Urban Heat Island Mitigation through Planned Simulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology
2.2.1. Study Design
2.2.2. Weather Inputs
2.2.3. Material Characteristics Input
2.2.4. Simulations
2.2.5. Data Validation
3. Results
3.1. Surface Temperature
3.2. Surface Temperature Difference
3.3. Air Temperature Difference
4. Validation
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, D.; Xiao, J.; Bonafoni, S.; Berger, C.; Deilami, K.; Zhou, Y.; Frolking, S.; Yao, R.; Qiao, Z.; Sobrino, J.A. Satellite remote sensing of surface urban heat islands: Progress, challenges, and perspectives. Remote Sens. 2019, 11, 48. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.; Kikon, N.; Verma, P. Impact of land use change and urbanization on urban heat island in Lucknow city, Central India. A remote sensing based estimate. Sustain. Cities Soc. 2017, 32, 100–114. [Google Scholar] [CrossRef]
- Zhang, X.; Estoque, R.C.; Murayama, Y. An urban heat island study in Nanchang City, China based on land surface temperature and social-ecological variables. Sustain. Cities Soc. 2017, 32, 557–568. [Google Scholar] [CrossRef]
- Manoli, G.; Fatichi, S.; Schläpfer, M.; Yu, K.; Crowther, T.W.; Meili, N.; Burlando, P.; Katul, G.G.; Bou-Zeid, E. Magnitude of urban heat islands largely explained by climate and population. Nature 2019, 573, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Tumini, I. El microclima Urbano en los Espacios Abiertos: Estudio de Casos en Madrid; Universidad Politécnica de Madrid: Madrid, Spain, 2012. [Google Scholar]
- Herath, H.M.P.I.K.; Halwatura, R.U.; Jayasinghe, G.Y. Modeling a Tropical Urban Context with Green Walls and Green Roofs as an Urban Heat Island Adaptation Strategy. Procedia Eng. 2018, 212, 691–698. [Google Scholar] [CrossRef]
- Chen, T.; Sun, A.; Niu, R. Effect of Land Cover Fractions on Changes in Surface Urban Heat Islands Using Landsat Time-Series Images. Int. J. Environ. Res. Public Health 2019, 16, 971. [Google Scholar] [CrossRef] [Green Version]
- Torok, S.J.; Morris, C.J.G.; Skinner, C.; Plummer, N. Urban heat island features of southeast Australian towns. Aust. Meteorol. Mag. 2001, 50, 1–13. [Google Scholar]
- Ghobadi, A.; Khosravi, M.; Tavousi, T. Surveying of Heat waves Impact on the Urban Heat Islands: Case study, the Karaj City in Iran. Urban Clim. 2018, 24, 600–615. [Google Scholar] [CrossRef]
- Sharifi, E.; Lehmann, S. Comparative analysis of surface urban heat island effect in central sydney. J. Sustain. Dev. 2014, 7, 23–34. [Google Scholar] [CrossRef] [Green Version]
- Campoverde, A.S.B. Analysis of the urban heat island in the Andean environment of Cuenca-Ecuador. Investig. Geogr. 2018, 167–179. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhou, Y.; Asrar, G.R.; Imhoff, M.; Li, X. The surface urban heat island response to urban expansion: A panel analysis for the conterminous United States. Sci. Total Environ. 2017, 605–606, 426–435. [Google Scholar] [CrossRef] [PubMed]
- Debbage, N.; Shepherd, J.M. The urban heat island effect and city contiguity. Comput. Environ. Urban Syst. 2015, 54, 181–194. [Google Scholar] [CrossRef]
- Niu, L.; Tang, R.; Jiang, Y.; Zhou, X. Spatiotemporal patterns and drivers of the surface urban heat island in 36 major cities in China: A comparison of two different methods for delineating rural areas. Sustainbility 2020, 12, 478. [Google Scholar] [CrossRef] [Green Version]
- Mohajerani, A.; Bakaric, J.; Jeffrey-Bailey, T. The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete. J. Environ. Manag. 2017, 197, 522–538. [Google Scholar] [CrossRef] [PubMed]
- Ferrelli, F.; Bustos, M.Y.; Piccolo, M. Modificaciones en la distribución espacial de la temperatura y la humedad relativa como resultado del crecimiento urbano: El caso de la ciudad de Bahía Blanca, Argentina. Rev. Climatol. 2016, 16, 51–61. [Google Scholar]
- Rahman, M.N.; Rony, M.R.H.; Jannat, F.A.; Pal, S.C.; Islam, M.S.; Alam, E.; Islam, A.R.M.T. Impact of Urbanization on Urban Heat Island Intensity in Major Districts of Bangladesh Using Remote Sensing and Geo-Spatial Tools. Climate 2022, 10, 3. [Google Scholar] [CrossRef]
- Ranagalage, M.; Estoque, R.C.; Zhang, X.; Murayama, Y. Spatial changes of urban heat island formation in the Colombo District, Sri Lanka: Implications for sustainability planning. Sustainbility 2018, 10, 1367. [Google Scholar] [CrossRef] [Green Version]
- ONU-Habitad Hacer de la Densidad una Variable Fundamental Disponible en. Available online: https://onuhabitat.org.mx/index.php/hacer-de-la-densidad-una-variable-fundamental (accessed on 18 May 2021).
- Heaviside, C.; Macintyre, H.; Vardoulakis, S. The Urban Heat Island: Implications for Health in a Changing Environment. Curr. Environ. Health Rep. 2017, 4, 296–305. [Google Scholar] [CrossRef]
- Hassid, S.; Santamouris, M.; Papanikolaou, N.; Linardi, A.; Klitsikas, N.; Georgakis, C.; Assimakopoulos, D.N. Effect of the Athens heat island on air conditioning load. Energy Build 2000, 32, 131–141. [Google Scholar] [CrossRef]
- Sarrat, C.; Lemonsu, A.; Masson, V.; Guedalia, D. Impact of urban heat island on regional atmospheric pollution. Atmos. Environ. 2006, 40, 1743–1758. [Google Scholar] [CrossRef]
- Marando, F.; Heris, M.P.; Zulian, G.; Udías, A.; Mentaschi, L.; Chrysoulakis, N.; Parastatidis, D.; Maes, J. Urban heat island mitigation by green infrastructure in European Functional Urban Areas. Sustain. Cities Soc. 2022, 77, 103564. [Google Scholar] [CrossRef]
- Narváez, T.; Contreras, C. Metodología de Análisis Para Mitigar el Efecto de la Isla del Calor Urbano de la Ciudad de Cuenca Con énfasis en los Pavimentos de Hormigón; Universidad Católica de Cuenca: Cuenca, Ecuador, 2019. [Google Scholar]
- Ernesto, M.; Correa, D. Análisis crítico de la planificación urbana de la Ciudad de Cuenca. Maskana 2016, 7, 107–122. [Google Scholar]
- Cobo, L. Isla de Calor por la Incidencia de los Fenómenos de Tranferencia en Pavimentos Flexibles en la Ciudad de Riobamba; Universidad Nacional de Chimborazo: Riobamba, Ecuador, 2020. [Google Scholar]
- Sen, S.; Roesler, J. Thermal and optical characterization of asphalt field cores for microscale urban heat island analysis. Constr. Build. Mater. 2019, 217, 600–611. [Google Scholar] [CrossRef]
- Correa, E.N.; Flores Larsen, S.; Lesino, G. Isla de calor urbana: Efecto de los pavimentos. Av. Energías Renov. Medio Ambient. 2003, 7, 25–30. [Google Scholar]
- Ibrahim, S.H.; Ibrahim, N.I.A.; Wahid, J.; Goh, N.A.; Koesmeri, D.R.A.; Nawi, M.N.M. The impact of road pavement on urban heat island (UHI) phenomenon. Int. J. Technol. 2018, 9, 1597–1608. [Google Scholar] [CrossRef] [Green Version]
- Maleki, A.; Mahdavi, A. Evaluation of Urban Heat Islands Mitigation Strategies Using 3dimentional Urban Micro-Climate Model Envi-Met. ASIAN J. Civ. Eng. 2016, 17, 357–371. [Google Scholar]
- Pisello, A.L.; Pignatta, G.; Castaldo, V.L.; Cotana, F. Experimental analysis of natural gravel covering as cool roofing and cool pavement. Sustainbility 2014, 6, 4706–4722. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Fukuda, H.; Liu, Z. The value of cool roof as a strategy to mitigate urban heat island effect: A contingent valuation approach. J. Clean. Prod. 2019, 228, 770–777. [Google Scholar] [CrossRef]
- Santamouris, M. Using cool pavements as a mitigation strategy to fight urban heat island-A review of the actual developments. Renew. Sustain. Energy Rev. 2013, 26, 224–240. [Google Scholar] [CrossRef]
- Sen, S.; Roesler, J.; Ruddell, B.; Middel, A. Cool pavement strategies for Urban Heat Island mitigation in Suburban Phoenix, Arizona. Sustainbility 2019, 11, 4452. [Google Scholar] [CrossRef] [Green Version]
- Kyriakodis, G.E.; Santamouris, M. Using reflective pavements to mitigate urban heat island in warm climates-Results from a large scale urban mitigation project. Urban Clim. 2018, 24, 326–339. [Google Scholar] [CrossRef]
- Machado, J. La temperatura en Quito no deja de subir desde 2004. Available online: primicias.ec/noticias/sociedad/temperatura-quito-calor-calentamiento-global/ (accessed on 18 September 2021).
- Guillén Mena, V.; Orellana Valdez, D. Un acercamiento a caracterizar la isla de calor en Cuenca, Ecuador. In Proceedings of the Congreso Nacional del Medio Ambiente Conama 2016, Madrid, España, 1–28 December 2016; pp. 1–16. [Google Scholar]
- Bustamante Campoverde, A.; Orellana Valdez, D. Caracterización de la isla de calor urbana en Cuenca (Ecuador). Efectos de la morfología urbana. In Proceedings of the Congreso Internacional I+D+i en sosteniblidad energética INER 2017, Quito, Ecuador, 20–22 September 2017; pp. 10–18. [Google Scholar]
- He, B.J.; Wang, J.; Liu, H.; Ulpiani, G. Localized synergies between heat waves and urban heat islands: Implications on human thermal comfort and urban heat management. Environ. Res. 2021, 193, 110584. [Google Scholar] [CrossRef] [PubMed]
- Kubilay, A.; Allegrini, J.; Strebel, D.; Zhao, Y.; Derome, D.; Carmeliet, J. Advancement in urban climate modelling at local scale: Urban heat island mitigation and building cooling demand. Atmosphere 2020, 11, 1313. [Google Scholar] [CrossRef]
- Fernández, Q.V. Simulación con Modelos Climáticos en Infraestructuras de Computación Distribuida; Universidad de Cantabria: Cantabria, Spain, 2020. [Google Scholar]
- Crank, P.J.; Sailor, D.J.; Ban-Weiss, G.; Taleghani, M. Evaluating the ENVI-met microscale model for suitability in analysis of targeted urban heat mitigation strategies. Urban Clim. 2018, 26, 188–197. [Google Scholar] [CrossRef]
- Yilmaz, S.; Mutlu, E.; Yilmaz, H. Alternative scenarios for ecological urbanizations using ENVI-met model. Environ. Sci. Pollut. Res. 2018, 25, 26307–26321. [Google Scholar] [CrossRef]
- Mutlu, B.E.; Yilmaz, S. Evaluation of the Effect of Green Areas on Thermal Comfort in Urban Areas with Microscale ENVI-Met Software. In Proceedings of the PACE 2021, Erzurum, Turkey, 20–23 June 2021; pp. 1–5. [Google Scholar]
- Instituto Nacional de Estadísticas y Censos. Fascículo Provincial Azuay. Equipo Comun. y Análisis del Censo Población y Vivienda. INEC 2010, 1, 8. [Google Scholar]
- Quezada, M.F. Lineamientos Metodológicos Para Ordenar el Área Periurbana de Cuenca: Caso Guncay-El Valle; Universidad de Cuenca: Cuenca, Ecuador, 2015. [Google Scholar]
- Pinos-Arévalo, N. Prospective land use and vegetation cover on land management-Case canton Cuenca. Estoa 2016, 5, 7–19. [Google Scholar] [CrossRef] [Green Version]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Barragán, A.E.; Ochoa, P.E. Diseño de viviendas ambientales de bajo costo. Maskana 2014, 5, 81–98. [Google Scholar] [CrossRef] [Green Version]
- Ozkeresteci, I.; Crewe, K.; Brazel, A.J.; Bruse, M. Use and evaluation of the ENVI-met model for environmental design and planning. An Experiment on Lienar Parks. In Proceedings of the 21st International Cartographic Conference (ICC), Durban, South Africa, 10–16 August 2003; pp. 10–16. [Google Scholar]
- Elnabawi, M.H.; Hamza, N.; Dudek, S. Use and evaluation of the envi-met model for two different urban forms in cairo, egypt: Measurements and model simulations. In Proceedings of the 3th Conference of International Building Performance Simulation Association, Chambéry, France, 25–28 August 2013; pp. 2800–2806. [Google Scholar]
- Sun, S.; Xu, X.; Lao, Z.; Liu, W.; Li, Z.; Higueras García, E.; He, L.; Zhu, J. Evaluating the impact of urban green space and landscape design parameters on thermal comfort in hot summer by numerical simulation. Build. Environ. 2017, 123, 277–288. [Google Scholar] [CrossRef]
- NASA Power Ceres Merra 2 Daily Data. Available online: Power.larc.nasa.gov/data-access-viewer (accessed on 9 September 2021).
- Bosilovich, M.G.; Lucchesi, R.; Suarez, M. MERRA-2: File Specification. Earth 2016, 9, 73. [Google Scholar]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef] [PubMed]
- ENVI-met GmbH Emvi-met V5 2021. Available online: Envi-met.com/landscape-architects/ (accessed on 14 October 2021).
- Faragallah, R.N.; Ragheb, R.A. Evaluation of thermal comfort and urban heat island through cool paving materials using ENVI-Met. Ain Shams Eng. J. 2022, 13, 101609. [Google Scholar] [CrossRef]
- Elwy, I.; Ibrahim, Y.; Fahmy, M.; Mahdy, M. Outdoor microclimatic validation for hybrid simulation workflow in hot arid climates against ENVI-met and field measurements. Energy Procedia 2018, 153, 29–34. [Google Scholar] [CrossRef]
- Abaas, Z.R. Impact of development on Baghdad’s urban microclimate and human thermal comfort. Alexandria Eng. J. 2020, 59, 275–290. [Google Scholar] [CrossRef]
- Zhang, L.; Zhan, Q.; Lan, Y. Effects of the tree distribution and species on outdoor environment conditions in a hot summer and cold winter zone: A case study in Wuhan residential quarters. Build. Environ. 2018, 130, 27–39. [Google Scholar] [CrossRef]
- Alchapar, N.L.; Correa, E.N. The use of reflective materials as a strategy for urban cooling in an arid “OASIS” city. Sustain. Cities Soc. 2016, 27, 1–14. [Google Scholar] [CrossRef]
- Qin, Y. Urban canyon albedo and its implication on the use of reflective cool pavements. Energy Build. 2015, 96, 86–94. [Google Scholar] [CrossRef]
- Zheng, N.; Lei, J.; Wang, S.; Li, Z.; Chen, X. Influence of heat reflective coating on the cooling and pavement performance of large void asphalt pavement. Coatings 2020, 10, 1065. [Google Scholar] [CrossRef]
- Cortes, A.; Rejuso, A.J.; Santos, J.A.; Blanco, A. Evaluating mitigation strategies for urban heat island in Mandaue City using ENVI-met. J. Urban Manag. 2022, 11, 97–106. [Google Scholar] [CrossRef]
- Baloloy, A.; Cruz, J.A.; Sta Ana, R.R.; Blanco, A.; Lubrica, N.V.; Valdez, C.J.; Bernardo, J.J. Modelling and simulation of potential future urbanization scenarios and its effect on the microclimate of lower session road, baguio city. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 5, 187–194. [Google Scholar] [CrossRef]
- Ambrosini, D.; Galli, G.; Mancini, B.; Nardi, I.; Sfarra, S. Evaluating mitigation effects of urban heat islands in a historical small center with the ENVI-Met® climate model. Sustainability 2014, 6, 7013–7029. [Google Scholar] [CrossRef] [Green Version]
Meteorological Parameters | Unit |
---|---|
Minimum initial air temperature | 11 °C |
Maximum air temperature | 20 °C |
Wind speed | 2.5 m/s |
Wind direction | 315° Northeast |
Material | Albedo | Emissivity | Component |
---|---|---|---|
Asphalt | 0.2 | 0.9 | Roads |
Used concrete | 0.3 | 0.9 | Roads/other |
Concrete | 0.5 | 0.9 | Roads |
Concrete | NA | NA | Walls |
Tile | NA | NA | Roofs |
Grass height of less than 25 cm | 0.2 | NA | Vegetation cover |
Medium-sized, leafy trees | 0.2 | NA | Vegetation cover |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vásquez-Álvarez, P.E.; Flores-Vázquez, C.; Cobos-Torres, J.-C.; Cobos-Mora, S.L. Urban Heat Island Mitigation through Planned Simulation. Sustainability 2022, 14, 8612. https://doi.org/10.3390/su14148612
Vásquez-Álvarez PE, Flores-Vázquez C, Cobos-Torres J-C, Cobos-Mora SL. Urban Heat Island Mitigation through Planned Simulation. Sustainability. 2022; 14(14):8612. https://doi.org/10.3390/su14148612
Chicago/Turabian StyleVásquez-Álvarez, Paul Eduardo, Carlos Flores-Vázquez, Juan-Carlos Cobos-Torres, and Sandra Lucía Cobos-Mora. 2022. "Urban Heat Island Mitigation through Planned Simulation" Sustainability 14, no. 14: 8612. https://doi.org/10.3390/su14148612