28, 243–272. [Google Scholar] [CrossRef] [Green Version]
- Liang, S.; Qu, S.; Xu, M. Betweenness-Based Method to Identify Critical Transmission Sectors for Supply Chain Environmental Pressure Mitigation. Environ. Sci. Technol. 2016, 50, 1330–1337. [Google Scholar] [CrossRef] [PubMed]
- Cassel, G. Abnormal Deviations in International Exchanges. Econ. J. 1918, 28, 413–415. [Google Scholar] [CrossRef] [Green Version]
- Cuestas, J.C.; Regis, P.J. Purchasing power parity in OECD countries: Nonlinear unit root tests revisited. Econ. Model. 2013, 32, 343–346. [Google Scholar] [CrossRef] [Green Version]
- IMF. World Economic Outlook Database; IMF Publication Services: Washington, DC, USA, 2021. [Google Scholar]
- Lenzen, M.; Kanemoto, K.; Moran, D.; Geschke, A. Mapping the structure of the world economy. Environ. Sci. Technol. 2012, 46, 8374–8381. [Google Scholar] [CrossRef]
SP Betweenness | World Ranking | Industry | SP Betweenness | World Ranking | |
---|---|---|---|---|---|
MQE | 19,189.74 | 35 | OMP | 115.62 | 1046 |
CRP | 15,146.12 | 40 | RS | 79.96 | 1194 |
WRR | 10,890.45 | 59 | FMP | 71.72 | 1226 |
BM | 10,785.49 | 61 | MAN | 66.20 | 1250 |
CON | 4947.06 | 142 | PAB | 51.07 | 1330 |
EGS | 3068.78 | 206 | AFS | 38.87 | 1433 |
LR | 2092.45 | 262 | EE | 35.23 | 1462 |
WWC | 1481.49 | 329 | WR | 29.87 | 1532 |
PST | 1444.37 | 337 | ASS | 23.76 | 1590 |
CCP | 1334.69 | 356 | TEL | 15.59 | 1729 |
TS | 1099.36 | 394 | MTS | 11.27 | 1807 |
AR | 1054.84 | 399 | PCA | 7.97 | 1888 |
MQN | 855.36 | 444 | TTP | 6.39 | 1933 |
MSS | 802.43 | 459 | HS | 5.04 | 1987 |
AGR | 474.99 | 596 | WSW | 4.91 | 1996 |
RPP | 457.04 | 608 | PMB | 4.30 | 2032 |
FBT | 370.22 | 680 | CEO | 1.62 | 2217 |
PPP | 251.62 | 793 | MAC | 1.08 | 2291 |
OTE | 232.54 | 826 | AER | 0.28 | 2455 |
FIA | 194.43 | 885 | PD | 0.17 | 2505 |
WR | 145.00 | 975 | EDU | 0.00 | 2919 |
IT | 116.65 | 1044 | OS | 0.00 | 2920 |
Link between Industries | SP between | National Ranking | World Ranking | |
---|---|---|---|---|
RUS-MQE | RUS-CRP | 42,912.76 | 1 | 176 |
RUS-LR | RUS-WRR | 34,181.43 | 2 | 230 |
RUS-RS | RUS-WRR | 26,408.25 | 3 | 336 |
RUS-AGR | RUS-FBT | 25,407.70 | 4 | 349 |
RUS-MQE | RUS-EGS | 19,485.79 | 5 | 479 |
RUS-WRR | RUS-CRP | 18,616.39 | 6 | 503 |
RUS-MSS | RUS-CRP | 17,007.24 | 7 | 552 |
RUS-WRR | RUS-FBT | 15,855.43 | 8 | 593 |
RUS-CON | RUS-PD | 15,427.82 | 9 | 611 |
RUS-LR | RUS-MQE | 15,305.20 | 10 | 616 |
RUS-OMP | RUS-CON | 14,568.61 | 11 | 648 |
RUS-PST | RUS-WRR | 13,676.31 | 12 | 696 |
RUS-WRR | RUS-CON | 11,513.62 | 13 | 861 |
RUS-LR | RUS-CRP | 11,321.54 | 14 | 874 |
RUS-TS | RUS-WRR | 10,803.04 | 15 | 907 |
RUS-BM | RUS-CON | 9815.83 | 16 | 995 |
RUS-MQN | RUS-BM | 9696.43 | 17 | 1008 |
RUS-MSS | RUS-MQE | 9266.85 | 18 | 1061 |
RUS-EGS | RUS-BM | 9100.26 | 19 | 1088 |
RUS-FMP | RUS-CON | 8581.41 | 20 | 1169 |
RUS-CRP | RUS-LR | 8411.29 | 21 | 1193 |
RUS-FIA | RUS-WRR | 8301.70 | 22 | 1212 |
RUS-BM | RUS-FMP | 8207.86 | 23 | 1232 |
RUS-WRR | RUS-EGS | 8167.88 | 24 | 1241 |
RUS-CRP | RUS-CON | 7863.86 | 25 | 1283 |
RUS-WRR | RUS-AGR | 7635.99 | 26 | 1333 |
RUS-LR | RUS-TS | 7402.21 | 27 | 1379 |
RUS-EGS | RUS-RS | 7342.54 | 28 | 1394 |
RUS-WSW | RUS-BM | 7194.88 | 29 | 1420 |
RUS-CRP | RUS-CCP | 6669.93 | 30 | 1525 |
Industry | Downstream Closeness | World Ranking | Industry | Downstream Closeness | World Ranking |
---|---|---|---|---|---|
MQE | 79.89 | 52 | FBT | 4.92 | 715 |
WRR | 63.52 | 67 | PPP | 4.63 | 744 |
CRP | 42.09 | 106 | AR | 4.46 | 764 |
LR | 33.53 | 137 | WWC | 3.61 | 862 |
BM | 27.64 | 173 | OTE | 3.47 | 884 |
EGS | 24.08 | 190 | EE | 2.97 | 962 |
RS | 19.46 | 233 | MAC | 2.74 | 1005 |
TS | 18.34 | 243 | CEO | 2.18 | 1131 |
PST | 17.16 | 257 | TEL | 2.08 | 1151 |
FIA | 15.93 | 274 | MTS | 2.02 | 1167 |
ASS | 15.31 | 281 | AFS | 1.90 | 1203 |
CON | 14.91 | 289 | PAB | 1.85 | 1214 |
AGR | 13.05 | 325 | PD | 1.51 | 1329 |
CCP | 11.80 | 358 | WR | 1.29 | 1413 |
MQN | 10.57 | 394 | WR | 1.01 | 1524 |
MSS | 9.04 | 453 | PCA | 0.84 | 1622 |
FMP | 7.99 | 499 | PMB | 0.71 | 1708 |
OMP | 7.51 | 529 | TTP | 0.64 | 1764 |
IT | 6.20 | 594 | EDU | 0.62 | 1781 |
MAN | 5.44 | 653 | HS | 0.58 | 1815 |
RPP | 5.16 | 677 | AER | 0.43 | 1966 |
WSW | 5.02 | 702 | OS | 0.29 | 2133 |
Industry | Upstream Closeness | World Ranking | Industry | Upstream Closeness | World Ranking |
---|---|---|---|---|---|
WRR | 45.63 | 91 | MSS | 5.07 | 730 |
CON | 34.97 | 129 | OMP | 5.06 | 732 |
CRP | 31.62 | 150 | RPP | 4.69 | 775 |
FBT | 26.22 | 176 | MAC | 4.20 | 825 |
PD | 20.87 | 219 | TEL | 3.81 | 879 |
BM | 17.84 | 257 | CEO | 3.80 | 881 |
LR | 17.39 | 266 | EE | 3.62 | 906 |
MQE | 16.07 | 288 | ASS | 3.56 | 912 |
EGS | 15.16 | 304 | EDU | 3.50 | 925 |
AGR | 12.75 | 359 | WSW | 3.44 | 931 |
RS | 11.84 | 382 | PPP | 3.43 | 935 |
PST | 11.70 | 386 | MQN | 3.14 | 982 |
TS | 10.89 | 417 | IT | 2.90 | 1029 |
CCP | 9.45 | 466 | AER | 2.65 | 1071 |
MTS | 8.79 | 488 | WWC | 2.62 | 1075 |
HS | 8.43 | 502 | OS | 2.10 | 1179 |
FMP | 8.01 | 530 | TTP | 1.94 | 1236 |
OTE | 7.03 | 575 | PMB | 1.69 | 1315 |
AR | 6.11 | 635 | PAB | 1.62 | 1343 |
MAN | 5.80 | 657 | WR | 1.09 | 1582 |
FIA | 5.59 | 673 | WR | 0.81 | 1736 |
AFS | 5.31 | 704 | PCA | 0.49 | 1960 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Wang, A.; Zhong, W.; Wang, C. An Impact Path Analysis of Russo–Ukrainian Conflict on the World and Policy Response Based on the Input–Output Network. Sustainability 2022, 14, 8672. https://doi.org/10.3390/su14148672
Li W, Wang A, Zhong W, Wang C. An Impact Path Analysis of Russo–Ukrainian Conflict on the World and Policy Response Based on the Input–Output Network. Sustainability. 2022; 14(14):8672. https://doi.org/10.3390/su14148672
Chicago/Turabian StyleLi, Weidong, Anjian Wang, Weiqiong Zhong, and Chunhui Wang. 2022. "An Impact Path Analysis of Russo–Ukrainian Conflict on the World and Policy Response Based on the Input–Output Network" Sustainability 14, no. 14: 8672. https://doi.org/10.3390/su14148672
APA StyleLi, W., Wang, A., Zhong, W., & Wang, C. (2022). An Impact Path Analysis of Russo–Ukrainian Conflict on the World and Policy Response Based on the Input–Output Network. Sustainability, 14(14), 8672. https://doi.org/10.3390/su14148672