Effects of Land Use Change on Rainfall Erosion in Luojiang River Basin, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.3. Calculation Model of Rainfall Erosivity
2.4. Spatio-Temporal Analysis Method
2.4.1. Mann–Kendall Trend Analysis
2.4.2. Kriging Interpolation Method
2.5. Land Use Transfer Matrix
2.6. Sub-Basins Division
3. Results
3.1. Spatial and Temporal Distribution Characteristics of Rainfall Erosivity
3.1.1. Temporal Variation Characteristics of Rainfall Erosivity
3.1.2. Spatial Distribution Characteristics of Rainfall Erosivity
3.2. Analysis of Land Use Change
3.3. Impact of Land Use Change on Rainfall Erosivity
4. Discussion
4.1. Effects of Land Use Change on Rainfall Erosivity
4.2. Recommendations
5. Conclusions
- (1)
- From 1980 to 2019, the distribution range of annual rainfall erosivity in the Luojiang River Basin was 14,674–15,227 MJ·mm/(hm2·h), and the time series showed an obvious increasing trend, with the growth rate of 29.048 MJ·mm/(hm2·h·a), which was significantly correlated with annual rainfall (correlation coefficient R = 0.974).
- (2)
- The average value of rainfall erosivity is 14,102 MJ·mm/(hm2·h), and the standard deviation is 4325.206 MJ·mm/(hm2·h). The spatial difference is large, and the overall trend is decreasing from the middle to the surroundings of the basin.
- (3)
- Land use change is an important factor affecting the spatial and temporal distribution characteristics of rainfall erosivity in the basin. It is suggested to improve the vegetation coverage in the middle and north of the basin and establish a multi-level rainfall erosion prediction model.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, B.; Tao, H.; Song, C.; Guo, B.; Shi, Z.; Zhang, C.; Kong, B.; He, B. Temporal and spatial variations of rainfall erosivity in China during 1960–2009. Geogr. Res. 2013, 32, 245–256. [Google Scholar] [CrossRef]
- Yin, S.; Xue, X.; Yue, T.; Xie, Y.; Gao, G. Spatial-temporal distribution and return period of rainfall erosivity in China. Trans. CSAE 2019, 35, 105–113. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Rainfall energy and its relationship to soil loss. Eos Trans. Am. Geophys. Union 1958, 39, 285–291. [Google Scholar] [CrossRef]
- Wischmeier, W.H. A Rainfall Erosion Index for a Universal Soil-Loss Equation. Soil Sci. Soc. Am. J. 1959, 23, 246–249. [Google Scholar] [CrossRef]
- Hudson, N. Soil Conservation; Cornell University Press: Ithaca, NY, USA, 1971. [Google Scholar]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning; Agriculture Handbook No. 537; U.S. Department of Agriculture: Washington, DC, USA, 1978. [Google Scholar]
- Wei, O.; Wu, Y.; Hao, Z.; Zhang, Q.; Bu, Q.; Gao, X. Combined impacts of land use and soil property changes on soil erosion in a mollisol area under long-term agricultural development. Sci. Total Environ. 2018, 613–614, 798–809. [Google Scholar] [CrossRef]
- Duulatov, E.; Chen, X.; Amanambu, A.C.; Ochege, F.U.; Orozbaev, R.; Issanova, G.; Omurakunova, G. Projected Rainfall Erosivity Over Central Asia Based on CMIP5 Climate Models. Water 2019, 11, 897. [Google Scholar] [CrossRef] [Green Version]
- Renard, K.G.; Foster, G.R.; Weesies, G.A.; McCool, D.K.; Yoder, D.C. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); United States Department of Agriculture: Washington, DC, USA, 1997. [Google Scholar]
- Gu, C.; Mu, X.; Gao, P.; Zhao, G.; Sun, W.; Yu, Q. Rainfall erosivity and sediment load over the Poyang Lake Basin under variable climate and human activities since the 1960s. Theor. Appl. Climatol. 2019, 136, 15–30. [Google Scholar] [CrossRef]
- Li, Y.; Liu, H. Temporal and spatial distribution characteristics of rainfall erosivity in Pingjiang River Basin of upper Ganjiang River. Bull. Soil Water Conserv. 2020, 40, 23. [Google Scholar] [CrossRef]
- Gu, Z.; Feng, D.; Duan, X.; Gong, K.; Li, Y.; Yue, T. Spatial and Temporal Patterns of Rainfall Erosivity in the Tibetan Plateau. Water 2020, 12, 200. [Google Scholar] [CrossRef] [Green Version]
- Richardson, C.W.; Foster, G.R.; Wright, D.A. Estimation of Erosion Index from Daily Rainfall Amount. Trans. ASABE 1983, 26, 153–156. [Google Scholar] [CrossRef]
- Yu, B.; Rosewell, C.J. An assessment of a daily rainfall erosivity model for New South Wales. Soil Res. 1996, 34, 139–152. [Google Scholar] [CrossRef]
- Jia, Z.; Wang, X.; Li, J.; Zeng, B. Study on Rainfall Erosion in Loess Plateau of Western Shanxi. Soil Water Conserv. China 1991, 1, 45–48, 66. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, W.; Wang, Z.; Hu, G.; Lei, H. The Soil Erosion in the North of Shaanxi Province of the Loess Plateau and Its Synthetizing Harness. Sresearch Soil Water Conserv. 1999, 6, 174–180. [Google Scholar] [CrossRef]
- Huang, Y.; Lu, C.; Zheng, T.; Fu, Q.; Xu, J. Study on R value of rainfall erosivity index in Southeast Fujian. J. Soil Water Conserv. 1992, 4, 1–5. [Google Scholar]
- Zhang, X.; Xu, J.; Lu, X.; Deng, Y.; Gong, D. Study on Soil Loss Equation in Heilongjiang Province. Bull. Soil Water Conserv. 1992, 4, 18. [Google Scholar] [CrossRef]
- Zhang, W.; Xie, Y.; Liu, B. Study on Calculation of Rainfall Erosion by Daily Rainfall. Geogr. Sci. 2002, 6, 705–711. [Google Scholar] [CrossRef]
- Zhang, W. Spatial and temporal distribution of rainfall erosivity in agro-pastoral ecotone of North China. Prog. Nat. Sci. 2003, 13, 93–96. [Google Scholar] [CrossRef]
- Gao, S.; Han, Z.; Yin, S.; Huang, D.; Wang, W. Characteristics of rainfall erosivity and prediction of future changes in the Yellow River Basin from 1961 to 2017. J. Basic Sci. Eng. 2021, 29, 575–590. [Google Scholar] [CrossRef]
- Wang, Y.; Tan, S.; Liu, B.; Yang, Y. Estimating rainfall erosivity by incorporating seasonal variations in parameters into the Richardson model. J. Geogr. Sci. 2017, 27, 275–296. [Google Scholar] [CrossRef] [Green Version]
- Benavidez, R.; Jackson, B.; Maxwell, D.; Norton, K. A review of the (Revised) Universal Soil Loss Equation ((R)USLE): With a view to increasing its global applicability and improving soil loss estimates. Hydrol. Earth Syst. Sci. 2018, 22, 6059–6086. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Shao, Q.; Liu, J. Soil erosion and its response to the changes of precipitation and vegetation cover on the Loess Plateau. J. Geogr. Sci. 2013, 23, 1091–1106. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Poesen, J.; Ballabio, C.; Lugato, E.; Meusburger, K.; Montanarella, L.; Alewell, C. The new assessment of soil loss by water erosion in Europe. Environ. Sci. Policy 2015, 54, 438–447. [Google Scholar] [CrossRef]
- Alatorre, L.C.; Beguería, S.; Lana-Renault, N.; Navas, A.; García-Ruiz, J.M. Soil erosion and sediment delivery in a mountain catchment under scenarios of land use change using a spatially distributed numerical model. Hydrol. Earth Syst. Sci. 2012, 16, 1321–1334. [Google Scholar] [CrossRef] [Green Version]
- Mohammad, A.G.; Adam, M.A. The impact of vegetative cover type on runoff and soil erosion under different land uses. CATENA 2010, 81, 97–103. [Google Scholar] [CrossRef]
- Bakker, M.M.; Govers, G.; Kosmas, C.; Vanacker, V.; Oost, K.v.; Rounsevell, M. Soil erosion as a driver of land-use change. Agric. Ecosyst. Environ. 2005, 105, 467–481. [Google Scholar] [CrossRef]
- Gyssels, G.; Poesen, J.; Bochet, E.; Li, Y.J.P.i.p.g. Impact of plant roots on the resistance of soils to erosion by water: A review. Prog. Phys. Geogr. Earth Environ. 2005, 29, 189–217. [Google Scholar] [CrossRef] [Green Version]
- Xu, J. Precipitation–vegetation coupling and its influence on erosion on the Loess Plateau, China. CATENA 2005, 64, 103–116. [Google Scholar] [CrossRef]
- Vijith, H.; Hurmain, A.; Dodge-Wan, D. Impacts of land use changes and land cover alteration on soil erosion rates and vulnerability of tropical mountain ranges in Borneo. Remote Sens. Appl. Soc. Environ. 2018, 12, 57–69. [Google Scholar] [CrossRef]
- Li, H.; Yan, F.; Jia, J.; Tang, D.; Zhang, Y. Soil Water Availability and Holding Capacity of Different Vegetation Types in Hilly-Gullied Region of the Loess Plateau. Acta Ecol. Sin. 2018, 38, 3889–3898. [Google Scholar] [CrossRef]
- Liu, C.; Qi, S.; Shi, M. Research Progress on Relationship between Land Use Change and Soil Erosion. J. Soil Water Conserv. 2001, 6, 10–13, 17. [Google Scholar]
- Dai, C.; Liu, Y.; Wang, T.; Li, Z.; Zhou, Y. Exploring optimal measures to reduce soil erosion and nutrient losses in southern China. Agric. Water Manag. 2018, 210, 41–48. [Google Scholar] [CrossRef]
- Jiao, J.; Wang, Z.; Wei, Y.; Su, Y.; Cao, B.; Li, Y. Characteristics of erosion sediment yield with extreme rainstorms in Yanhe Watershed Based on field measurement. Trans. Chin. Soc. Agric. Eng. 2017, 33, 159–167. [Google Scholar] [CrossRef]
- Huang, C.; Yang, Q.; Cao, X.; Li, Y. Assessment of the Soil Erosion Response to Land Use and Slope in the Loess Plateau—A Case Study of Jiuyuangou. Water 2020, 12, 529. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Tiwari, K.N.; Bhadoria, P.B.S. Effect of land use land cover change on soil erosion potential in an agricultural watershed. Environ. Monit. Assess. 2011, 173, 789–801. [Google Scholar] [CrossRef]
- Wei, W.; Chen, L.; Fu, B.; Chen, J. Water erosion response to rainfall and land use in different drought-level years in a loess hilly area of China. CATENA 2010, 81, 24–31. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, X.; Abla, M.; Lü, D.; Yan, R.; Ren, Q.; Ren, Z.; Yang, Y.; Zhao, W.; Lin, P.; et al. Effects of vegetation and rainfall types on surface runoff and soil erosion on steep slopes on the Loess Plateau, China. CATENA 2018, 170, 141–149. [Google Scholar] [CrossRef]
- Cerdan, O.; Bissonnais, Y.L.; Souchère, V.; Martin, P.; Lecomte, V. Sediment concentration in interrill flow: Interactions between soil surface conditions, vegetation and rainfall. Earth Surf. Processes Landf. 2002, 27, 193–205. [Google Scholar] [CrossRef]
- Dai, W.; Liu, Q.; Zhao, Y.; Li, W.; Zhou, B.; Dai, J.; Cheng, J.; Deng, N. Utilization and quality study of new cultivated land in Huazhou. Guangdong Agric. Sci. 2013, 40, 193–196. [Google Scholar] [CrossRef]
- He, J.; Wan, Y.-R.; Chen, H.-T.; Wang, W.-C. Study on the Impact of Land-Use Change on Runoff Variation Trend in Luojiang River Basin, China. Water 2021, 13, 3282. [Google Scholar] [CrossRef]
- Patakamuri, S.K.; Muthiah, K.; Sridhar, V. Long-Term Homogeneity, Trend, and Change-Point Analysis of Rainfall in the Arid District of Ananthapuramu, Andhra Pradesh State, India. Water 2020, 12, 211. [Google Scholar] [CrossRef] [Green Version]
- Cressie, N. Spatial prediction and ordinary kriging. Math. Geol. 1988, 20, 405–421. [Google Scholar] [CrossRef]
- Yang, C.; Wei, T.; Li, Y. Simulation and Spatio-Temporal Variation Characteristics of LULC in the Context of Urbanization Construction and Ecological Restoration in the Yellow River Basin. Sustainability 2022, 14, 789. [Google Scholar] [CrossRef]
- Dile, Y.T.; Daggupati, P.; George, C.; Srinivasan, R.; Arnold, J. Introducing a new open source GIS user interface for the SWAT model. Environ. Model. Softw. 2016, 85, 129–138. [Google Scholar] [CrossRef]
Data Type | Data Description | Data Source | Data Processing |
---|---|---|---|
Land Use | Land use type maps of 2010, 2015 and 2018 with a resolution of 1 km × 1 km | Data Center for Resources and Environmental Sciences, Chinese Academy of Sciences http://www.resdc.cn (accessed on 30 March 2021) | Projection conversion, splicing, reclassification, calibration with actual data |
Meteorological data | Daily precipitation at Jialong, Baowei and Hejiang stations from 1980 to 2019 | Maoming Hydrology Sub-bureau of Guangdong Hydrology Bureau | Data extraction, missing data filling, correlation analysis |
Land Type | 2010 | 2015 | 2018 | |||
---|---|---|---|---|---|---|
Area/km2 | Percentage/% | Area/km2 | Percentage/% | Area/km2 | Percentage/% | |
Arable land | 272.195 | 13.40 | 272.212 | 13.40 | 278.821 | 13.77 |
Garden land | 1643.112 | 80.88 | 1627.748 | 80.12 | 1622.603 | 80.10 |
Forest land | 53.965 | 2.66 | 62.342 | 3.07 | 53.144 | 2.62 |
Grassland | 23.213 | 1.14 | 23.213 | 1.14 | 17.069 | 0.84 |
Commercial land | 39.126 | 1.93 | 46.097 | 2.27 | 55.060 | 2.72 |
Land Transfer | 2015 | ||||||
---|---|---|---|---|---|---|---|
Grassland | Arable Land | Forest Land | Commercial Land | Garden Land | Sum /km2 | ||
2010 | Grassland | 23.213 | 23.213 | ||||
Arable land | 272.186 | 0.001 | 0.008 | 272.195 | |||
Forest land | 53.965 | 53.965 | |||||
Commercial land | 39.126 | 39.126 | |||||
Garden land | 0.026 | 8.375 | 6.971 | 1627.74 | 1643.112 | ||
Sum/km2 | 23.213 | 272.212 | 62.342 | 46.097 | 1627.748 | 2031.611 |
Land Transfer | 2018 | ||||||
---|---|---|---|---|---|---|---|
Grassland | Arable Land | Forest Land | Commercial Land | Garden Land | Sum /km2 | ||
2015 | Grassland | 2.97 | 4.372 | 15.857 | 23.199 | ||
Arable land | 3.474 | 58.42 | 5.341 | 15.495 | 189.129 | 271.859 | |
Forest land | 0.306 | 6.19 | 13.397 | 1.092 | 40.508 | 61.493 | |
Commercial land | 1.17 | 14.691 | 0.094 | 3.918 | 26.091 | 45.964 | |
Garden land | 9.149 | 195.148 | 34.312 | 34.555 | 1349.44 | 1622.603 | |
Sum/km2 | 17.069 | 278.821 | 53.144 | 55.060 | 1621.025 | 2025.119 |
Proportion of Land Use Type (%) | Sub-Basin No. 13 | Sub-Basin No. 17 | ||||||||
Arable Land | Garden Land | Forest Land | Grassland | Commercial Land | Arable Land | Garden Land | Forest Land | Grassland | Commercial Land | |
2010 | 0.29 | 3.69 | 0.01 | 0.05 | 0.00 | 0.67 | 4.03 | 0.43 | 0.23 | 0.00 |
2015 | 0.29 | 3.59 | 0.09 | 0.05 | 0.03 | 0.67 | 3.90 | 0.51 | 0.23 | 0.05 |
2018 | 0.51 | 3.33 | 0.16 | 0.00 | 0.05 | 0.89 | 3.94 | 0.20 | 0.10 | 0.19 |
2010—2015 | 0.00 | −0.11 | 0.08 | 0.00 | 0.03 | 0.00 | −0.13 | 0.08 | 0.00 | 0.05 |
2015—2018 | 0.22 | −0.25 | 0.07 | −0.05 | 0.02 | 0.22 | 0.03 | −0.31 | −0.13 | 0.14 |
Proportion of Land Use Type (%) | Sub-Basin No. 21 | Sub-Basin No. 26 | ||||||||
Arable Land | Garden Land | Forest Land | Grassland | Commercial Land | Arable Land | Garden Land | Forest Land | Grassland | Commercial Land | |
2010 | 0.52 | 1.33 | 0.15 | 0.05 | 0.00 | 0.36 | 1.07 | 0.00 | 0.00 | 0.08 |
2015 | 0.52 | 1.33 | 0.15 | 0.05 | 0.00 | 0.36 | 1.07 | 0.00 | 0.00 | 0.08 |
2018 | 0.41 | 1.66 | 0.10 | 0.00 | 0.01 | 0.35 | 0.99 | 0.00 | 0.00 | 0.16 |
2010—2015 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
2015—2018 | −0.11 | 0.33 | −0.06 | −0.05 | 0.01 | −0.01 | −0.08 | 0.00 | 0.00 | 0.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.; Wan, Y.-R.; Chen, H.-T.; Wang, S.-L. Effects of Land Use Change on Rainfall Erosion in Luojiang River Basin, China. Sustainability 2022, 14, 8441. https://doi.org/10.3390/su14148441
He J, Wan Y-R, Chen H-T, Wang S-L. Effects of Land Use Change on Rainfall Erosion in Luojiang River Basin, China. Sustainability. 2022; 14(14):8441. https://doi.org/10.3390/su14148441
Chicago/Turabian StyleHe, Ji, Yu-Rong Wan, Hai-Tao Chen, and Song-Lin Wang. 2022. "Effects of Land Use Change on Rainfall Erosion in Luojiang River Basin, China" Sustainability 14, no. 14: 8441. https://doi.org/10.3390/su14148441