Prediction of Resin Production in Copal Trees (Bursera spp.) Using a Random Forest Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Response Variable
2.3. Explanatory Variables
2.4. Measurement of Variables and Database
2.5. Variable Selection
2.6. Decision Tree
2.6.1. Random Forest
2.6.2. Accuracy Assessment
2.6.3. Identification of Significant Variables
2.6.4. Partial Dependence Plot (PDP)
3. Results
3.1. Database and Variable Selection
3.2. Decision Trees
3.2.1. Random Forest
3.2.2. Accuracy Assessment
3.2.3. Identification of Significant Variables
3.2.4. Partial Dependence Plot
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wong, J.; Baker, N.; Thornber, K. Evaluación de los recursos de productos forestales no madereros. In Experiencias y Principios Biométricos; FAO: Roma, Italy, 2001; 124p. [Google Scholar]
- Tapia-Tapia, E.C.; Reyes-Chilpa, R. Productos forestales no maderables en México: Aspectos económicos para el desarrollo sustentable. Madera Bosques 2008, 14, 95–112. [Google Scholar] [CrossRef]
- Jiménez, G.A.; Pincay, A.F.A.; Ramos, R.M.P.; Mero, J.O.F.; Cabrera, V.C.A. Utilización de productos forestales no madereros por pobladores que conviven en el bosque seco tropical. Rev. Cuba. Cienc. For. 2017, 5, 270–286. [Google Scholar]
- Tadesse, W.; Desalegn, G.; Alia, R. Natural gum and resin bearing species of Ethiopia and their potential applications. For. Syst. 2007, 16, 211–221. [Google Scholar] [CrossRef] [Green Version]
- Quiroz, C.J.A.; Magaña, A.M.A. Resinas naturales de especies vegetales mexicanas: Usos actuales y potenciales. Madera Bosques 2015, 21, 171–183. [Google Scholar] [CrossRef] [Green Version]
- Linares, E.; Bye, R. El copal en México. Biodiversitas 2008, 78, 8–11. Available online: http://www.unich.edu.mx/wp-content/uploads/2014/01/Biodiversitas.pdf (accessed on 23 November 2021).
- Rzedowski, J.; Calderón de Rzedowski, G. Datos para la apreciación de la flora fanerogámica del bosque tropical caducifolio de México. Acta Botánica Mex. 2013, 1, 1–23. [Google Scholar] [CrossRef]
- Montúfar, L.A. Copal de Bursera bipinnata. Una resina mesoamericana de uso ritual. Trace (México, DF) 2016, 1, 45–77. Available online: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0185-62862016000200045&lng=es&tlng=es (accessed on 23 November 2021). [CrossRef]
- Cruz, L.A.; Salazar, M.L.; Campos, O.M. Antecedentes y actualidad del aprovechamiento de copal en la sierra de Huautla, Morelos. Rev. Geogr. Agrícola 2006, 1, 97–115. Available online: https://www.redalyc.org/pdf/757/75703707.pdf (accessed on 31 January 2022).
- May, T. Aspectos de sostenibilidad de productos no maderables forestales con uso curativo en el oeste de Pará, Brasil. Ambiente Desarro. 2016, 20, 69–84. [Google Scholar] [CrossRef] [Green Version]
- Anastacio-Martínez, N.D.; Franco-Maass, S.; Valtierra-Pacheco, E.; Nava-Bernal, G. Aprovechamiento de productos forestales no maderables en los bosques de montaña alta, centro de México. Rev. Mex. Cienc. For. 2016, 7, 21–38. Available online: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-11322016000500021&lng=es&tlng=es (accessed on 25 November 2021).
- Purata, V.S.E. Capítulo 6. Bases para el buen manejo. In Uso y Manejo de los Copales Aromáticos: Resinas y Aceites; Purata Velarde, S.E., Ed.; Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO): Mexico City, Mexico, 2008; pp. 27–35. [Google Scholar]
- Duda, R.O.; Hart, P.E.; Stork, D.G. Pattern Classification; John Wiley & Sons: New York, NY, USA, 2000. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer Series in Statistic; Springer: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Rodríguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Archibald, S.; Roy, D.P.; Van Wilgen, B.W.; Scholes, R.J. What limits fire? An examination of drivers of burnt area in Southern Africa. Glob. Change Biol. 2009, 15, 613–630. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, S.; Oehler, F.; San-Miguel-Ayanz, J.; Camia, A.; Pereira, J.M.C. Modeling spatial patterns of fire occurrence in Mediterranean Europe using Multiple Regression and Random Forest. For. Ecol. Manag. 2012, 275, 117–129. [Google Scholar] [CrossRef]
- Webster, B.L. Guide to judging the condition of a shade tree. J. Arboric. 1978, 4, 247–249. [Google Scholar]
- Instituo Nacional de Estadística y Geografía (INEGI). Prontuario de Información Geográfica Municipal de los Estados Unidos Mexicanos: Ahuatlán, Puebla. México; INEGI: Mexico City, Mexico, 2009.
- Instituo Nacional de Estadística y Geografía (INEGI). Prontuario de Información Geográfica Municipal de los Estados Unidos Mexicanos: Epatlán, Puebla. México; INEGI: Mexico City, Mexico, 2009.
- Instituo Nacional de Estadística y Geografía (INEGI). Prontuario de Información Geográfica Municipal de los Estados Unidos Mexicanos: Izúcar de Matamoros, Puebla. México; INEGI: Mexico City, Mexico, 2009.
- Rzedowski, J. Vegetación de México; Comisión Nacional para el Conocimiento y Uso de la Biodiversidad: Mexico City, Mexico, 2006. [Google Scholar]
- Pennington, T.D.; Sarukhán, J. Árboles Tropicales de México: Manual para la Identificación de las Principales Especies; Universidad Nacional Autónoma de México-Fondo de Cultura Económica: Mexico City, Mexico, 2005. [Google Scholar]
- Abad-Fitz, I.; Maldonado-Almanza, B.; Aguilar, D.K.M.; Sánchez, M.L.; Gómez, C.L.; Casas, A.; Blancas, J.; García-Rodríguez, Y.M.; Beltrán-Rodríguez, L.; Sierra-Huelsz, J.A.; et al. Consequences of Traditional Management in the Production and Quality of Copal Resin (Bursera bipinnata (Moc. & Sessé ex DC.) Engl.) in Mexico. Forests 2020, 11, 991. [Google Scholar] [CrossRef]
- Fuentes, A.F. Identidad taxonómica y aspectos sobre la historia natural y usos del “copal de los Yungas” en Bolivia. Kempffiana 2009, 5, 3–19. [Google Scholar]
- Zenteno-Ruiz, F.S. Referencias botánicas, ecológicas y económicas del aprovechamiento del incienso (Clusia vel. sp. nov., Clusiaceae) en bosques montanos del Parque Nacional Madidi, Bolivia. Ecol. Boliv. 2007, 42, 148–156. [Google Scholar]
- Paredes, O.A.; Razo, Z.R.; Rodríguez, L.R.; Suárez, I.A. Diversidad de especies arbóreas y arbustivas del ejido El Puente, Mineral del Chico, Hidalgo. Rev. Iberoam. Cienc. 2019, 6, 93–105. [Google Scholar]
- Reyes-Ramos, A.; Cruz de León, J.; Martínez-Palacios, A.; Marc, L.P.C.; Ambriz-Parra, E.; Sánchez-Vargas, N.M. Caracteres ecológicos y dendrométricos que influyen en la producción de resina en Pinus oocarpa de Michoacán, México. Madera Bosques 2019, 25, 1–13. [Google Scholar] [CrossRef]
- Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carré, G.; García, M.J.R.; Gruber, B.; Lafourcade, B.; Leitão, P.J.; et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 2013, 36, 27–46. [Google Scholar] [CrossRef]
- Schober, P.; Schwarte, L.A. Correlation coefficients: Appropriate use and interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef] [PubMed]
- Akinwande, M.O.; Dikko, H.G.; Samson, A. Variance Inflation Factor: As a Condition for the Inclusion of Suppressor Variable(s) in Regression Analysis. Open J. Stat. 2015, 5, 754–767. [Google Scholar] [CrossRef] [Green Version]
- Wei, T.Y.; Simko, V. R Package “Corrplot”: Visualization of a Correlation Matrix (Version 0.84). 2017. Available online: https://github.com/taiyun/corrplot (accessed on 3 January 2022).
- Naimi, B.; Hamm, N.A.S.; Groen, T.A.; Skidmore, A.K.; Toxopeus, A.G. Where is positional uncertainty a problem for species distribution modelling? Ecography 2014, 37, 191–203. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016; Available online: https://www.R-project.org/ (accessed on 3 August 2017).
- Chatterjee, S.; Hadi, A.S. Regression Analysis by Example; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar] [CrossRef]
- Booth, G.D.; Niccolucci, M.J.; Schuster, E.G. Identifying Proxy Sets in Multiple Linear Regression: An Aid to Better Coefficient Interpretation; Intermountain Research Station, USDA Forest Service: Ogden, UT, USA, 1994. [Google Scholar]
- Wu, W.; Zhang, L. Comparison of spatial and non-spatial logistic regression models for modeling the occurrence of cloud cover in north-eastern Puerto Rico. Appl. Geogr. 2013, 37, 52–62. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Routledge: New York, USA, 1984. [Google Scholar] [CrossRef]
- Cutler, D.R.; Edwards, T.C., Jr.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random forests for classification in ecology. Ecology 2007, 88, 2783–2792. [Google Scholar] [CrossRef]
- Arpaci, A.; Malowerschnig, B.; Sass, O.; Vacik, H. Using multi variate data mining techniques for estimating fire susceptibility of Tyrolean forests. Appl. Geogr. 2015, 53, 258–270. [Google Scholar] [CrossRef]
- Jaafari, A.; Gholami, D.M.; Zenner, E.K. A Bayesian modeling of wildfire probability in the Zagros Mountains, Iran. Ecol. Inform. 2017, 39, 32–44. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Townsend, J.T. Theoretical analysis of an alphabetic confusion matrix. Percept. Psychophys. 1971, 9, 40–50. [Google Scholar] [CrossRef]
- Kuhn, M. Building Predictive Models in R Using the caret Package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef] [Green Version]
- McHugh, M.L. Interrater reliability: The kappa statistic. Biochem. Med. 2012, 22, 276–282. [Google Scholar] [CrossRef]
- Fleiss, J.L.; Levin, B.; Cho, P.M. Statistical Methods for Rates and Proportion; Wiley Series in Probability and Statistics; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Schmidt, A.; Niemeyer, J.; Rottensteiner, F.; Soergel, U. Contextual Classification of Full Waveform Lidar Data in the Wadden Sea. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1614–1618. [Google Scholar] [CrossRef]
- Kuhn, S.; Egert, B.; Neumann, S.; Steinbeck, C. Building blocks for automated elucidation of metabolites: Machine learning methods for NMR prediction. BMC Bioinform. 2008, 9, 400. [Google Scholar] [CrossRef] [Green Version]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Guo, F.; Wang, G.; Su, Z.; Liang, H.; Wang, W.; Lin, F.; Liu, A. What drives forest fire in Fujian, China? Evidence from logistic regression and Random Forests. Int. J. Wildland Fire 2016, 25, 505–519. [Google Scholar] [CrossRef]
- Giménez, A.M.; Moglia, J.G.; Hernández, P.; Gerez, R. Anatomía de la Madera; Universidad Nacional de Santiago del Estero: Santiago del Estero, Argentina, 2005; 53p. [Google Scholar]
- Agrios, G.N. Plant Pathology; Elsevier; Academic Press: Amsterdam, The Netherlands, 2005; 635p. [Google Scholar] [CrossRef]
- Izquierdo-Bautista, H.; Domínguez-Domínguez, M.; Martínez-Zurimendi, P.; Velázquez-Martínez, A.; Córdoba-Ávalos, V. Problemática en los procesos de producción de las plantaciones de hule (Hevea brasiliensis Muell Arg.) en Tabasco, México. Trop. Subtrop. Agroecosyst. 2011, 14, 513–524. [Google Scholar]
- Franceschi, V.R.; Krokene, P.; Cristiansen, E.; Krekling, T. Anatomical and chemical defenses of conifer bark against bark beetles and other pests. New Phytol. 2005, 167, 353–376. [Google Scholar] [CrossRef]
- Purata, V.S.E.; León, M.M. Capítulo 3. La colecta de resina. In Uso y Manejo de los Copales Aromáticos: Resinas y Aceites; Purata Valverde, S.E., Ed.; Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO): Mexico City, Mexico, 2008; pp. 17–20. [Google Scholar]
- Cruz-Cruz, M.; Antonio-Gómez, V.M.; Rodríguez-Ortíz, G.; Vásquez-Barranco, I.G.; Lagunes-Rivera, L.; Hernández-Santiago, E. Resina y aceites esenciales de tres especies de copal del sur de Oaxaca, México. Rev. Mex. Agroecosist. 2017, 4, 12–23. [Google Scholar]
- Rodrigues, K.C.S.; Azevedo, P.C.N.; Sobreiro, L.E.; Pelissari, P.; Fett-Neto, A.G. Oleoresin yield of Pinus elliottii plantations in a subtropical climate: Effect of tree diameter, wound shape and concentration of active adjuvants in resin stimulating paste. Ind. Crops Prod. 2008, 27, 322–327. [Google Scholar] [CrossRef]
- Rojo, M.G.E.; Jasso, M.J.; Vargas, H.J.; Velázquez, M.A.; Palma, L.D.J. Predicción de la producción de látex en plantaciones comerciales de hule (Hevea brasiliensis müll.). Rev. Fitotec. Mex. 2003, 26, 183–190. [Google Scholar]
- Moreira, T.X. Variación Genética y Efecto de la Disponibilidad de Nutrientes en las Defensas Constitutivas e Inducidas de Pinus Pinaster Ait. Ph.D. Dissertation, Universidad de Vigo, Pontevedra, Spain, 2010. Available online: http://hdl.handle.net/10261/37055 (accessed on 8 April 2022).
Factor | Indicator | ||
---|---|---|---|
A. Tree stem diameter | Fustal (3) | Latizal (2) | Vardascal (1) |
cm | Between 25 and 35 cm | cm | |
B. Tree height | High (3) | Medium (2) | Low (1) |
cm | Between 150 and 200 cm | cm | |
C. Diameter of secondary branches | Thick (3) | Intermediate (2) | Thin (1) |
cm | Between 15 and 20 cm | cm | |
D. Tree condition | Good (3) | Regular (2) | Unsatisfactory (1) |
Sum of indicators | Production | Dummy variable for resin production | |
10–12 | High | 2 | |
7–9 | Medium | 1 | |
4–6 | Low | 0 |
Factor | Indicator | ||
---|---|---|---|
A. State of stembark | Good (3) | Regular (2) | Unsatisfactory (1) |
cortex loss, no cavities | and cortex loss, and one to two cavities | cortex loss and at least three cavities | |
B. Branch elongation | High (3) | Medium (2) | Low (1) |
cm of branch elongation | Between 5 and 15 cm of branch elongation | cm of branch elongation | |
C. Branching structure | Good (3) | Regular (2) | Unsatisfactory (1) |
Main stem and secondary branches in good condition | Main stem and one dead, broken or absent secondary branch | The main stem and at least two secondary branches are broken, dead, or absent | |
D. Damage caused by pests, diseases, and epiphytes | Low (3) | Medium (2) | High (1) |
Between 10% and 30% | |||
E. Coverage percentage of canopy | Good (3) | Regular (2) | Unsatisfactory (1) |
Between 20 and 60% | |||
Sum of indicators | Condition | Dummy variable for condition | |
12–15 | Good | 2 | |
8–11 | Regular | 1 | |
5–7 | Unsatisfactory | 0 |
Training Database | Low | Medium | High |
Low | 9 | 0 | 0 |
Medium | 1 | 32 | 0 |
High | 0 | 0 | 34 |
Validation Database | Low | Medium | High |
Low | 0 | 1 | 0 |
Medium | 1 | 8 | 4 |
High | 0 | 1 | 9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buendía-Espinoza, J.C.; Martínez-Ochoa, E.d.C.; García-Nuñez, R.M.; Arrazate-Jiménez, S.d.C.; Sánchez-Vélez, A. Prediction of Resin Production in Copal Trees (Bursera spp.) Using a Random Forest Model. Sustainability 2022, 14, 8047. https://doi.org/10.3390/su14138047
Buendía-Espinoza JC, Martínez-Ochoa EdC, García-Nuñez RM, Arrazate-Jiménez SdC, Sánchez-Vélez A. Prediction of Resin Production in Copal Trees (Bursera spp.) Using a Random Forest Model. Sustainability. 2022; 14(13):8047. https://doi.org/10.3390/su14138047
Chicago/Turabian StyleBuendía-Espinoza, Julio César, Elisa del Carmen Martínez-Ochoa, Rosa María García-Nuñez, Selene del Carmen Arrazate-Jiménez, and Alejandro Sánchez-Vélez. 2022. "Prediction of Resin Production in Copal Trees (Bursera spp.) Using a Random Forest Model" Sustainability 14, no. 13: 8047. https://doi.org/10.3390/su14138047