Namares—A Surface Inventory and Intervention Assessment Model for Urban Resource Management
Abstract
:1. Introduction
1.1. State of the Art
2. Challenges and Proposal
- Accounting for all available urban surfaces: soils and surfaces on buildings and infrastructures.
- A comprehensive inventory of urban features from easily accessible and regularly updated data.
- Appropriate reference units to allow for considering interdisciplinary aspects.
- Practicability for use in municipal administrations (e.g., based on existing procedures, data models, resources, and data management).
- Modular expandability.
- Wide system compatibility.
- Transferability to different scales and locations.
- Identification of theoretical and technical potentials of measures.
- Financial assessment.
- Technical and environmental assessment.
- Social assessment.
3. Materials and Methods
3.1. Data Model
- Cadastral data, such as from the Authoritative Real Estate Cadastre Information System (ALKIS®);
- Building and infrastructure data such as, 3D level of detail 2 (LOD2) CityGML data;
- Surface sealing materials, such as from sewer-service/runoff water charge surveys (surveying and mapping of impervious surfaces by the local authorities or airborne remote sensing surveys);
- Preservation, historic interest, or other plot/building data which cover constraints for (re-)development activities;
- Socio-demographic data such as building occupation, ownership or other census data;
- Administrative zoning or other region of interest break down relevant for the investigation, e.g., assisted areas or survey units;
- Weather data on irradiation, precipitation, etc.
3.2. GIS-Analyses
3.3. Measures and Potentials
- (a)
- Extensive roof greening (): roof greening with 10 cm substrate thickness, short grass, or sedum plants;
- (b)
- Intensive roof greening (): ground-level greening with >25 cm substrate thickness, short grass, and herbaceous plants (1:1);
- (c)
- Underground parking roof greening (): roof greening with >35 cm substrate thickness, short grass, herbaceous plants, and deciduous trees (2:1:1);
- (d)
- Roof-mounted photovoltaics (): installation of photovoltaic (PV) modules;
- (e)
- Photovoltaics and roof greening (): installation of mono-crystalline solar panels and roof greening with 10 cm substrate thickness, short grass, or sedum;
- (f)
- Ground-based facade greening (): planting climbing plants, plants with and without climbing support;
- (g)
- Wall-based facade greening (): prefabricated vegetation elements/mats, short grass, or herbaceous plants;
- (h)
- Facade-mounted photovoltaics (): installation of PV modules;
- (i)
- Soil unsealing/domestic garden (): unsealing and plot-specific multi-use configuration of porous plaster, partially greened grids (1:1 short grass, impervious), and domestic garden (1:1:1 short grass, herbaceous plants and deciduous trees) areas in a plot.
3.4. Assessment and Key Performance Indicator Calculation
3.5. Case Study District
4. Results
4.1. Inventory and Structure of Surfaces in the Case Study District
4.1.1. Ground Surfaces
4.1.2. Wall Surfaces
4.1.3. Roof Surfaces
4.2. Potentials
4.2.1. Ground Potentials
4.2.2. Facade Potentials
4.2.3. Roof Potentials
4.2.4. Overview of the Technical, Economic, and Environmental Assessment
4.2.5. Green Area Provision
4.2.6. Subsidies
5. Discussion
5.1. Key Determinants for the Assessment and Evaluation of Results
5.2. Implications for the Case Study
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALKIS ® | Authoritative Real Estate Cadastre Information System |
CAPEX | Capital expenditure |
EOS | Economies of scale |
erg | Extensive roof greening |
fmpv | Facade-mounted photovoltaics |
gbfg | Ground-based facade greening |
Geom | Geometry |
GIS | Geo information system |
INT | Intersection |
irg | Intensive roof greening |
LCOE | Levelised cost of energy |
Lidar | Light detection and ranging |
LOD | Level of detail |
OPEX | Operational expenditure |
pp | Percentage point |
PV | Photovoltaic |
pvrg | Photovoltaics and roof greening |
rmpv | Roof-mounted photovoltaics |
SCT | Surface cover types |
sdg | Soil unsealing/domestic garden |
uprg | Underground parking roof greening |
wbfg | Wall-based facade greening |
Appendix A
References
- Pickett, S.; Cadenasso, M.L.; Grove, J.M.; Boone, C.G.; Groffman, P.M.; Irwin, E.; Kaushal, S.S.; Marshall, V.; McGrath, B.P.; Nilon, C.H.; et al. Urban ecological systems: Scientific foundations and a decade of progress. J. Environ. Manag. 2011, 92, 331–362. [Google Scholar] [CrossRef]
- Lavalle, C.; Pontarollo, N.; Silva, F.B.E.; Baranzelli, C.; Jacobs, C.; Kavalov, B.; Kompil, M.; Perpiña Castillo, C.; Vizcaino, P.; Barranco, R.R.; et al. European Territorial Trends: Facts and Prospects for Cities and Regions, 2017th ed.; JRC Science for Policy Report; Publications Office of the European Union: Luxembourg, 2017. [Google Scholar] [CrossRef]
- González Ortiz, A.; Guerreiro, C.; Soares, J. Air Quality in Europe: 2020 Report; Vol. No 09/2020, EEA Report; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar] [CrossRef]
- United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects the 2018 Revision. 2018. Available online: https://population.un.org/wup/Publications/Files/WUP2018-Report.pdf (accessed on 14 December 2021).
- Grimm, N.B.; Foster, D.; Groffman, P.; Grove, J.M.; Hopkinson, C.S.; Nadelhoffer, K.J.; Pataki, D.E.; Peters, D.P.C. The changing landscape: Ecosystem responses to urbanization and pollution across climatic and societal gradients. Front. Ecol. Environ. 2008, 6, 264–272. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, G.M.; Vidal, D.G.; Ferraz, M.P. Urban Lifestyles and Consumption Patterns. In Sustainable Cities and Communities; Leal Filho, W., Azul, A.M., Brandli, L., Özuyar, P.G., Wall, T., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 1–10. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- European Commission. EU Soil Strategy for 2030: Reaping the Benefits of Healthy Soils for People, Food, Nature and Climate: COM(2021) 699 Final. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52021DC0699&from=EN (accessed on 13 December 2021).
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. Available online: https://sustainabledevelopment.un.org/content/documents/21252030%20Agenda%20for%20Sustainable%20Development%20web.pdf (accessed on 13 December 2021).
- German Federal Office of Justice. Federal Climate Protection Act-Bundes-Klimaschutzgesetz vom 12. Dezember 2019 (BGBl. I S. 2513), das durch Artikel 1 des Gesetzes vom 18. August 2021 (BGBl. I S. 3905) Geändert Worden ist: KSG. 18 August 2021. Available online: https://www.gesetze-im-internet.de/ksg/BJNR251310019.html (accessed on 13 December 2021).
- Goddard, M.A.; Dougill, A.J.; Benton, T.G. Scaling up from gardens: Biodiversity conservation in urban environments. Trends Ecol. Evol. 2010, 25, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tilman, D.; Clark, M.; Williams, D.R.; Kimmel, K.; Polasky, S.; Packer, C. Future threats to biodiversity and pathways to their prevention. Nature 2017, 546, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Bayo, F.; Wyckhuys, K.A. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 2019, 232, 8–27. [Google Scholar] [CrossRef]
- Referowska-Chodak, E. Pressures and Threats to Nature Related to Human Activities in European Urban and Suburban Forests. Forests 2019, 10, 765. [Google Scholar] [CrossRef] [Green Version]
- Haase, D. Effects of urbanisation on the water balance—A long-term trajectory. Environ. Impact Assess. Rev. 2009, 29, 211–219. [Google Scholar] [CrossRef]
- Wang, K.; Onodera, S.I.; Saito, M.; Shimizu, Y. Long-term variations in water balance by increase in percent imperviousness of urban regions. J. Hydrol. 2021, 602, 126767. [Google Scholar] [CrossRef]
- Kumar, P.; Morawska, L.; Martani, C.; Biskos, G.; Neophytou, M.; Di Sabatino, S.; Bell, M.; Norford, L.; Britter, R. The rise of low-cost sensing for managing air pollution in cities. Environ. Int. 2015, 75, 199–205. [Google Scholar] [CrossRef] [Green Version]
- Gallagher, J.; Baldauf, R.; Fuller, C.H.; Kumar, P.; Gill, L.W.; McNabola, A. Passive methods for improving air quality in the built environment: A review of porous and solid barriers. Atmos. Environ. 2015, 120, 61–70. [Google Scholar] [CrossRef]
- Kumar, P.; Druckman, A.; Gallagher, J.; Gatersleben, B.; Allison, S.; Eisenman, T.S.; Hoang, U.; Hama, S.; Tiwari, A.; Sharma, A.; et al. The nexus between air pollution, green infrastructure and human health. Environ. Int. 2019, 133, 105181. [Google Scholar] [CrossRef] [PubMed]
- McNeill, J.R.; Winiwarter, V. Breaking the Sod: Humankind, History, and Soil. Science 2004, 304, 1627–1629. [Google Scholar] [CrossRef] [Green Version]
- Bulkeley, H.; Castán Broto, V. Government by experiment? Global cities and the governing of climate change. Trans. Inst. Br. Geogr. 2013, 38, 361–375. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Ollauri, A.; Mickovski, S.B. Providing ecosystem services in a challenging environment by dealing with bundles, trade-offs, and synergies. Ecosyst. Serv. 2017, 28, 261–263. [Google Scholar] [CrossRef] [Green Version]
- Bai, X.; Dawson, R.J.; Ürge-Vorsatz, D.; Delgado, G.C.; Salisu Barau, A.; Dhakal, S.; Dodman, D.; Leonardsen, L.; Masson-Delmotte, V.; Roberts, D.C.; et al. Six research priorities for cities and climate change. Nature 2018, 555, 23–25. [Google Scholar] [CrossRef]
- Elmqvist, T.; Andersson, E.; Frantzeskaki, N.; McPhearson, T.; Olsson, P.; Gaffney, O.; Takeuchi, K.; Folke, C. Sustainability and resilience for transformation in the urban century. Nat. Sustain. 2019, 2, 267–273. [Google Scholar] [CrossRef]
- Bibri, S.E. A novel model for data-driven smart sustainable cities of the future: The institutional transformations required for balancing and advancing the three goals of sustainability. Energy Inform. 2021, 4, 4. [Google Scholar] [CrossRef]
- Fastenrath, S.; Coenen, L. Future-proof cities through governance experiments? Insights from the Resilient Melbourne Strategy (RMS). Reg. Stud. 2021, 55, 138–149. [Google Scholar] [CrossRef]
- Voskamp, I.M.; de Luca, C.; Polo-Ballinas, M.B.; Hulsman, H.; Brolsma, R. Nature-Based Solutions Tools for Planning Urban Climate Adaptation: State of the Art. Sustainability 2021, 13, 6381. [Google Scholar] [CrossRef]
- Wamsler, C.; Brink, E.; Rivera, C. Planning for climate change in urban areas: From theory to practice. J. Clean. Prod. 2013, 50, 68–81. [Google Scholar] [CrossRef] [Green Version]
- Hobbie, S.E.; Grimm, N.B. Nature-based approaches to managing climate change impacts in cities. Philos. Trans. R. Soc. Lond. Ser. Biol. Sci. 2020, 375, 20190124. [Google Scholar] [CrossRef] [Green Version]
- Kleerekoper, L.; van Esch, M.; Salcedo, T.B. How to make a city climate-proof, addressing the urban heat island effect. Resour. Conserv. Recycl. 2012, 64, 30–38. [Google Scholar] [CrossRef]
- Seto, K.C.; Fragkias, M.; Güneralp, B.; Reilly, M.K.; Añel, J.A. A Meta-Analysis of Global Urban Land Expansion. PLoS ONE 2011, 6, e23777. [Google Scholar] [CrossRef]
- Dewaelheyns, V.; Rogge, E.; Gulinck, H. Putting domestic gardens on the agenda using empirical spatial data: The case of Flanders. Appl. Geogr. 2014, 50, 132–143. [Google Scholar] [CrossRef]
- Kabisch, N.; Korn, H.; Stadler, J.; Bonn, A. Nature-Based Solutions to Climate Change Adaptation in Urban Areas: Linkages between Science, Policy and Practice; Theory and Practice of Urban Sustainability Transitions; Springer International Publishing and Imprint and Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Artmann, M. Managing urban soil sealing in Munich and Leipzig (Germany)—From a wicked problem to clumsy solutions. Land Use Policy 2015, 46, 21–37. [Google Scholar] [CrossRef]
- Perini, K.; Ottelé, M.; Fraaij, A.; Haas, E.M.; Raiteri, R. Vertical greening systems and the effect on air flow and temperature on the building envelope. Build. Environ. 2011, 46, 2287–2294. [Google Scholar] [CrossRef]
- Pfoser, N.; Jenner, N.; Henrich, J.; Heusinger, J.; Weber, S.; Schreiner, J.; Unten Kanashiro, C.; Gebäude Begrünung Energie. Potenziale und Wechselwirkungen. Abschlussbericht. Available online: http://www.irbnet.de/daten/rswb/13109006683.pdf (accessed on 30 January 2022).
- Norton, B.A.; Coutts, A.M.; Livesley, S.J.; Harris, R.J.; Hunter, A.M.; Williams, N.S. Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landsc. Urban Plan. 2015, 134, 127–138. [Google Scholar] [CrossRef]
- Pfoser, N. Fassade und Pflanze: Potenziale einer neuen Fassadengestaltung. Ph.D. Thesis, Technischen Universität Darmstadt, Darmstadt, Germany, 2016. Available online: https://tuprints.ulb.tu-darmstadt.de/id/eprint/5587 (accessed on 30 January 2022).
- Emilsson, T.; Ode Sang, Å. Impacts of Climate Change on Urban Areas and Nature-Based Solutions for Adaptation: Chapter 2. In Nature-Based Solutions to Climate Change Adaptation in Urban Areas; Bonn, A., Stadler, J., Korn, H., Kabisch, N., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 15–27. [Google Scholar] [CrossRef]
- Enzi, V.; Cameron, B.; Dezsényi, P.; Gedge, D.; Mann, G.; Pitha, U. Nature-Based Solutions and Buildings—The Power of Surfaces to Help Cities Adapt to Climate Change and to Deliver Biodiversity. In Nature-Based Solutions to Climate Change Adaptation in Urban Areas; Bonn, A., Stadler, J., Korn, H., Kabisch, N., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 159–183. [Google Scholar] [CrossRef] [Green Version]
- Dorst, H.; van der Jagt, A.; Raven, R.; Runhaar, H. Urban greening through nature-based solutions—Key characteristics of an emerging concept. Sustain. Cities Soc. 2019, 49, 101620. [Google Scholar] [CrossRef]
- Abhijith, K.V.; Kumar, P.; Gallagher, J.; McNabola, A.; Baldauf, R.; Pilla, F.; Broderick, B.; Di Sabatino, S.; Pulvirenti, B. Air pollution abatement performances of green infrastructure in open road and built-up street canyon environments—A review. Atmos. Environ. 2017, 162, 71–86. [Google Scholar] [CrossRef]
- Sicard, P.; Agathokleous, E.; Araminiene, V.; Carrari, E.; Hoshika, Y.; de Marco, A.; Paoletti, E. Should we see urban trees as effective solutions to reduce increasing ozone levels in cities? Environ. Pollut. 2018, 243, 163–176. [Google Scholar] [CrossRef] [PubMed]
- Koch, K.; Ysebaert, T.; Denys, S.; Samson, R. Urban heat stress mitigation potential of green walls: A review. Urban For. Urban Green. 2020, 55, 126843. [Google Scholar] [CrossRef]
- Seddon, N.; Chausson, A.; Berry, P.; Girardin, C.A.J.; Smith, A.; Turner, B. Understanding the value and limits of nature-based solutions to climate change and other global challenges. Philos. Trans. R. Soc. Lond. Ser. Biol. Sci. 2020, 375, 20190120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almaaitah, T.; Appleby, M.; Rosenblat, H.; Drake, J.; Joksimovic, D. The potential of Blue-Green infrastructure as a climate change adaptation strategy: A systematic literature review. Blue-Green Syst. 2021, 3, 223–248. [Google Scholar] [CrossRef]
- O’Riordan, R.; Davies, J.; Stevens, C.; Quinton, J.N.; Boyko, C. The ecosystem services of urban soils: A review. Geoderma 2021, 395, 115076. [Google Scholar] [CrossRef]
- Veerkamp, C.J.; Schipper, A.M.; Hedlund, K.; Lazarova, T.; Nordin, A.; Hanson, H.I. A review of studies assessing ecosystem services provided by urban green and blue infrastructure. Ecosyst. Serv. 2021, 52, 101367. [Google Scholar] [CrossRef]
- Hanna, E.; Comín, F.A. Urban Green Infrastructure and Sustainable Development: A Review. Sustainability 2021, 13, 11498. [Google Scholar] [CrossRef]
- Browning, M.H.; Rigolon, A.; McAnirlin, O.; Yoon, H. Where greenspace matters most: A systematic review of urbanicity, greenspace, and physical health. Landsc. Urban Plan. 2022, 217, 104233. [Google Scholar] [CrossRef]
- Beninde, J.; Veith, M.; Hochkirch, A. Biodiversity in cities needs space: A meta-analysis of factors determining intra-urban biodiversity variation. Ecol. Lett. 2015, 18, 581–592. [Google Scholar] [CrossRef]
- O’Brien, L.; de Vreese, R.; Kern, M.; Sievänen, T.; Stojanova, B.; Atmiş, E. Cultural ecosystem benefits of urban and peri-urban green infrastructure across different European countries. Urban For. Urban Green. 2017, 24, 236–248. [Google Scholar] [CrossRef]
- Amorim, J.H.; Engardt, M.; Johansson, C.; Ribeiro, I.; Sannebro, M. Regulating and Cultural Ecosystem Services of Urban Green Infrastructure in the Nordic Countries: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 1219. [Google Scholar] [CrossRef] [PubMed]
- Ring, Z.; Damyanovic, D.; Reinwald, F. Green and open space factor Vienna: A steering and evaluation tool for urban green infrastructure. Urban For. Urban Green. 2021, 62, 127131. [Google Scholar] [CrossRef]
- Lyytimäki, J.; Sipilä, M. Hopping on one leg—The challenge of ecosystem disservices for urban green management. Urban For. Urban Green. 2009, 8, 309–315. [Google Scholar] [CrossRef]
- Säumel, I.; Weber, F.; Kowarik, I. Toward livable and healthy urban streets: Roadside vegetation provides ecosystem services where people live and move. Environ. Sci. Policy 2016, 62, 24–33. [Google Scholar] [CrossRef]
- Campagne, C.S.; Roche, P.K.; Salles, J.M. Looking into Pandora’s Box: Ecosystem disservices assessment and correlations with ecosystem services. Ecosyst. Serv. 2018, 30, 126–136. [Google Scholar] [CrossRef] [Green Version]
- Ignatieva, M.; Haase, D.; Dushkova, D.; Haase, A. Lawns in Cities: From a Globalised Urban Green Space Phenomenon to Sustainable Nature-Based Solutions. Land 2020, 9, 73. [Google Scholar] [CrossRef] [Green Version]
- Gaertner, M.; Wilson, J.R.U.; Cadotte, M.W.; MacIvor, J.S.; Zenni, R.D.; Richardson, D.M. Non-native species in urban environments: Patterns, processes, impacts and challenges. Biol. Invasions 2017, 19, 3461–3469. [Google Scholar] [CrossRef] [Green Version]
- von Döhren, P.; Haase, D. Risk assessment concerning urban ecosystem disservices: The example of street trees in Berlin, Germany. Ecosyst. Serv. 2019, 40, 101031. [Google Scholar] [CrossRef]
- Xing, Y.; Jones, P.; Donnison, I. Characterisation of Nature-Based Solutions for the Built Environment. Sustainability 2017, 9, 149. [Google Scholar] [CrossRef] [Green Version]
- ENVI-met GmbH. ENVI-met. Available online: https://www.envi-met.com (accessed on 2 January 2022).
- Maronga, B.; Banzhaf, S.; Burmeister, C.; Esch, T.; Forkel, R.; Fröhlich, D.; Fuka, V.; Gehrke, K.F.; Geletič, J.; Giersch, S.; et al. Overview of the PALM model system 6.0. Geosci. Model Dev. 2020, 13, 1335–1372. [Google Scholar] [CrossRef]
- Deutscher Wetterdienst. Latest INKAS News: INKAS Surface Analysis, and INKAS Impact Analysis. 2022. Available online: https://www.dwd.de/DE/leistungen/inkas/inkasstart.html (accessed on 2 January 2022).
- Sylla, M.; Hagemann, N.; Szewrański, S. Mapping trade-offs and synergies among peri-urban ecosystem services to address spatial policy. Environ. Sci. Policy 2020, 112, 79–90. [Google Scholar] [CrossRef]
- Grunwald, L.; Heusinger, J.; Weber, S. A GIS-based mapping methodology of urban green roof ecosystem services applied to a Central European city. Urban For. Urban Green. 2017, 22, 54–63. [Google Scholar] [CrossRef]
- Hoeben, A.D.; Posch, A. Green roof ecosystem services in various urban development types: A case study in Graz, Austria. Urban For. Urban Green. 2021, 62, 127167. [Google Scholar] [CrossRef]
- Selmi, W.; Weber, C.; Rivière, E.; Blond, N.; Mehdi, L.; Nowak, D. Air pollution removal by trees in public green spaces in Strasbourg city, France. Urban For. Urban Green. 2016, 17, 192–201. [Google Scholar] [CrossRef] [Green Version]
- Jayasooriya, V.M.; Ng, A.; Muthukumaran, S.; Perera, B. Green infrastructure practices for improvement of urban air quality. Urban For. Urban Green. 2017, 21, 34–47. [Google Scholar] [CrossRef]
- Heiden, U.; Heldens, W.; Roessner, S.; Segl, K.; Esch, T.; Mueller, A. Urban structure type characterization using hyperspectral remote sensing and height information. Landsc. Urban Plan. 2012, 105, 361–375. [Google Scholar] [CrossRef]
- Frick, A.; Tervooren, S. A Framework for the Long-term Monitoring of Urban Green Volume Based on Multi-temporal and Multi-sensoral Remote Sensing Data. J. Geovis. Spat. Anal. 2019, 3, 6. [Google Scholar] [CrossRef]
- Bartesaghi-Koc, C.; Osmond, P.; Peters, A. Quantifying the seasonal cooling capacity of ‘green infrastructure types’ (GITs): An approach to assess and mitigate surface urban heat island in Sydney, Australia. Landsc. Urban Plan. 2020, 203, 103893. [Google Scholar] [CrossRef]
- Schmidt, S.; Barron, C. Mapping Impervious Surfaces Precisely—A GIS-Based Methodology Combining Vector Data and High-Resolution Airborne Imagery. J. Geovis. Spat. Anal. 2020, 4, 1–10. [Google Scholar] [CrossRef]
- German Federal Office of Justice. Gesetz zur Förderung der Kreislaufwirtschaft und Sicherung der umweltverträglichen Bewirtschaftung von Abfällen: Kreislaufwirtschaftsgesetz-KrWG. 24 February 2012. Available online: https://www.gesetze-im-internet.de/krwg/__6.html (accessed on 23 May 2022).
- German Federal Office of Justice. Gesetz über Naturschutz und Landschaftspflege: Bundesnaturschutzgesetz—BNatSchG, 18.08.2021 (BGBl. I S. 3908). Available online: http://www.gesetze-im-internet.de/bnatschg_2009/index.html (accessed on 23 May 2022).
- Boehnke, D.; Volk, R.; Lützkendorf, T.; Naber, E.; Krehl, A.; Becker, R.; Norra, S. Grünbestände in privaten Innenhöfen und deren Ökosystemleistungen im Stadtquartier—Erkenntnisse einer quartiersweiten Erhebung in Karlsruhe. In Flächennutzungsmonitoring XIII; Meinel, G., Krüger, T., Ehrhardt, D., Eds.; IÖR-Schriften, Rhombos-Verlag: Berlin, Germany, 2021; pp. 149–157. [Google Scholar] [CrossRef]
- Volk, R.; Naber, E.; Lützkendorf, T.; Böhnke, D.; Mörmann, K.; Schultmann, F.; Norra, S. Identifikation und Bewertung von Entsiegelungspotenzialen als Beitrag zur nachhaltigen Quartiersentwicklung—Zwischenergebnisse aus NaMaRes. In Flächennutzungsmonitoring XIII; Meinel, G., Krüger, T., Ehrhardt, D., Eds.; IÖR-Schriften, Rhombos-Verlag: Berlin, Germany, 2021; pp. 209–219. [Google Scholar] [CrossRef]
- Liegenschaftsamt Karlsruhe; Tiefbauamt Karlsruhe. All Case Study Specific Data Is Provided by the City of Karlsruhe; Kartengrundlage Stadt Karlsruhe. 2019. Available online: https://www.karlsruhe.de/b3/bauen/geodaten/geoshop.de (accessed on 23 May 2022).
- Deutscher Wetterdienst. Wetter und Klima—Deutscher Wetterdienst—Leistungen - KOSTRA-DWD: Raster Data on Precipitation Heights and Rainfall Amounts as a Function of Precipitation Duration D and Annuality T (Recurrence Interval). 2020. Available online: https://www.dwd.de/DE/leistungen/kostra_dwd_rasterwerte/kostra_dwd_rasterwerte.html (accessed on 13 December 2021).
- Landesamt für Denkmalpflege. ADABweb. 2018. Available online: https://www.denkmalpflege-bw.de/denkmale/datenbanken/adabweb (accessed on 13 December 2021).
- Stadt Karlsruhe Stadtkonservator/Denkmalschutz.Datenbank der Kulturdenkmale. 2020. Available online: https://web1.karlsruhe.de/db/kulturdenkmale/ (accessed on 13 December 2021).
- Großklos, M.; Loga, T.; Behem, G. Gradtagzahlen-Deutschland Tool: Tool Developed by the MOBASY Project. Primary Weather Data Provided by Deutscher Wetterdienst. 2020. Available online: https://www.iwu.de/publikationen/fachinformationen/energiebilanzen/#c205 (accessed on 13 December 2021).
- Tiefbauamt Karlsruhe. Entwässerungsgebühren: Drainage Fees. 2021. Available online: https://www.karlsruhe.de/b3/bauen/tiefbau/entwaesserung/entwaesserungsgebuehr.de (accessed on 13 December 2021).
- Institute for Automation and Applied Informatics. FZKViewer 6.3 (Build 2170). 2021. Available online: https://www.iai.kit.edu/english/1648.php (accessed on 13 December 2021).
- Brune, M.; Bender, S.; Groth, M. Gebäudebegrünung und Klimawandel: Anpassung an die Folgen des Klimawandels durch klimawandeltaugliche Begrünung: Report 30. Available online: https://www.climate-service-center.de/imperia/md/content/csc/report30.pdf (accessed on 1 April 2022).
- Schmauck, S. Dach- und Fassadenbegrünung–neue Lebensräume im Siedlungsbereich: Fakten, Argumente und Empfehlungen; Bundesamt für Naturschutz: Bonn, Germany, 2019; Volume 538. [Google Scholar] [CrossRef]
- Technische Universität München. Leitfaden Energienutzungsplan; Bayerisches Staatsministerium für Umwelt und Gesundheit (StMUG): München, Germany, 2011. [Google Scholar]
- Hegger, M.; Dettmar, J.; Martin, A.; Boczek, B.; Greiner, M.; Kern, T.; Al Najjar, A.; Schulze, J.; Stute, V.; Wurzbacher, S.; et al. UrbanReNet: Schlussbericht; TU Darmstadt: Darmstadt, Germany, 2012. [Google Scholar]
- Bergner, J.; Siegel, B.; Quaschning, V. Das Berliner Solarpotenzial: Kurzstudie zur Verteilung des solaren Dachflächenpotenzials im Berliner Gebäudebestand. Available online: https://solar.htw-berlin.de/wp-content/uploads/HTW-Studie-Das-Berliner-Solarpotenzial.pdf (accessed on 1 April 2022).
- Eggers, J.B.; Behnisch, M.; Eisenlohr, J.; Poglitsch, H.; Phung, W.F.; Münzinger, M.; Ferrara, C.; Kuhn, T.E. PV-Ausbauerfordernisse versus Gebäudepotenzial: Ergebnis einer gebäudescharfen Analyse für ganz Deutschland. 35. PV-Symposium 01./02. September 2020, pp. 837–856. Available online: https://www.researchgate.net/publication/344376094_PV-Ausbauerfordernisse_versus_Gebaudepotenzial_Ergebnis_einer_gebaudescharfen_Analyse_fur_ganz_Deutschland (accessed on 1 April 2022).
- BKI Baukosteninformationszentrum. BKI-Objektdaten: Kosten Abgerechneter Objekte und Statistische Kostenkennwerte: F6 Freianlagen; BKI: Stuttgart, Germany, 2014. [Google Scholar]
- BKI Baukosteninformationszentrum. BKI-Objektdaten: Kosten Abgerechneter Objekte und Statistische Kostenkrennwerte: F7 Freianlagen; BKI: Stuttgart, Germany, 2016. [Google Scholar]
- Siewert, W.; Blaschke, D.; Gerstenberg, J.H.; Hilbert, S.; Brandt, M. Orientierende Kostenschätzung für Entsiegelungsmaßnahmen: Arbeitshilfe. 2016. Available online: https://www.berlin.de/sen/uvk/_assets/umwelt/bodenschutz-und-altlasten/arbeitshilfe-kostenansaetze.pdf (accessed on 13 December 2021).
- BKI Baukosteninformationszentrum. BKI-Objektdaten: Kosten Abgerechneter Objekte und Statistische Kostenkennwerte: F8 Freianlagen; BKI: Stuttgart, Germany, 2018. [Google Scholar]
- Kotzur, L. Future Grid Load of the Residential Building Sector: Die Zukünftige Elektrische Netzlast der Wohngebäude; Vol. Band/Volume 442, Schriften des Forschungszentrums Jülich. Reihe Energie & Umwelt; Forschungszentrum Jülich GmbH, Zentralbibliothek, Verlag: Jülich, Germany, 2018. [Google Scholar]
- Mann, G.; Mollenhauer, F.; Gohlke, R. Gebäudebegrünung in Bielefeld: Förderprogramm zur Dach- und Fassadenbegrünung. Available online: https://www.bielefeld.de/sites/default/files/datei/2021/Broschure_zu_Forderprogramm_12.05.21_0.pdf (accessed on 1 April 2022).
- Bundesnetzagentur für Elektrizität, Gas, Telekommunikation, Post und Eisenbahne; Bundeskartellamt. Fördersätze für Solaranlagen und Mieterstromzuschlag: Anzulegende Werte für Solaranlagen November 2021 bis Januar 2022 (xlsx/22 KB): Ab 01.11.2021. 2021. Available online: https://www.bundesnetzagentur.de/DE/Fachthemen/ElektrizitaetundGas/ErneuerbareEnergien/ZahlenDatenInformationen/EEG_Registerdaten/ArchivDatenMeldgn/start.html (accessed on 1 April 2022).
- BIPVBOOST. Parametrization, Optimization and Automation during Design Stage in Order to Optimize the BIPV Cost-to-Power Ratio: “Bringing down Costs of BIPV Multifunctional Solutions and Processes along the Value Chain, Enabling Widespread nZEBs Implementation”. Available online: https://bipvboost.eu/public-reports/download/parametrization-optimization-and-automation-during (accessed on 30 March 2022).
- International Union for Conservation of Nature.Global FLR CO2 Removals Database. 2018. Available online: https://infoflr.org/what-flr/global-emissions-and-removals-databases (accessed on 30 March 2022).
- Yang, J.; Yu, Q.; Gong, P. Quantifying air pollution removal by green roofs in Chicago. Atmos. Environ. 2008, 42, 7266–7273. [Google Scholar] [CrossRef]
- Harlaß, R. Verdunstung in bebauten Gebieten: Evapotranspiration in Urban Areas. Ph.D. Thesis, Technischen Universität Dresden, Dresden, Germany, 2008. [Google Scholar]
- DIN Deutsches Institut für Normung e. V. Drainage Systems on Private Ground—Part 100: Specifications in Relation to DIN EN 752 and DIN EN 12056; DIN Deutsches Institut für Normung e. V.: Berlin, Germany, 2016. [Google Scholar]
- Sphera. DE-Electricity Grid Mix: AC, Technology Mix; Consumption Mix, at Consumer; <1 kV (en): Gabi Software and Database; Sphera Solutions GmbH: Stuttgart, Germany, 2019. [Google Scholar]
- Sphera. DE-Electricity from Photovoltaic: AC, Technology Mix of CIS, CdTe, Mono Crystalline and Multi Crystalline; Production Mix, at Plant: Gabi Software and Database; Sphera Solutions GmbH: Stuttgart, Germany, 2019. [Google Scholar]
- Herfort, S.; Tschuikowa, S.; Ibañez, A. CO2-Bindungsvermögen der für die Bauwerksbegrünung Typischen Pflanzen: Bericht. 2012. Available online: https://www.gebaeudegruen.info/fileadmin/website/downloads/bugg-untersuchungen/F002_co2_bindung.pdf (accessed on 30 March 2022).
- Fritz-Gerald, S.; Wolter, S.; Wolter, A. Entwicklung von Nachhaltig Ökologisch Nutzbaren Pflanzensystemen Mit Regenwassermanagement, Feinstaubminimierung und Energetisch Nutzbarer Biomasseproduktion: Abschätzung des Leistungspotentials Vertikal Begrünter Flächen, Basierend auf Einem Nachhaltig Ökologisch Nutzbaren Pflanzensystem mit Regen-Wassermanagement. Available online: http://docplayer.org/storage/68/59513718/1657218981/UC78ft_i6OTNNfPYvohxzQ/59513718.pdf (accessed on 30 March 2022).
- Kaltschmitt, M.; Hartmann, H.; Hofbauer, H.; Hofbauer, H. Energie aus Biomasse: Grundlagen, Techniken und Verfahren, 3 aktualisierte aufl, 2016th ed.; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- City of Karlsruhe. Vorbereitende Untersuchungen Innenstadt-Ost. 14 June 2016. Available online: https://beteiligung.karlsruhe.de/file/5d3ae4f68a2e0a3213260fbf/ (accessed on 12 January 2022).
- Stadtplanungsamt Karlsruhe. Private Modernisierungen: Förderrichtlinien in den Sanierungsgebieten. Available online: https://www.karlsruhe.de/b3/bauen/sanierung/innenstadt_ost/HF_sections/content/ZZozicVbkXqWxc/1587023455660/F%C3%B6rderrichtlinien.pdf (accessed on 30 March 2022).
- Gartenbauamt Karlsruhe.Förderprogramm zur Begrünung von Höfen, Dächern und Fassaden. Available online: https://www.karlsruhe.de/b3/freizeit/gruenflaechen/hdf/HF_sections/content/ZZjX4eDHKAkwkA/ZZkvk5N7QOf5zr/2019-foerderprogramm-hoefe_19-0437.pdf (accessed on 30 March 2022).
- OpenStreetMap Contributors. Karlsruhe; OpenStreetMap: Cambridge, UK, 2022. [Google Scholar]
- Böhm, J.; Böhme, C.; Bunzel, A.; Kühnau, C.; Reinke, M. Urbanes Grün in der Doppelten Innenentwicklung: Abschlussbericht zum F+E-Vorhaben Entwicklung von Naturschutzfachlichen Zielen und Orientierungswerten für die Planerische Umsetzung der Doppelten Innenentwicklung Sowie als Grundlage für ein Entsprechendes Flächenmanagement (FKZ 3513 82 0500); Bundesamt für Naturschutz: Bonn-Bad Godesberg, Germany, 2016; Volume 444. [Google Scholar]
- Stadtplanungsamt Karlsruhe.Private Modernisierungen Kurzübersicht. Available online: https://www.karlsruhe.de/b3/bauen/sanierung/innenstadt_ost/HF_sections/content/ZZozicVbkXqWxc/1587023455667/Kurz%C3%BCbersicht.pdf (accessed on 30 March 2022).
- Klärle, M.; Langendörfer, U.; Lanig, S.; Popp, F. GREEN-AREA—Intelligentes Gründachkataster auf der Basis von GIS-Daten. Zfv—Z. GeodÄSie Geoinf. Landmanag. 2017, 142. [Google Scholar] [CrossRef]
- USDA Forest Service. i-Tree Eco. 2022. Available online: https://www.itreetools.org/tools/i-tree-eco (accessed on 30 March 2022).
- Derkzen, M.L.; van Teeffelen, A.J.A.; Verburg, P.H.; Diamond, S. REVIEW: Quantifying urban ecosystem services based on high-resolution data of urban green space: An assessment for Rotterdam, the Netherlands. J. Appl. Ecol. 2015, 52, 1020–1032. [Google Scholar] [CrossRef]
- Saretta, E.; Bonomo, P.; Frontini, F. A calculation method for the BIPV potential of Swiss façades at LOD2.5 in urban areas: A case from Ticino region. Sol. Energy 2020, 195, 150–165. [Google Scholar] [CrossRef]
- Morel, J.L.; Chenu, C.; Lorenz, K. Ecosystem services provided by soils of urban, industrial, traffic, mining, and military areas (SUITMAs). J. Soils Sediments 2015, 15, 1659–1666. [Google Scholar] [CrossRef]
- Eggermont, H.; Balian, E.; Azevedo, J.M.N.; Beumer, V.; Brodin, T.; Claudet, J.; Fady, B.; Grube, M.; Keune, H.; Lamarque, P.; et al. Nature-based Solutions: New Influence for Environmental Management and Research in Europe. Gaia—Ecol. Perspect. Sci. Soc. 2015, 24, 243–248. [Google Scholar] [CrossRef]
- Lundholm, J.T.; Richardson, P.J. MINI-REVIEW: Habitat analogues for reconciliation ecology in urban and industrial environments. J. Appl. Ecol. 2010, 47, 966–975. [Google Scholar] [CrossRef]
- Malczewski, J. GIS–based multicriteria decision analysis: A survey of the literature. Int. J. Geogr. Inf. Sci. 2006, 20, 703–726. [Google Scholar] [CrossRef]
- Coutinho-Rodrigues, J.; Simão, A.; Antunes, C.H. A GIS-based multicriteria spatial decision support system for planning urban infrastructures. Decis. Support Syst. 2011, 51, 720–726. [Google Scholar] [CrossRef]
- Grimaldi, M.; Pellecchia, V.; Fasolino, I. Urban Plan and Water Infrastructures Planning: A Methodology Based on Spatial ANP. Sustainability 2017, 9, 771. [Google Scholar] [CrossRef] [Green Version]
- Joerin, F.; Thériault, M.; Musy, A. Using GIS and outranking multicriteria analysis for land-use suitability assessment. Int. J. Geogr. Inf. Sci. 2001, 15, 153–174. [Google Scholar] [CrossRef]
- Chakhar, S.; Mousseau, V. GIS—Based multicriteria spatial modeling generic framework. Int. J. Geogr. Inf. Sci. 2008, 22, 1159–1196. [Google Scholar] [CrossRef]
- Jones, L.; Vieno, M.; Fitch, A.; Carnell, E.; Steadman, C.; Cryle, P.; Holland, M.; Nemitz, E.; Morton, D.; Hall, J.; et al. Urban natural capital accounts: Developing a novel approach to quantify air pollution removal by vegetation. J. Environ. Econ. Policy 2019, 8, 413–428. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; de Vries, S.; Assmuth, T.; Dick, J.; Hermans, T.; Hertel, O.; Jensen, A.; Jones, L.; Kabisch, S.; Lanki, T.; et al. Research challenges for cultural ecosystem services and public health in (peri-)urban environments. Sci. Total. Environ. 2019, 651, 2118–2129. [Google Scholar] [CrossRef]
- Hirschfeld, J.; Mohaupt, F.; Müller, R.; Klein, M.; Riousset, P.; Welling, M. Stadtgrün wert schätzen! Städte können vom Ausbau der Grünflächen ökologisch, ökonomisch und sozial profitieren. Gaia—Ecol. Perspect. Sci. Soc. 2019, 28, 392–393. [Google Scholar] [CrossRef]
- Stinner, S.; Bürgow, G.; Franck, V.; Hirschfeld, J.; Janson, P.; Kliem, L.; Lang, M.; Püffel, C.; Welling, M. Den multidimensionalen Wert urbanen Grüns erfassen. Stadtforsch. Stat. Z. Verb. Dtsch. Städtestatistiker 2021, 34, 24–32. [Google Scholar]
- Wooster, E.; Fleck, R.; Torpy, F.; Ramp, D.; Irga, P.J. Urban green roofs promote metropolitan biodiversity: A comparative case study. Build. Environ. 2022, 207, 108458. [Google Scholar] [CrossRef]
Data Set | Brief Description or Meta Data Source | Source |
---|---|---|
Buildings and infrastructure (B) | Cadastral building and infrastructure footprints i with building use-type, (sub-)surface classification, name, address, ID information and other. | [79] |
3D LOD2 CityGML () | Geodata of solids and multi-surface building representations with standardised roof types. High position accuracy ii and object-IDs allow one to join and intersect with other data. | [79] |
Land parcel (L) | Cadastral land parcels with address, ID information. | [79] |
Namares survey (N) | Building survey for building archetype classification and individual building units/apartments count. | self-provided |
Ownership (O) | Geodata of land parcels with public/municipal ownership. | [79] |
Precipitation (P) | Local and long-term data on precipitation (annual and monthly). | [80] |
Preservation and conservation interest () | Status regarding preservation, conservation, monument or other historic interest. | [81,82] |
Solar irradiation () | Local statistical long-term data on solar irradiation, heating degree days and temperatures (annual and monthly). | [83] |
Surface material () | Geodata on surface sealing and materials classification in high resolution (runoff water charge data iii). | [79] |
Zoning (Z) | Aggregation layers for generating aggregated results. | self-provided |
Property | Value Description | Type iv | Source |
---|---|---|---|
IDs | Identifiers | ||
Urban surface element ID () | Unique primary analysis unit/element ID | Integer | |
Zoning ID () | Unique aggregation and statistical unit ID | Integer | |
Land parcel ID () | Unique land lot or plot or parcel ID | Integer | |
Building address () | Fixed format postal address | String | |
Building ID () | Unique building ID | Integer | |
Building element ID () | Unique identifiers for roof, facade, footprint elements | Integer | |
Preservation/conservation ID () | Unique ID | Integer | |
Surface material ID () | Unique identifiers for roof and sealed soil surfaces | Integer | |
Geometries | Spatial data type | ||
Urban surface element () | Polygon, multipolygon | Geom | |
Zoning () | Polygon, multipolygon | Geom | |
Land parcel () | Multipolygon | Geom | |
Building () | Polyhedral surface | Geom | |
Building element () | Polyhedral surface, polygon | Geom | |
Preservation/conservation () | Point, line, polygon | Geom | |
Surface material () | Multipolygon | Geom |
Property | Value Description | Type | Source |
---|---|---|---|
Parcel features | Non-spatial data type | ||
Cistern () | States the presence of a rainwater cistern | Boolean | |
Building features | Non-spatial data type | ||
Building typology class () | 50 Episcope/Tabula residential building archetypes and more than 230 use-types (use-types according to ALKIS® classification) | String | |
Superstructure volume () | Enclosed volume by the building envelope | Double | |
Apartments/units () | Number of units in the building | Integer | |
Building passage () | Special feature which is not part of the 3D LOD2 model | Boolean | |
Arcade () | Special feature which is not part of the 3D LOD2 model | Boolean | |
Cantilever or recessing facade () | Special feature which is not part of the 3D LOD2 model | Boolean | |
Element features | Non-spatial data type | ||
Surface type () | Surface type typology | String | |
Surface cover type () | Surface cover typology derived from (Table 4) | String | |
Orientation () | Surface normal which provides the azimuth | Double | |
Tilt () | Surface tilt; Slope/pitch of a roof | Double | |
Volume () | Element volume based on assumed thickness or material | Long | |
Area () | Element area | Long | |
Perimeter () | Element perimeter | Long | |
x,y,z dimensions () | Point or vector information and length | Points | |
Solar irradiation () | Annual and monthly azimuth and inclination dependent solar irradiation/global horizontal irradiation with | Long | |
Precipitation () | Annual and monthly long-term precipitation with | Long | |
Relative location to ground () | Elements position with regard to whether adjacent to the ground | Boolean | |
Relative location to neighbouring features () | Elements position with regard to whether adjacent to other features, e.g., for party walls | Boolean | |
Shape index () | Ratio of perimeter and area for element shape description and artefact detection | Double |
Surface Cover Type | Surface Material Material |
---|---|
Impervious 1 () | Asphalt, concrete, paving with joint grouting |
Impervious 2 () | Paving, slabs, interlocking stones |
Impervious 3 () | Grass paving |
Pervious () | Soil/urban green |
Solid 1 () | Solid walls |
Solid 2 () | Solid roofs |
Extensive green () | Extensive roof greening <30 cm substrate thickness |
Intensive green () | Intensive roof greening >30 cm substrate thickness |
Measure (t) | Element Selection () v | Measure (t) | Element Selection () v |
---|---|---|---|
Extensive roof greening () | Intensive roof greening () | ||
Underground parking roof greening () | Roof mounted photovoltaics () | ∨ | |
Photovoltaics and roof greening () | Ground-based facade greening () | ||
Wall-based facade greening () | Facade mounted photovoltaics () | ||
Soil desealing/ greening () |
Parameter () | vi | ||||||||
---|---|---|---|---|---|---|---|---|---|
vii | |||||||||
Parameter | Value | Parameter | Value |
---|---|---|---|
Parameter | Unit | viii | ix | x | |||||
---|---|---|---|---|---|---|---|---|---|
− | |||||||||
xi | − | 1 | − | − | − | ||||
xi | − | − | − | − | |||||
xii | − | 0 | 0 | − | − | − | 0 | ||
- xiii | 391 | 506 | 547 | 138 | 500 | 300 | 0 | ||
xiv | 12 | 12 | 13 | ||||||
0 | 0 | 0 | xv | 0 | 0 | xv | xvi | ||
xvii | 0 | xviii | xv,xvi | 0 | |||||
xiv | 0 | 0 | xix | ||||||
xx | 0 xv | 0 xv | |||||||
xx | xv | xv | } | ||||||
xx | 0 xv | 0 xv | |||||||
xx | xv | xv | |||||||
− | 1 | 1 | 1 | 1 | − | − | − | ||
xxi | pt | 4 | 5 | 6 | 1 | 4 | 4 | 1 |
Parameter | Unit | p | |||||||
---|---|---|---|---|---|---|---|---|---|
− | |||||||||
xi | − | 1 | − | 1 | |||||
xi | − | − | |||||||
xii | − | 1 | 0 | − | 1 | 0 | |||
- xiii | 147 | 147 | 277 | 490 | 0 | 138 | 391 | 580 | |
xiv | 13 | 13 | |||||||
0 | 0 | 0 | xvi | 0 | 0 | 0 | 0 | ||
xvii | 0 | 0 | 0 | 0 | |||||
xiv | 0 | 0 | 2 | 0 | 0 | ||||
xx | 0 | 0 | 0 | 0 | |||||
xx | 0 | 0 | 0 | 0 | |||||
xx | 0 | 0 | 0 | 0 | |||||
xx | |||||||||
- | 1 | 1 | 1 | 0 | − | 1 | 1 | 1 | |
xxi | - | 1 | 1 | 2 | 6 | 1 | 1 | 4 | 5 |
Type of Surface (s) | Count of Plots | Total Area [h] | Median [m] | Mean [m] | Total Vegetated [ha] | Count of Vegetated pl. | Median [m] | Mean [m] | % of Total Area |
---|---|---|---|---|---|---|---|---|---|
Ground xxii | 372 | xxiii | 304 | 524 | − | − | − | ||
Courtyards | 330 | 87 | 165 | 166 | |||||
Sub. roof | 43 | 42 | 364 | 14 | 254 | 493 | |||
Roof | 350 | 177 | 237 | − | − | − | |||
Flat | 264 | 65 | 203 | 23 | 144 | 358 | |||
Tilted | 320 | 204 | 277 | 14 | 65 | 113 | |||
Wall | 350 | 1062 | 1466 | xxiv | − | − | − | − | |
Facade | 350 | 528 | 810 | xxiv | − | − | − | − | |
Party wall | 350 | 452 | 605 | xxiv | − | − | − | − | |
Other | 135 | 73 | 131 | xxiv | − | − | − | − | |
Total | xxv | xxiv |
Category | xxvi | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Effective are xxvii [] | 4 | xxviii | 2 xxix | − | ||||||
Selectable area xxx | xxxi | |||||||||
Albedo [-] | 0.03 | 0.01 | −0.03 | −0.03 | −0.01 | −0.03 | −0.02 | 0 | 0 | 0.211 |
Runoff peak [pp] | −40 | −39 | −24 | −46 | 0 | −29 | 0 | 0 | 0 | 84 |
Runoff avg [pp] | −37 | −37 | −30 | −47 | 1 | −35 | 0 | 0 | 0 | 69.6 |
Soil sealing [pp] | −35 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 89 |
CAPEX [m€] | 27 | − | ||||||||
OPEX | − | |||||||||
Savings | 2 | 9 | 11 | 242 | 148 | 0 | 0 | 194 | − | |
Earnings | 0 | 0 | 0 | 0 | 107 | 63 | 0 | 0 | 85 | − |
Local subsidies [m€] | 0 | 0 | − | |||||||
Green waste | 37 | 4 | 0 | 2 | 0 | |||||
Evapotrans. | 0 | 0 | ||||||||
Value of evapotrans. | 2 | 0 | 10 | 0 | ||||||
[t] | 19 | 32 | 0 | 102 | 103 | 0 | ||||
0 | 0 | 0 | 986 | 585 | 0 | 0 | 790 | − | ||
Biodiversity [k n] | 220 | 90 | 400 | 250 | 0 | 200 | 1100 | 860 | 0 | 661 |
93 | 59 | 0 | 48 | 304 | 200 | 0 | ||||
26 | 18 | 86 | 56 | 24 | ||||||
180 | 114 | 0 | 92 | 610 | 385 | 0 | ||||
41 | 27 | 0 | 21 | 175 | 87 | 0 | ||||
[pt] | 85,517 | 39,690 | 120,263 | 88,936 | 0 | 61,724 | 253,069 | 255,234 | 0 | 620,513 |
Quadrants | Below Average Soil Unsealing | Above Average Soil Unsealing |
---|---|---|
Above average equity ratio | Q1: subsidies for () | Q2: subsidies for () |
Below average equity ratio | Q3: subsidies for () | Q4: subsidies for () |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naber, E.; Volk, R.; Mörmann, K.; Boehnke, D.; Lützkendorf, T.; Schultmann, F. Namares—A Surface Inventory and Intervention Assessment Model for Urban Resource Management. Sustainability 2022, 14, 8485. https://doi.org/10.3390/su14148485
Naber E, Volk R, Mörmann K, Boehnke D, Lützkendorf T, Schultmann F. Namares—A Surface Inventory and Intervention Assessment Model for Urban Resource Management. Sustainability. 2022; 14(14):8485. https://doi.org/10.3390/su14148485
Chicago/Turabian StyleNaber, Elias, Rebekka Volk, Kai Mörmann, Denise Boehnke, Thomas Lützkendorf, and Frank Schultmann. 2022. "Namares—A Surface Inventory and Intervention Assessment Model for Urban Resource Management" Sustainability 14, no. 14: 8485. https://doi.org/10.3390/su14148485
APA StyleNaber, E., Volk, R., Mörmann, K., Boehnke, D., Lützkendorf, T., & Schultmann, F. (2022). Namares—A Surface Inventory and Intervention Assessment Model for Urban Resource Management. Sustainability, 14(14), 8485. https://doi.org/10.3390/su14148485