Driving Forces of Tourism Carbon Decoupling: A Case Study of the Yangtze River Economic Belt, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Methods
2.2.1. Carbon Emission Estimation Model of Tourism
- 1.
- The estimation of tourism transportation is as follows:
- 2.
- The estimation of tourism activities is as follows:
- 3.
- The estimation of tourism accommodation is as follows:
2.2.2. The Tapio Decoupling Model
2.2.3. The Geographic Detector Model
- Factor detectorThe association can be examined as follows:
- 2.
- Interaction detector
2.3. Influencing Factor Indicators
2.4. Data Sources
3. Results
3.1. Decoupling Situation of Tourism-Related Carbon Emissions
3.1.1. Analysis of Tourism Carbon Emission Trend
3.1.2. Decoupling Tourism-Related Carbon Emissions
3.2. Driving Factors of Decoupling Tourism-Related Carbon Emissions
3.2.1. Driver Analysis
3.2.2. Interaction Analysis
4. Discussion
4.1. Tourism Carbon Decoupling
4.2. Driving Forces of Tourism Carbon Decoupling
4.3. Suggestions and Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Transportation Modes | Railways | Highways | Waterways | Civil Aviation | Researchers |
---|---|---|---|---|---|
(%) | 32.7 | 27.9 | 10.6 | 37.6 | 2011 [45], 2012 [46], 2014 [10] |
(g/p km) | 27 | 133 | 106 | 137 | 2012 [46], 2014 [10], 2016 [47] |
Tourism Activities | Sightseeing | Leisure Vacations | Business Conferences | Visiting Relatives and Friends | Others | Note |
---|---|---|---|---|---|---|
(g/visitor) | 417 | 1670 | 786 | 591 | 172 | 2006 [48], 2021 [3] |
Evaluation Criteria | Interaction | Graphical Representation |
---|---|---|
Weak, nonlinear | ||
Weak, univariate, nonlinear | ||
Enhanced, linear, bi-near | ||
Independent | ||
Enhanced, nonlinear |
References
- Guo, B.; Geng, Y.; Franke, B.; Hao, H.; Liu, Y.; Chiu, A. Uncovering China’s transport CO2 emission patterns at the regional level. Energy Policy 2014, 74, 134–146. [Google Scholar] [CrossRef]
- Hu, A.G. China’s Goal of Achieving Carbon Peak by 2030 and Its Main Approaches. J. Beijing Univ. Technol. 2021, 21, 1–15. (In Chinese) [Google Scholar]
- Zha, J.P.; Dai, J.Q.; Ma, S.Q.; Chen, Y.R.; Wang, X.H. How to decouple tourism growth from carbon emissions? A case study of Chengdu, China. Tour. Manag. Perspect. 2021, 39, 100849. [Google Scholar] [CrossRef]
- Shan, Y.; Ou, J.; Wang, D.; Zeng, Z.; Zhang, S.; Guan, D.; Hubacek, K. Impacts of COVID-19 and fiscal stimuli on global emissions and the Paris Agreement. Nat. Clim. Change 2021, 11, 200–206. [Google Scholar] [CrossRef]
- Lenzen, M.; Sun, Y.-Y.; Faturay, F.; Ting, Y.-P.; Geschke, A.; Malik, A. The carbon footprint of global tourism. Nat. Clim. Change 2018, 8, 522–528. [Google Scholar] [CrossRef]
- Wang, M.-C.; Wang, C.-S. Tourism, the environment, and energy policies. Tour. Econ. 2018, 24, 821–838. [Google Scholar] [CrossRef]
- Chen, L.L.; Thapa, B.; Yan, W. The Relationship between Tourism, Carbon Dioxide Emissions, and Economic Growth in the Yangtze River Delta, China. Sustainability 2018, 10, 2118. [Google Scholar] [CrossRef] [Green Version]
- Pololikashvili, Z. In Tourism and the Sustainable Development Agenda: Seizing opportunity in crisis, International Trade Forum, 2020. Int. Trade Cent. 2020, 2020, 16–17. [Google Scholar]
- Zaman, K.; Shahbaz, M.; Loganathan, N.; Raza, S.A. Tourism development, energy consumption and Environmental Kuznets Curve: Trivariate analysis in the panel of developed and developing countries. Tour. Manag. 2016, 54, 275–283. [Google Scholar] [CrossRef]
- Tang, Z.; Shang, J.; Shi, C.B.; Liu, Z.; Bi, K.X. Decoupling indicators of CO2 emissions from the tourism industry in China: 1990–2012. Ecol. Indic. 2014, 46, 390–397. [Google Scholar] [CrossRef]
- Karakaya, E.; Bostan, A.; Özçağ, M. Decomposition and decoupling analysis of energy-related carbon emissions in Turkey. Environ. Sci. Pollut. Res. 2019, 26, 32080–32091. [Google Scholar] [CrossRef]
- Climent, F.; Pardo, A. Decoupling factors on the energy–output linkage: The Spanish case. Energy Policy 2007, 35, 522–528. [Google Scholar] [CrossRef]
- Sun, Y.-Y. Decomposition of tourism greenhouse gas emissions: Revealing the dynamics tourism-related economic growth. Tour. Manag. 2016, 55, 326–336. [Google Scholar] [CrossRef]
- Ng, T.H.; Lye, C.T.; Lim, Y.S. A decomposition analysis of CO2 emissions: Evidence from Malaysia’s tourism industry. Int. J. Sustain. Dev. World Ecol. 2016, 23, 266–277. [Google Scholar] [CrossRef]
- Robaina-Alves, M.; Moutinho, V.; Costa, R. Change in energy-related CO2 (carbon dioxide) emissions in Portuguese tourism: A decomposition analysis from 2000 to 2008. J. Clean. Prod. 2016, 111, 520–528. [Google Scholar] [CrossRef]
- Tang, C.; Zhong, L.; Ng, P. Factors that influence the tourism industry’s carbon emissions: A tourism area life cycle model perspective. Energy Policy 2017, 109, 704–718. [Google Scholar] [CrossRef]
- Zha, J.; Tan, T.; Yuan, W.; Yang, X.; Zhu, Y. Decomposition analysis of tourism CO2 emissions for sustainable development: A case study of China. Sustain. Dev. 2020, 28, 169–186. [Google Scholar] [CrossRef]
- Ma, X.; Han, M.; Luo, J.; Song, Y.; Chen, R.; Sun, X. The empirical decomposition and peak path of China’s tourism-related carbon emissions. Environ. Sci. Pollut. Res. 2021, 28, 66448–66463. [Google Scholar] [CrossRef]
- Wang, J.-F.; Hu, Y. Software, Environmental health risk detection with GeogDetector. Environ. Model. Softw. 2012, 33, 114–115. [Google Scholar] [CrossRef]
- Jixia, H.; Jinfeng, W.; Yanchen, B.; Chengdong, X.; Maogui, H.; Dacang, H. Identification of Health Risks of Hand, Foot and Mouth Disease in China Using the Geographical Detector Technique. Int. J. Environ. Res. Public Health 2014, 11, 3407–3423. [Google Scholar]
- Zhu, H.; Liu, J.; Chen, C.; Lin, J.; Tao, H. A spatial-temporal analysis of urban recreational business districts: A case study in Beijing, China. J. Geogr. Sci. 2015, 25, 1521–1536. [Google Scholar] [CrossRef] [Green Version]
- Xia, B.; Dong, S.; Ba, D.; Li, Y.; Li, F.; Liu, H.; Li, Z.; Zhao, M. Research on the spatial differentiation and driving factors of tourism enterprises’ efficiency: Chinese scenic spots, travel agencies, and hotels. Sustainability 2018, 10, 901. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Xia, B.; Dong, S.; Li, Y.; Li, Z.; Ba, D.; Zhang, W. Research on the Spatial Differentiation and Driving Forces of Eco-Efficiency of Regional Tourism in China. Sustainability 2021, 13, 280. [Google Scholar] [CrossRef]
- Luo, W.; Jasiewicz, J.; Stepinski, T.; Wang, J.; Xu, C.; Cang, X. Spatial association between dissection density and environmental factors over the entire conterminous United States. Geophys. Res. Lett. 2016, 43, 692–700. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zhao, Y. Identification of the driving factors’ influences on regional energy-related carbon emissions in China based on geographical detector method. Environ. Sci. Pollut. Res. 2018, 25, 9626–9635. [Google Scholar] [CrossRef]
- Jiang, X.-T.; Wang, Q.; Li, R. Investigating factors affecting carbon emission in China and the USA: A perspective of stratified heterogeneity. J. Clean. Prod. 2018, 199, 85–92. [Google Scholar] [CrossRef]
- Zhang, T.; Su, P.; Deng, H. Does the Agglomeration of Producer Services and the Market Entry of Enterprises Promote Carbon Reduction? An Empirical Analysis of the Yangtze River Economic Belt. Sustainability 2021, 13, 13821. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, A.; Zhao, Q.; Song, M.; Baležentis, T.; Streimikiene, D. Estimation and factor decomposition of carbon emissions in China’s tourism sector. Probl. Ekorozw. 2018, 13, 91–102. [Google Scholar]
- Gssling, S. Global environmental consequences of tourism. Glob. Environ. Change 2002, 12, 283–302. [Google Scholar] [CrossRef]
- Qiu, X.; Fang, Y.; Yang, X.; Zhu, F. Tourism eco-efficiency measurement, characteristics, and its influence factors in China. Sustainability 2017, 9, 1634. [Google Scholar] [CrossRef] [Green Version]
- Gössling, S. Sustainable tourism development in developing countries: Some aspects of energy use. J. Sustain. Tour. 2000, 8, 410–425. [Google Scholar] [CrossRef]
- Qingrong, W.; Feilong, X. Urban Tourism Situation Analysis on CO2 Emissions and Future Low Carbon Scenarios Based on Decoupling Theory and Kaya Identities. Tour. Trib. 2014, 29, 98–109. [Google Scholar]
- OECD. Indicators to Measure Decoupling of Environmental Pressure from Economic Growth. The Oecd Environment Programme. 2002. Available online: http://www.olis.oecd.org/olis/2002doc.nsf/LinkTo/sg-sd (accessed on 14 July 2022).
- Tapio, P. Towards a theory of decoupling: Degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001. Transp. Policy 2005, 12, 137–151. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.F.; Li, X.H.; Christakos, G.; Liao, Y.L.; Zhang, T.; Gu, X.; Zheng, X.Y. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Wu, Y.; Zhu, Q.; Zhu, B. Comparisons of decoupling trends of global economic growth and energy consumption between developed and developing countries. Energy Policy 2018, 116, 30–38. [Google Scholar] [CrossRef]
- Yang, F.; Chou, J.; Dong, W.; Sun, M.; Zhao, W. Adaption to climate change risk in eastern China: Carbon emission characteristics and analysis of reduction path. Phys. Chem. Earth Parts A/B/C 2020, 115, 102829. [Google Scholar] [CrossRef]
- Dong, L.Y.; Shang, J.; Ali, R.; Rehman, R.U. The Coupling Coordinated Relationship Between New-type Urbanization, Eco-Environment and its Driving Mechanism: A Case of Guanzhong, China. Front. Environ. Sci. 2021, 9, 638891. [Google Scholar] [CrossRef]
- Ioannides, D.; Gyimóthy, S. The COVID-19 crisis as an opportunity for escaping the unsustainable global tourism path. Tour. Geogr. 2020, 22, 624–632. [Google Scholar] [CrossRef]
- Higgins-Desbiolles, F. The “war over tourism”: Challenges to sustainable tourism in the tourism academy after COVID-19. J. Sustain. Tour. 2020, 29, 551–569. [Google Scholar] [CrossRef]
- Cooper, J.; Alderman, D.H. Cancelling March Madness exposes opportunities for a more sustainable sports tourism economy. Tour. Geogr. 2020, 22, 525–535. [Google Scholar] [CrossRef]
- Tang, Z.; Bai, S.Z.; Shi, C.B.; Liu, L.; Li, X.H. Tourism-Related CO2 Emission and Its Decoupling Effects in China: A Spatiotemporal Perspective. Adv. Meteorol. 2018, 2018, 1473184. [Google Scholar] [CrossRef] [Green Version]
- Gössling, S. Carbon neutral destinations: A conceptual analysis. J. Sustain. Tour. 2009, 17, 17–37. [Google Scholar] [CrossRef]
- Zheng, B.M.; Zhang, X.; Ming, Q.A. Research on the Decoupling Situation and Influencing Factors of Tourism Economy and Carbon Emissions in the Provinces along the “One Belt and One Road”. Ecol. Econ. 2021, 37, 136–143. (In Chinese) [Google Scholar]
- Wu, P.; Shi, P. An estimation of energy consumption and CO2 emissions in tourism sector of China. J. Geogr. Sci. 2011, 21, 733–745. [Google Scholar] [CrossRef]
- Wei, Y.; Sun, G.; Ma, L.; Li, J. Estimating the carbon emissions and regional differences of tourism transport in China. J. Shaanxi Norm. Univ. 2012, 40, 76–84. [Google Scholar]
- Huang, H.; Tang, L. Calculation Analysis of Tourism Carbon Emissions Amount—A Case Study. Chem. Eng. Trans. 2016, 51, 1165–1170. [Google Scholar]
- Becken, S.; Patterson, M. Measuring national carbon dioxide emissions from tourism as a key step towards achieving sustainable tourism. J. Sustain. Tour. 2006, 14, 323–338. [Google Scholar] [CrossRef]
Type | Detection Factor | Indicator | Unit of Indicator |
---|---|---|---|
Industrial Structure (IS) | The proportion of tertiary industry | % | |
Consumer Spending Power (CSP) | Per capita disposable income | Yuan | |
Urbanization Index (UI) | The proportion of the urban population | % | |
Regional GDP (RGDP) | The total number of domestic and foreign tourists | 100 million | |
Technological Innovation Capability (TIC) | Patent application authorization | 10,000 pieces | |
Government Policy (GP) | The government expenditures on energy protection and environmental conservation | 100 million | |
Tourist Arrival (TA) | The total number of domestic and foreign tourists | 10,000 person | |
Consumption Level (CL) | The total tourism revenue/tourism arrival | None |
Year | Factor Detector | IS (X1) | CSP (X2) | UI (X3) | RGDP (X4) | TIC (X5) | GP (X6) | TA (X7) | CL (X8) |
---|---|---|---|---|---|---|---|---|---|
2010 | q statistic | 0.78 *** | 0.34 | 0.58 *** | 0.22 | 0.17 *** | 0.87 *** | 0.72 | 0.68 *** |
p value | 0.001 | 0.94 | 0.006 | 0.14 | 0.008 | 0.005 | 0.21 | 0.005 | |
2011 | q statistic | 0.34 *** | 0.19 | 0.56 *** | 0.20 * | 0.19 * | 0.29 *** | 0.22 | 0.27 * |
p value | 0.008 | 0.96 | 0.007 | 0.09 | 0.09 | 0.008 | 0.89 | 0.09 | |
2012 | q statistic | 0.53 *** | 0.51 | 0.51 ** | 0.32 *** | 0.27 * | 0.60 *** | 0.15 | 0.53 * |
p value | 0.003 | 0.68 | 0.044 | 0.008 | 0.09 | 0.004 | 0.93 | 0.06 | |
2013 | q statistic | 0.46 * | 0.54 | 0.73 ** | 0.61 ** | 0.66 ** | 0.51 *** | 0.27 | 0.28 * |
p value | 0.054 | 0.49 | 0.019 | 0.04 | 0.02 | 0.006 | 0.82 | 0.08 | |
2014 | q statistic | 0.99 *** | 0.99 | 0.99 *** | 0.10 * | 0.25 *** | 0.45 *** | 0.45 | 0.28 * |
p value | 0.001 | 0.38 | 0.0004 | 0.09 | 0.007 | 0.005 | 0.58 | 0.07 | |
2015 | q statistic | 0.96 *** | 0.94 ** | 0.96 *** | 0.14 | 0.17 * | 0.28 *** | 0.45 | 0.48 |
p value | 0.004 | 0.01 | 0.002 | 0.90 | 0.08 | 0.007 | 0.58 | 0.54 | |
2016 | q statistic | 0.68 *** | 0.64 | 0.40 * | 0.38 * | 0.25 * | 0.41 *** | 0.41 | 0.37 * |
p value | 0.007 | 0.70 | 0.085 | 0.08 | 0.08 | 0.006 | 0.83 | 0.07 | |
2017 | q statistic | 0.46 *** | 0.38 | 0.44 *** | 0.06 * | 0.43 *** | 0.30 *** | 0.44 | 0.11 * |
p value | 0.008 | 0.85 | 0.007 | 0.09 | 0.005 | 0.007 | 0.75 | 0.09 | |
2018 | q statistic | 0.60 *** | 0.51 | 0.29 *** | 0.32 *** | 0.30 * | 0.12 *** | 0.51 | 0.33 * |
p value | 0.007 | 0.82 | 0.009 | 0.009 | 0.07 | 0.009 | 0.79 | 0.07 | |
2019 | q statistic | 0.73 | 0.84 | 0.78 | 0.04 * | 0.73 ** | 0.41 *** | 0.88 * | 0.51 ** |
p value | 0.375 | 0.13 | 0.27 | 0.09 | 0.03 | 0.006 | 0.07 | 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Q.; Wang, Q.; Zhou, T. Driving Forces of Tourism Carbon Decoupling: A Case Study of the Yangtze River Economic Belt, China. Sustainability 2022, 14, 8674. https://doi.org/10.3390/su14148674
Tang Q, Wang Q, Zhou T. Driving Forces of Tourism Carbon Decoupling: A Case Study of the Yangtze River Economic Belt, China. Sustainability. 2022; 14(14):8674. https://doi.org/10.3390/su14148674
Chicago/Turabian StyleTang, Qunli, Qianqian Wang, and Tiancai Zhou. 2022. "Driving Forces of Tourism Carbon Decoupling: A Case Study of the Yangtze River Economic Belt, China" Sustainability 14, no. 14: 8674. https://doi.org/10.3390/su14148674