Enhancing Farm Income through Boundary Plantation of Poplar (Populus deltoides): An Economic Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Description
2.2. Experimental Details: Populus Deltoides
2.3. Crop Sampling
2.4. Tree Sampling
2.5. Economic Analysis of Boundary Plantations
- Establishment Cost (A): The cost of establishment of species included land preparation, poplar ETPs, transportation, planting and plant protection and transplanting and plant protection during the establishment phase.
- Operational Cost (B): The costs of general maintenance of the trees and crops, such as watering, fertilizers and manure applications, planting materials of crops, hoeing and weeding, and other miscellaneous components etc. A 9% interest rate on working capital (establishment cost + operational cost) was assumed in the analysis.
2.6. Statistical Analysis
3. Results and Discussion
3.1. Growth Performance of Poplar Boundary Planting
3.2. Yield Performance of Agricultural Commodity
3.3. Land Equivalent Ratio (LER) in Agroforestry
3.4. Financial Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koshal, A.K. Changing current scenario of rice-wheat system in Indo-Gangetic plain region of India. Int. J. Sci. Res. Public 2014, 4, 1–13. [Google Scholar]
- Dhillon, B.S.; Kataria, P.; Dhillon, P.K. National food security vis-à-vis sustainability of agriculture in high crop productivity regions. Curr. Sci. 2010, 98, 33–36. [Google Scholar]
- Jinger, D.; Dhar, S.; Dass, A.; Sharma, V.K.; Vijayakumar, S.; Gupta, G. Influence of residual silicon and phosphorus on growth, productivity, lodging and grain quality of succeeding wheat under rice-wheat cropping system. J. Environ. Biol. 2020, 41, 1676–1684. [Google Scholar] [CrossRef]
- Panwar, P.; Chauhan, S.K.; Kaushal, R.; Das, D.K.; Arora, G.; Chaturvedi, O.P. Carbon sequestration potential of poplar-based agroforestry using the CO2FIX model in the Indo-Gangetic Region of India. Trop. Ecol. 2017, 58, 439–447. [Google Scholar]
- Jinger, D.; Dhar, S.; Dass, A.; Sharma, V.K.; Shukla, L.; Paramesh, V.; Parihar, M.; Joshi, N.; Joshi, E.; Gupta, G.; et al. Residual silicon and phosphorus improved the growth, yield, nutrient uptake and soil enzyme activities of wheat. Silicon 2022. [Google Scholar] [CrossRef]
- Lenka, S.; Lenka, N.K.; Pathak, H. Reducing emission of greenhouse gases from fertilizer use in India. In Soils and Fertilizers; Lal, R., Ed.; CRC Press: Boca Raton, FL, USA, 2020; pp. 169–182. [Google Scholar]
- Chavan, S.B.; Uthappa, A.R.; Sridhar, K.B.; Keerthika, A.; Handa, A.K.; Newaj, R.; Kumar, N.; Kumar, D.; Chaturvedi, O.P. Trees for Life: Creating sustainable livelihood in Bundelkhand region of central India. Curr. Sci. 2016, 11, 994–1002. [Google Scholar] [CrossRef]
- Chavan, S.B.; Keerthika, A.; Dhyani, S.K.; Handa, A.K.; Newaj, R.; Rajarajan, K. National Agroforestry Policy in India: A low hanging fruit. Curr. Sci. 2015, 108, 1826–1834. [Google Scholar]
- Chavan, S.B.; Dhillon, R.S. Doubling farmers’ income through Populus deltoides-based agroforestry systems in northwestern India: An economic analysis. Curr. Sci. 2019, 117, 219. [Google Scholar] [CrossRef]
- Zomer, R.J.; Trabucco, A.; Coe, R.; Place, F. Trees on Farm: Analysis of Global Extent and Geographical Patterns of Agroforestry; World Agroforestry Centre: Nairobi, Kenya, 2009; p. 89. [Google Scholar]
- Zomer, R.J.; Neufeldt, H.; Xu, J.; Ahrends, A.; Bossio, D.; Trabucco, A.; van Meine, N.; Wang, M. Global tree cover and biomass carbon on agricultural land: The contribution of agroforestry to global and national carbon budgets. Sci. Rep. 2016, 6, 29987. [Google Scholar] [CrossRef] [Green Version]
- Dhyani, S.K.; Handa, A.K.; Newaj, R.; Chavan, S.B.; Alam, B.; Prasad, R.; Ram, A.; Rizvi, R.H.; Jain, A.K.; Tripathi, D.; et al. Estimating carbon sequestration potential of existing agroforestry systems in India. Agroforest Syst. 2017, 91, 1101–1118. [Google Scholar] [CrossRef]
- Newaj, R.; Chavan, S.B.; Alam, B.; Dhyani, S.K. Biomass and carbon storage in trees grown under different agroforestry systems in semi-arid region of central India. Ind. For. 2017, 142, 642–648. [Google Scholar]
- Newaj, R.; Chaturvedi, O.P.; Kumar, D.; Prasad, R.; Rizvi, R.H.; Alam, B.; Handa, A.K.; Chavan, S.B.; Singh, A.K.; Chaturvedi, M.; et al. Soil organic carbon stock in agroforestry systems in western and southern plateau and hill regions of India. Curr. Sci. 2016, 112, 2191–2193. [Google Scholar]
- Chavan, S.B.; Keerthika, A.; Bhat, S.S.; Handa, A.K.; Rajarajan, K.; Ahmad, S. Poplar (Populus deltoides) in Jammu and Kashmir, India: Facts and fiction. Curr. Sci. 2020, 119, 910–911. [Google Scholar]
- Jinger, D.; Khatri, P.; Kumari, K.; Kumar, D.; Dinesh, D. Agroforestry-Based ecosystem services for livelihood resilience. Food Sci. Rep. 2022, 3, 50–55. [Google Scholar]
- Verchot, L.V.; Van Noordwijk, M.; Kandji, S.; Tomich, T.; Ong, C.; Albrecht, A.; Mackensen, J.; Bantilan, C.; Anupama, K.V.; Palm, C. Climate change: Linking adaptation and mitigation through agroforestry. Mitig. Adapt. Strateg. Glob. Change 2007, 12, 901–918. [Google Scholar] [CrossRef] [Green Version]
- Mbow, C.; Pete, S.; David, S.; Lalisa, D.; Mercedes, B. Achieving mitigation and adaptation to climate change through sustainable agroforestry practices in Africa. Curr. Opin. Environ. Sustain. 2014, 6, 8–14. [Google Scholar] [CrossRef] [Green Version]
- Jinger, D.; Kumar, R.; Kakade, V.; Dinesh, D.; Singh, G.; Pande, V.C.; Bhatnagar, P.R.; Rao, B.K.; Vishwakarma, A.K.; Kumar, D.; et al. Agroforestry system for controlling soil erosion and enhancing system productivity in ravine lands of Western India under climate change scenarios. Environ. Monit. Assess. 2022, 194, 267. [Google Scholar] [CrossRef]
- Chaturvedi, O.P.; Handa, A.K.; Uthappa, A.R.; Sridhar, K.B.; Kumar, N.; Chavan, S.B.; Rizvi, J. Promising Agroforestry Tree Species in India; Central Agroforestry Research Institute: Jhansi, India; South Asia Regional Programme of the World Agroforestry Research Centre: New Delhi, India, 2017; pp. 1–190. [Google Scholar]
- Uthappa, A.R.; Chavan, S.B.; Dhyani, S.K.; Handa, A.K.; Newaj, R. Trees for soil health and. Ind. Farm. 2015, 65, 2–5. [Google Scholar]
- Yang, T.; Duan, Z.P.; Zhu, Y.; Gan, Y.W.; Wang, B.J.; Hao, X.D.; Xu, W.L.; Zhang, W.; Li, L.H. Effects of distance from a tree line on photosynthetic characteristics and yield of wheat in a jujube tree/wheat agroforestry system. Agroforest Syst. 2019, 93, 1545–1555. [Google Scholar] [CrossRef]
- Chauhan, S.K.; Sharma, S.C.; Beri, V.; Yadav, S.; Gupta, N. Yield and carbon sequestration potential of wheat (Triticum aestivum)-poplar (Populus deltoides) based agri-silvicultural system. Ind. J. Agric. Sci. 2010, 80, 129–135. [Google Scholar]
- Rizvi, R.H.; Dhyani, S.K.; Yadav, R.S.; Singh, R. Biomass production and carbon stock of popular agroforestry systems in Yamunanagar and Saharanpur districts of northwestern India. Curr. Sci. 2011, 100, 736–742. [Google Scholar]
- Brandle, J.R.; Hodges, L.; Zhou, X.H. Windbreaks in North American agricultural systems. Agroforest Syst. 2004, 61, 65–78. [Google Scholar] [CrossRef]
- Sharma, N.K.; Samra, J.S.; Singh, H.P. Poplar (Populus deltoides) based agroforestry systems for an alluvial soil under irrigated condition in western Uttar Pradesh. Ind. For. 2001, 127, 61–69. [Google Scholar]
- Sharma, N.K.; Dhadwal, K.S. Growth and yield of wheat as affected by boundary plantation of Populus deltoides M. in Western Uttar Pradesh. Ind. For. 2007, 133, 899–908. [Google Scholar]
- Kidanu, S.; Mamo, T.; Stroosnijder, L. Biomass production of Eucalyptus boundary plantations and their effect on crop productivity on Ethiopian highland Vertisols. Agroforest Syst. 2005, 63, 281–290. [Google Scholar] [CrossRef]
- Sirohi, C.; Bangarwa, K.S.; Dhillon, R.S.; Handa, A.K.; Chavan, S.B.; Arunachalam, A. Dry matter accumulation of winter wheat (Triticum aestivum L.) at different distances from tree line under Poplar (Populus deltoides) boundary plantation. Indian J. Agrofor. 2021, 23, 30–38. [Google Scholar]
- ICFRE. Country Report on Poplars and Willows Period: 2008 to 2011; National Poplar Commission of India; Indian Council of Forestry Research and Education: Dehradun, India, 2012.
- Himshikha, S.C. Economics of poplar based agroforestry models adopted bythe farmers in Haridwar, Uttarakhand. Ind. J. Ecol. 2017, 44, 804–811. [Google Scholar]
- Singh, H.; Mavi, H.K. Economic analysis of poplar based agroforestry system under riparian wet land conditions of Punjab. Ind. J. Econ. Dev. 2016, 12, 191–196. [Google Scholar] [CrossRef]
- Dwivedi, R.P.; Kareemulla, K.; Singh, R.; Rizvi, R.H.; Chauhan, J. Socio-economic analysis of agroforestry systems in western Uttar Pradesh. Ind. Res. J. Ext. Edu. 2007, 7, 18–21. [Google Scholar]
- Singh, R.; Charan Singh Gulati, A.; Kujur, S. Current status of poplar based agroforestry for economic development: A case study of Haridwar and Yamunanagar districts. Ind. For. 2016, 142, 487–492. [Google Scholar]
- Klemperer, W.D. Forest Resource Economics and Finance; Tech Bookstore: Blacksburg, VA, USA, 2003; pp. 1–551. [Google Scholar]
- Willey, R.S. Intercropping—Its importance and research needs. Part 1: Competition and yield advantages. Field Crop Abstr. 1979, 32, 1–10. [Google Scholar]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research, 2nd ed.; Willey: New York, NY, USA, 1984. [Google Scholar]
- Chauhan, S.K.; Sharma, R.; Singh, B.; Sharma, S.C. Biomass production, carbon sequestration and economics of farm poplar plantations in Punjab, India. J. Appl. Nat. Sci. 2015, 7, 452–458. [Google Scholar] [CrossRef]
- Kanime, N.; Kaushal, R.; Tewari, S.K.; Raverkar, K.P.; Chaturvedi, S.; Chaturvedi, O.P. Biomass production and carbon sequestration in different tree-based systems of Central Himalayan Tarai region. For. Trees Livelihoods 2013, 22, 38–50. [Google Scholar] [CrossRef]
- Yadava, A.K. Potential of agroforestry systems in carbon sequestration for mitigating climate changes in Tarai region of central Himalaya. Nat. Sci. 2011, 9, 72–80. [Google Scholar]
- Chauhan, S.K.; Sharma, R.; Dhillon, W.S. Status of intercropping in poplar based agroforestry in India. For. Bull. 2011, 12, 49–67. [Google Scholar]
- Arenas-Corraliza, M.G.; López-Díaz, M.L.; Moreno, G. Winter cereal production in a Mediterranean silvoarable walnut system in the face of climate change. Agric. Ecosyst. Environ. 2018, 264, 111–118. [Google Scholar] [CrossRef]
- Kanzler, M.; Böhm, C.; Mirck, J.; Schmitt, D.; Veste, M. Microclimate effects on evaporation and winter wheat (Triticum aestivum L.) yield within a temperate agroforestry system. Agroforest Syst. 2019, 93, 1821–1841. [Google Scholar] [CrossRef]
- Doré, T.; Makowski, E.M.; Munier-Jolain, N.; Tchamitchian, M.; Tittonell, P. Facing up to the paradigm of ecological intensification in agronomy: Revisiting methods, concepts and knowledge. Eur. J. Agron. 2011, 34, 197–210. [Google Scholar] [CrossRef]
- Kuyah, S.; Whitney, C.W.; Jonsson, M.; Sileshi, G.W.; Öborn, I.; Muthuri, C.W.; Luedeling, E. Agroforestry delivers a win-win solution for ecosystem services in sub-Saharan Africa. A meta-analysis. Agron. Sustain. Dev. 2019, 39, 47. [Google Scholar] [CrossRef] [Green Version]
- Puri, S.; Bangarwa, K.S. Effects of trees on the yield of irrigated wheat crop in semiarid regions. Agroforest Syst. 1992, 20, 229–241. [Google Scholar] [CrossRef]
- Sudmeyer, R.A.; Speijers, J. Influence of windbreak orientation, shade and rainfall interception on wheat and lupin growth in the absence of below-ground competition. Agroforest Syst. 2007, 71, 201–214. [Google Scholar] [CrossRef]
- Nandal, D.P.S.; Hooda, M.S. Production potential of some of agricultural crops under different spacing of poplar. Ind. J. Agrofor. 2005, 7, 16–20. [Google Scholar]
- Prasad, J.V.N.S.; Srinivas, K.; Rao, C.S.; Ramesh, C.; Venkatravamma, K.; Venkateswarlu, B. Biomass productivity and carbon stocks of farm forestry and agroforestry systems of leucaena and eucalyptus in Andhra Pradesh, India. Curr. Sci. 2012, 103, 536–540. [Google Scholar]
- Jain, S.K.; Singh, P. Economic analysis of industrial agroforestry: Poplar (Populus deltoides) in Uttar Pradesh (India). Agroforest Syst. 2000, 49, 255–273. [Google Scholar] [CrossRef]
- Khasanah, N.; Van Noordwijk, M.; Slingerland, M.; Sofiyudin, M.; Stomph, D.; Migeon, A.F.; Hairiah, K. Oil Palm agroforestry can achieve economic and environmental gains as indicated by multifunctional land equivalent ratios. Front. Sustain. Food Syst. 2020, 3, 122. [Google Scholar] [CrossRef]
- Rao, M.R.; Sharma, M.M.; Ong, C.K. A study of the potential of hedgerow intercropping in semiarid India using a two-way systematic design. Agroforest Syst. 1990, 11, 243–258. [Google Scholar] [CrossRef]
- Pande, V.C.; Kurothe, R.S.; Kumar, G.; Singh, H.B.; Tiwari, S.B. Economic assessment of agri-horticulture production systems on reclaimed ravine lands in Western India. Agroforest Syst. 2018, 92, 195–211. [Google Scholar] [CrossRef]
- Yu, Y.; Stomph, T.J.; Makowski, D.; van Der Werf, W. Temporal niche differentiation increases the land equivalent ratio of annual intercrops: A meta-analysis. Field Crops Res. 2015, 184, 133–144. [Google Scholar] [CrossRef]
- Terreaux, J.P.; Chavet, M. Evolution of poplar prices between 1960 and 1999. La For. Priv. 2001, 257, 46–55. [Google Scholar]
- Seserman, D.M. Benefits of agroforestry systems for land equivalent ratio-case studies in Brandenburg and Lower Saxony, Germany. In Proceedings of the 4th European Agroforestry Conference-Agroforestry as Sustainable Land Use, Nijmegen, The Netherlands, 28–30 May 2018. [Google Scholar]
- Raddad, E.Y.; Luukkanen, O. The influence of different Acacia senegal agroforestry systems on soil water and crop yields in clay soils of the Blue Nile region, Sudan. Agric. Water Manag. 2007, 87, 61–72. [Google Scholar] [CrossRef]
- Shanmughavel, P.; Francis, K. Intercropping trials of four crops in bamboo plantations. J. Bamboo Rattan 2001, 1, 3–9. [Google Scholar] [CrossRef]
- Kareemulla, K.; Rizvi, R.H.; Kumar, K.; Dwivedi, R.P.; Singh, R. Poplar agroforestry systems of western Uttar Pradesh in northern India: A socioeconomic analysis. For. Trees Livelihoods 2005, 15, 375–381. [Google Scholar] [CrossRef]
- Prasad, J.V.N.S.; Korwar, G.R.; Rao, K.V.; Mandal, U.K.; Rao, C.A.R.; Rao, G.R.; Ramakrishna, Y.S.; Venkateswarlu, B.; Rao, S.N.; Kulkarni, H.D.; et al. Tree row spacing affected agronomic and economic performance of Eucalyptus-based agroforestry in Andhra Pradesh, Southern India. Agroforest Syst. 2010, 78, 253–267. [Google Scholar] [CrossRef]
- Sullivan, G.M.; Hoke, S.M.; Fox, J.M. Financial and Economic Analyses of Agroforestry Systems: Proceedings of a Workshop Held in Honolulu, HI, USA, July 1991; USAID; USFS; OICD: Washington, DC, USA, 1991.
- Guo, Z.; Zhang, Y.; Deegen, P.; Uibrig, H. Economic analyses of rubber and tea plantations and rubber-tea intercropping in Hainan, China. Agroforest Syst. 2006, 66, 117–127. [Google Scholar] [CrossRef]
- Bertomeu, M. Financial evaluation of smallholder timber-based agroforestry systems in Claveria, Northern Mindanao, the Philippines. Small-Scale For. Econ. Manag. Policy 2006, 5, 57–82. [Google Scholar]
Row Direction | Tree Height (m) | DBH (cm) | Aboveground Biomass (kg tree−1) | BGB (kg tree−1) | Total Tree Biomass (kg tree−1) | Total Dry Biomass (Mg ha−1) | |||
---|---|---|---|---|---|---|---|---|---|
Stem | Branch | Leaves | Total | ||||||
E–W | 22.15 ± 1.39 | 36.22 ± 0.22 | 546.03 ± 20.76 | 93.47 ± 18.86 | 35.87 ± 5.98 | 675.36 ± 70.14 | 154.53 ± 35.28 | 829.90 ± 62.39 | 83.49 |
N–S | 16.8 ± 0.61 | 27.55 ± 0.20 | 274.67 ± 39.75 | 57.82 ± 11.60 | 17.03 ± 3.40 | 349.51 ± 47.34 | 67.28 ± 14.81 | 416.79 ± 56.98 | 41.31 |
Aspect | Distance from Tree Line | Green Biomass of Sorghum (t ha−1) | |||||||
---|---|---|---|---|---|---|---|---|---|
2 | 3 | 4 | 5 | 6 | 7 | 8 | Average | ||
East | 0–3 | 35.00 | 17.80 | 19.37 | 19.08 | 7.00 | 7.78 | 7.53 | 16.22 |
3–6 | 35.63 | 30.73 | 24.27 | 23.19 | 13.87 | 7.03 | 8.88 | 20.51 | |
6–9 | 35.77 | 36.77 | 30.03 | 27.87 | 15.44 | 19.27 | 17.28 | 26.06 | |
9–12 | 36.90 | 43.13 | 33.23 | 31.07 | 24.83 | 27.17 | 26.14 | 31.78 | |
12–15 | 40.00 | 42.90 | 35.27 | 35.14 | 27.82 | 31.17 | 30.38 | 34.67 | |
15–18 | 39.30 | 43.03 | 36.37 | 34.60 | 27.47 | 31.08 | 29.49 | 34.48 | |
West | 0–3 | 34.50 | 18.50 | 20.33 | 15.17 | 6.71 | 7.40 | 8.88 | 15.93 |
3–6 | 35.05 | 28.87 | 23.60 | 23.43 | 13.52 | 8.53 | 7.38 | 20.05 | |
6–9 | 35.37 | 34.47 | 31.68 | 32.47 | 15.23 | 18.30 | 18.28 | 26.54 | |
9–12 | 36.50 | 43.03 | 32.02 | 33.80 | 24.62 | 22.82 | 25.38 | 31.17 | |
12–15 | 38.08 | 43.10 | 36.62 | 33.93 | 24.76 | 27.80 | 25.28 | 32.80 | |
15–18 | 39.83 | 43.00 | 33.45 | 33.87 | 24.62 | 30.50 | 26.28 | 33.08 | |
North | 0–3 | 38.95 | 20.17 | 14.97 | 7.27 | 5.73 | 3.77 | 5.36 | 13.75 |
3–6 | 40.18 | 26.53 | 20.00 | 10.00 | 14.06 | 10.47 | 11.37 | 18.94 | |
6–9 | 41.58 | 36.57 | 31.97 | 17.30 | 20.51 | 14.80 | 19.18 | 25.99 | |
9–12 | 41.68 | 37.90 | 33.80 | 28.70 | 34.49 | 23.50 | 29.51 | 32.80 | |
12–15 | 42.88 | 39.50 | 36.13 | 34.00 | 35.24 | 28.30 | 31.58 | 35.38 | |
15–18 | 42.48 | 40.07 | 36.80 | 32.87 | 35.05 | 27.13 | 30.38 | 34.97 | |
South | 0–3 | 39.46 | 20.87 | 18.13 | 19.57 | 7.10 | 8.34 | 7.68 | 17.31 |
3–6 | 40.98 | 31.87 | 24.97 | 16.20 | 16.27 | 15.73 | 14.13 | 22.88 | |
6–9 | 42.08 | 36.27 | 33.57 | 24.90 | 22.17 | 18.45 | 24.78 | 28.89 | |
9–12 | 42.68 | 42.27 | 34.50 | 30.60 | 35.57 | 26.80 | 32.48 | 34.99 | |
12–15 | 43.88 | 41.83 | 35.97 | 35.20 | 35.30 | 29.10 | 32.78 | 36.29 | |
15–18 | 43.88 | 40.87 | 33.77 | 35.30 | 35.47 | 29.70 | 33.28 | 36.04 | |
Control | 42.45 | 42.10 | 36.66 | 35.00 | 35.00 | 30.53 | 31.48 | 36.17 | |
Year (Factor A) | 0.204 | Distance (Factor C) | 0.148 | ||||||
Aspect (factor B) | 0.153 | Interaction A × C | 0.391 | ||||||
Interaction A × B | 0.404 | Interaction B × C | 0.295 | ||||||
Interaction A × B × C | 0.782 |
Aspect | Distance from Tree Line | Grain Yield of Wheat (t ha−1) | |||||||
---|---|---|---|---|---|---|---|---|---|
2 year | 3 year | 4 year | 5 year | 6 year | 7 year | 8 year | Average | ||
East | 00–03m | 3.59 | 2.84 | 3.22 | 2.55 | 2.70 | 2.40 | 1.72 | 2.72 |
03–06m | 3.74 | 3.59 | 3.55 | 2.73 | 3.02 | 2.90 | 2.18 | 3.10 | |
06–09m | 3.80 | 3.62 | 3.63 | 2.76 | 3.14 | 3.12 | 2.73 | 3.26 | |
09–12m | 3.85 | 3.84 | 3.74 | 2.90 | 3.47 | 3.28 | 3.06 | 3.45 | |
12–15m | 3.82 | 3.82 | 3.78 | 3.10 | 3.59 | 3.48 | 3.43 | 3.57 | |
15–18m | 3.80 | 3.95 | 3.77 | 2.76 | 3.45 | 3.35 | 3.52 | 3.51 | |
West | 00–03m | 3.56 | 2.77 | 3.33 | 2.63 | 2.70 | 2.48 | 1.57 | 2.72 |
03–06m | 3.78 | 3.54 | 3.65 | 2.77 | 3.25 | 3.13 | 1.75 | 3.12 | |
06–09m | 3.91 | 3.51 | 3.65 | 2.77 | 3.62 | 3.30 | 2.24 | 3.29 | |
09–12m | 3.88 | 3.84 | 3.59 | 2.94 | 3.64 | 3.48 | 2.73 | 3.44 | |
12–15m | 3.91 | 3.93 | 3.80 | 2.99 | 3.70 | 3.54 | 3.10 | 3.57 | |
15–18m | 3.90 | 4.03 | 3.58 | 2.96 | 3.65 | 3.53 | 3.20 | 3.55 | |
North | 00–03m | 3.50 | 2.69 | 1.84 | 2.70 | 1.72 | 2.50 | 1.99 | 2.42 |
03–06m | 3.70 | 3.22 | 2.11 | 3.35 | 2.45 | 3.42 | 2.90 | 3.02 | |
06–09m | 3.70 | 3.45 | 2.74 | 3.80 | 2.50 | 3.82 | 3.04 | 3.29 | |
09–12m | 3.90 | 3.65 | 3.64 | 3.86 | 2.53 | 3.69 | 3.40 | 3.52 | |
12–15m | 4.00 | 3.80 | 3.66 | 3.92 | 2.46 | 3.90 | 3.41 | 3.59 | |
15–18m | 3.90 | 3.89 | 3.79 | 4.02 | 3.43 | 3.79 | 3.87 | 3.81 | |
South | 00–03m | 3.61 | 2.80 | 1.91 | 2.99 | 2.12 | 2.74 | 2.28 | 2.64 |
03–06m | 3.86 | 3.49 | 2.23 | 3.49 | 2.64 | 3.72 | 3.32 | 3.25 | |
06–09m | 3.94 | 3.61 | 2.70 | 3.58 | 3.05 | 3.72 | 3.54 | 3.45 | |
09–12m | 4.05 | 3.70 | 3.57 | 3.84 | 3.55 | 3.74 | 3.40 | 3.69 | |
12–15m | 4.19 | 3.98 | 3.63 | 3.90 | 3.63 | 3.99 | 3.64 | 3.85 | |
15–18m | 3.92 | 3.96 | 3.77 | 4.06 | 3.31 | 3.98 | 3.91 | 3.84 | |
Control | 4.05 | 4.04 | 3.57 | 3.49 | 3.46 | 3.6 | 3.44 | 3.66 | |
Year (A) | 0.016 | Distance (C) | 0.013 | ||||||
Aspect (B) | 0.015 | Interaction (A × C) | 0.034 | ||||||
Interaction (A × B) | 0.039 | Interaction (B × C) | 0.026 | ||||||
Interaction (A × B × C) | 0.068 |
Sr. No | Particulars | Annual Expenses (INR ha−1) | Total Value | Percent | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||||
A | Establishment cost | ||||||||||
Poplar | 4500 | 550 | 0 | 0 | 0 | 0 | 0 | 0 | 5050 | 0.86 | |
B | Operational cost | ||||||||||
1 | Trees | 2756 | 3400 | 3289 | 3141 | 4270 | 4500 | 3991 | 3666 | 29,013 | 4.97 |
2 | Sorghum | 0 | 7575 | 10,215 | 11,575 | 10,549 | 11,885 | 13,383 | 17,858 | 83,039 | 14.22 |
3 | Wheat | 0 | 15,378 | 17,008 | 18,183 | 19,523 | 22,540 | 24,083 | 25,538 | 142,250 | 24.35 |
4 | Miscellaneous cost | 250 | 570 | 657 | 830 | 617 | 888 | 1013 | 1118 | 5942 | 1.02 |
5 | Total operational cost | 2756 | 26,353 | 30,512 | 32,899 | 34,342 | 38,925 | 41,456 | 47,061 | 25,4302 | 43.53 |
6 | Interest on working capital @ 10% | 676 | 1661 | 1989 | 2054 | 2353 | 2671 | 2876 | 3220 | 17499 | 3.00 |
C | Total variable cost | 8182 | 29,133 | 33,158 | 35,783 | 37,311 | 42,483 | 45,344 | 51,399 | 282,793 | 48.44 |
1 | Management cost at 10% | 818 | 2913 | 3316 | 3578 | 3731 | 4248 | 4534 | 5140 | 28,279 | 4.84 |
2 | Risk factor at 10% | 818 | 2913 | 3316 | 3578 | 3731 | 4248 | 4534 | 5140 | 28,279 | 4.84 |
3 | Rental value of land | 12,382 | 21,882 | 24,375 | 34,133 | 33,818 | 34,856 | 35,880 | 36,000 | 233,325 | 39.94 |
D | Total fixed cost | 14,018 | 27,709 | 31,007 | 41,289 | 41,280 | 43,353 | 44,949 | 46,280 | 289,884 | 50.00 |
F | Marketing/transportation cost | 0 | 1170 | 1425 | 1622.5 | 1800 | 1727.5 | 1920 | 1800 | 11,465 | 1.96 |
G | Total cost of cultivation | 22,200 | 58,012 | 65,590 | 78,694 | 80,391 | 87,564 | 92,213 | 99,479 | 584,142 | 100.00 |
Particulars | Boundary Plantation (INR ha–1) | Control (Sole Crop) | |||||
---|---|---|---|---|---|---|---|
North–South | East–West | ||||||
Eastern | Western | Mean | Northern | Southern | Mean | ||
Total cost of cultivation | 586,741 | 586,741 | 569,655 | ||||
Returns from the System | |||||||
Trees | 255,000 | 255,000 | 255,000 | 558,000 | 558,000 | 558,000 | – |
Kharif crops (sorghum) | 210,134 | 209,899 | 210,017 | 213,136 | 223,775 | 218,456 | 301,930 |
Rabi crops (wheat) | 352,795 | 365,369 | 359,082 | 352,807 | 361,300 | 357,054 | 490,477 |
Total returns (INR ha–1) | 817,929 | 830,268 | 824,099 | 1,123,943 | 1,143,075 | 1,133,509 | 792,407 |
Net income (INR ha–1) | 233,787 | 246,126 | 239,957 | 539,801 | 558,933 | 549,367 | 26,068 |
NPV12% discounting | 93,418 | 98,903 | 96,161 | 217,753 | 228,149 | 222,951 | 17,064 |
Benefit-cost ratio | 1.28 | 1.30 | 1.29 | 1.65 | 1.68 | 1.67 | 1.05 |
Internal rate of return% | 63 | 65 | 64 | 82 | 88 | 85 | - |
Land equivalent value (INR ha–1) | 511,320 | 541,352 | 526,336 | 1,191,883 | 1,248,791 | 1,220,337 | 93,402 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chavan, S.B.; Dhillon, R.S.; Sirohi, C.; Keerthika, A.; Kumari, S.; Bharadwaj, K.K.; Jinger, D.; Kakade, V.; Chichaghare, A.R.; Zin El-Abedin, T.K.; et al. Enhancing Farm Income through Boundary Plantation of Poplar (Populus deltoides): An Economic Analysis. Sustainability 2022, 14, 8663. https://doi.org/10.3390/su14148663
Chavan SB, Dhillon RS, Sirohi C, Keerthika A, Kumari S, Bharadwaj KK, Jinger D, Kakade V, Chichaghare AR, Zin El-Abedin TK, et al. Enhancing Farm Income through Boundary Plantation of Poplar (Populus deltoides): An Economic Analysis. Sustainability. 2022; 14(14):8663. https://doi.org/10.3390/su14148663
Chicago/Turabian StyleChavan, S. B., R. S. Dhillon, Chhavi Sirohi, A. Keerthika, Sushil Kumari, K. K. Bharadwaj, Dinesh Jinger, Vijaysinha Kakade, A. R. Chichaghare, Tarek K. Zin El-Abedin, and et al. 2022. "Enhancing Farm Income through Boundary Plantation of Poplar (Populus deltoides): An Economic Analysis" Sustainability 14, no. 14: 8663. https://doi.org/10.3390/su14148663