A Comparative Analysis of Plant-Based Milk Alternatives Part 1: Composition, Sensory, and Nutritional Value
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant-Based Milk Alternative Samples and Data from Databases
2.2. Nutri-Score
2.3. Micronutrient Analysis—Vitamins and Minerals
2.4. Sensory Evaluation
2.5. Electronic Tongue
2.6. Volatile Compounds
2.7. Statistical Analyses
3. Results
3.1. Macronutrients (Big 7) and Nutri-Score
3.2. Vitamins and Minerals Evaluations
3.3. Sensory Evaluation
3.4. Comparison of E-Tongue Results and Sensory Evaluation
3.5. Volatile Profile of PBMAs
4. Discussion
4.1. Nutritional Properties
4.2. Sensory Characteristics
4.3. Comparison of the Results of Electronic Tongue and Sensory Evaluation
4.4. Comparison of Volatiles’ Profile and Sensory Evaluation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Government of Canada. Canada’s Food Guide. Available online: https://food-guide.canada.ca/en/ (accessed on 1 March 2022).
- German Nutrition Society (DGE). Guidelines of the German Nutrition Society (DGE) Status. October 2021. Available online: https://www.dge.de/wir-ueber-uns/leitbild/ (accessed on 1 March 2022).
- Department of Nutrition at the Harvard, T.H. Chan School of Public Health. Healthy Living Guide 2021/2022. Available online: https://cdn1.sph.harvard.edu/wp-content/uploads/sites/30/2022/01/HealthyLivingGuide21-22.pdf (accessed on 1 March 2022).
- Australian Government, National Health and Medical Research Council. Eat for Health, Australian Dietary Guidelines, Summary. Available online: https://www.eatforhealth.gov.au/ (accessed on 1 March 2022).
- Center for Nutrition Policy and Promotion; US Department of Agriculture. Dietary Guidelines for Americans (DGA). Available online: https://www.dietaryguidelines.gov/ (accessed on 1 March 2022).
- Poore, J.; Nemecek, T. Reducing Food’s Environmental Impacts through Producers and Consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McClements, D.J.; Newman, E.; McClements, I.F. Plan—Based Milks: A Review of the Science Underpinning Their Design, Fabrication, and Performance. Compr. Rev. Food Sci. Food Saf. 2019, 18, 2047–2067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT-Lancet Commission on Healthy Diets from Sustainable Food Systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- United Nations Publication. The Sustainable Development Goals Report 2018; United Nations: New York, NY, USA, 2018; ISBN 978-92-1-101390-0. [Google Scholar]
- United Nations. United Nations Sustainable Developments Goals (SDGs). Goal 2: Zero Hunger. Available online: https://unric.org/en/sdg-2/ (accessed on 4 March 2022).
- Sethi, S.; Tyagi, S.K.; Anurag, R.K. Plant-Based Milk Alternatives an Emerging Segment of Functional Beverages: A Review. J. Food Sci. Technol. 2016, 53, 3408–3423. [Google Scholar] [CrossRef]
- Silanikove, N.; Leitner, G.; Merin, U. The Interrelationships between Lactose Intolerance and the Modern Dairy Industry: Global Perspectives in Evolutional and Historical Backgrounds. Nutrients 2015, 7, 7312–7331. [Google Scholar] [CrossRef] [Green Version]
- Smart Protein Project, European Union’s Horizon. Plant-Based Foods in Europe: How Big Is the Market? Smart Protein Plant-Based Food Sector Report 2020. Available online: https://smartproteinproject.eu/plant-based-food-sector-report (accessed on 4 March 2022).
- Zühlsdorf, A.; Jürkenbeck, K.; Schulze, M.; Spiller, A. Politicized Eater: Jugendreport zur Zukunft nachhaltiger Ernährung; University of Göttingen: Göttingen, Germany, 2021; Volume 106. [Google Scholar]
- Jürkenbeck, K.; Spiller, A.; Schulze, M. Climate Change Awareness of the Young Generation and Its Impact on Their Diet. Clean. Responsible Consum. 2021, 3, 100041. [Google Scholar] [CrossRef]
- Turnwald, B.P.; Anderson, K.G.; Markus, H.R.; Crum, A.J. Nutritional Analysis of Foods and Beverages Posted in Social Media Accounts of Highly Followed Celebrities. JAMA Netw. Open 2022, 5, e2143087. [Google Scholar] [CrossRef]
- Grand View Research. Dairy Alternatives Market Size, Share & Trends Analysis Report by Source, by Product, by Distribution Channel, and Segment Forecasts, 2021–2028; Grand View Research: San Francisco, CA, USA, 2021. [Google Scholar]
- McClements, D.J. Development of Next-Generation Nutritionally Fortified Plant-Based Milk Substitutes: Structural Design Principles. Foods 2020, 9, 421. [Google Scholar] [CrossRef] [Green Version]
- Paul, A.A.; Kumar, S.; Kumar, V.; Sharma, R. Milk Analog: Plant Based Alternatives to Conventional Milk, Production, Potential and Health Concerns. Crit. Rev. Food Sci. Nutr. 2020, 60, 3005–3023. [Google Scholar] [CrossRef]
- Chalupa-Krebzdak, S.; Long, C.J.; Bohrer, B.M. Nutrient Density and Nutritional Value of Milk and Plant-Based Milk Alternatives. Int. Dairy J. 2018, 87, 84–92. [Google Scholar] [CrossRef]
- Silva, A.R.A.; Silva, M.M.N.; Ribeiro, B.D. Health Issues and Technological Aspects of Plant-Based Alternative Milk. Food Res. Int. 2020, 131, 108972. [Google Scholar] [CrossRef]
- Tangyu, M.; Muller, J.; Bolten, C.J.; Wittmann, C. Fermentation of Plant-Based Milk Alternatives for Improved Flavour and Nutritional Value. Appl. Microbiol. Biotechnol. 2019, 103, 9263–9275. [Google Scholar] [CrossRef] [Green Version]
- Pérez-González, M.; Gallardo-Chacón, J.J.; Valencia-Flores, D.; Ferragut, V. Optimization of a Headspace SPME GC-MS Methodology for the Analysis of Processed Almond Beverages. Food Anal. Methods 2015, 8, 612–623. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Cannon, G.; Moubarac, J.-C.; Levy, R.B.; Louzada, M.L.C.; Jaime, P.C. The UN Decade of Nutrition, the NOVA Food Classification and the Trouble with Ultra-Processing. Public Health Nutr. 2017, 21, 5–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monteiro, C.A.; Cannon, G.; Lawrence, M.; Costa Louzada, M.L.; Pereira Machado, P. Ultra-Processed Foods, Diet Quality, and Health Using the NOVA Classification System; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019. [Google Scholar]
- Regulation (EU) No 1308/2013 of the European Parliament and of the Council of 17 December 2013, Establishing a Common Organisation of the Markets in Agricultural Products and Repealing. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32013R1308 (accessed on 4 March 2022).
- US Food and Drug Administration (FDA). Foods Program Guidance Under Development, Labeling of Plant-Based Milk Alternatives; Draft Guidance for Industry. Available online: https://www.fda.gov/food/guidance-documents-regulatory-information-topic-food-and-dietary-supplements/foods-program-guidance-under-development (accessed on 4 March 2022).
- AUSNUT (AUStralian Food and NUTrient Database) 2011–13. Food Standards Australia New Zealand (FSANZ). Available online: https://data.gov.au/data/dataset/6b22884e-aab5-49d0-af5b-9d62285bd6e6 (accessed on 1 March 2022).
- National Institute for Health and Welfare Public Health Promotion Unit. Fineli. Finnish Food Composition Database. Release Helsinki. Available online: www.fineli.fi (accessed on 1 March 2022).
- US Department of Agriculture (USDA) FoodData Central Data. Food and Nutrient Database for Dietary Studies 2017–2018 (FNDDS 2017–2018). Available online: https://fdc.nal.usda.gov/ (accessed on 1 March 2022).
- Max Rubner-Institute Federal Research Institute of Nutrition and Food, Bundeslebensmittelschlüssel (BLS) Version 3. Available online: https://www.blsdb.de/ (accessed on 1 March 2022).
- Schlögl, H. Einführung des Nutri-Score in Deutschland: Erste große Studie zeigt Korrelation mit Mortalitätssenkung. Diabetology 2020, 16, 747–748. [Google Scholar] [CrossRef]
- Santé Publique France—Conditions of Use of the “Nutri-Score” Logo, Version Dated 8 of September. Available online: https://www.santepubliquefrance.fr/content/download/150258/file/20210908_RU_International_Users_regulation_ENG.pdf (accessed on 1 March 2022).
- Koch, M.; Busse, M.; Naumann, M.; Jákli, B.; Smit, I.; Cakmak, I.; Hermans, C.; Pawelzik, E. Differential Effects of Varied Potassium and Magnesium Nutrition on Production and Partitioning of Photoassimilates in Potato Plants. Physiol. Plant 2019, 166, 921–935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ISO 8589:2007 + A1:2014; Sensory Analysis—General Guidance for the Design of Test Rooms. German Version EN ISO 8589:2010 + A1; ISO: Geneva, Switzerland, 2007.
- ISO 8586:2012; Sensory Analysis—General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors. German Version EN ISO 8586; ISO: Geneva, Switzerland, 2012.
- DIN 10969:2018-04; Sensory Analysis—Descriptive Analysis with Following Quality Evaluation, German Version. DIN: Berlin, Germany, 2018.
- Grahl, S.; Palanisamy, M.; Strack, M.; Meier-Dinkel, L.; Toepfl, S.; Mörlein, D. Towards More Sustainable Meat Alternatives: How Technical Parameters Affect the Sensory Properties of Extrusion Products Derived from Soy and Algae. J. Clean. Prod. 2018, 198, 962–971. [Google Scholar] [CrossRef]
- Lawless, H.T.; Heymann, H. Sensory Evaluation of Food: Principles and Practices; Food Science Text Series; Springer: New York, NY, USA, 2010; ISBN 978-1-4419-6487-8. [Google Scholar]
- Stone, H.; Bleibaum, R.N.; Thomas, H.A. Descriptive Analysis. In Sensory Evaluation Practices; Elsevier: Amsterdam, The Netherlands, 2021; pp. 235–295. ISBN 978-0-12-815334-5. [Google Scholar]
- Anon. Alpha MOS-ASTREE e-Tongue Technical Notes; Alpha MOS: Toulouse, France, 2020. [Google Scholar]
- Newman, J.; Harbourne, N.; O’Riordan, D.; Jacquier, J.C.; O’Sullivan, M. Comparison of a Trained Sensory Panel and an Electronic Tongue in the Assessment of Bitter Dairy Protein Hydrolysates. J. Food Eng. 2014, 128, 127–131. [Google Scholar] [CrossRef]
- PubChem. National Center for Biotechnology Information, US National Library of Medicine, USA. Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed on 1 March 2022).
- Food Flavourings Database. EU Lists of Flavourings. Bruxelles, Belgium. Available online: https://webgate.ec.europa.eu/foods_system/main/?sector=FFL&auth=SANCAS (accessed on 1 March 2022).
- FooDB. FooDB, Open-Access Food Database, Canada. Available online: https://foodb.ca/compounds (accessed on 1 March 2022).
- Xia, Y.; Zhong, F.; Chang, Y.; Li, Y. An Aromatic Lexicon Development for Soymilks. Int. J. Food Prop. 2015, 18, 125–136. [Google Scholar] [CrossRef]
- Manousi, N.; Zachariadis, G.A. Determination of Volatile Compounds in Nut-Based Milk Alternative Beverages by HS-SPME Prior to GC-MS Analysis. Molecules 2019, 24, 3091. [Google Scholar] [CrossRef] [Green Version]
- Klein, B.; Gallardo-Chacón, J.-J.; Codina-Torrella, I.; Trujillo, A.-J.; Juan, B. Evaluation of Volatile Compounds of “Tiger Nut Beverage” (Orxata de Xufla) Headspace by Optimized Solid-Phase Micro-Extraction. OALib J. 2014, 1, e1015. [Google Scholar] [CrossRef]
- Achouri, A.; Boye, J.; Zamani, Y. Identification of Volatile Compounds in Soymilk Using Solid-Phase Microextraction-Gas Chromatography. Food Chem. 2006, 99, 759–766. [Google Scholar] [CrossRef]
- Nedele, A.-K.; Gross, S.; Rigling, M.; Zhang, Y. Reduction of Green Off-Flavor Compounds: Comparison of Key Odorants during Fermentation of Soy Drink with Lycoperdon Pyriforme. Food Chem. 2021, 334, 127591. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, S.; Kumazawa, K.; Nishimura, O. Studies on the Key Aroma Compounds in Soy Milk Made from Three Different Soybean Cultivars. J. Agric. Food Chem. 2011, 59, 12204–12209. [Google Scholar] [CrossRef] [PubMed]
- Gorissen, S.H.M.; Crombag, J.J.R.; Senden, J.M.G.; Waterval, W.A.H.; Bierau, J.; Verdijk, L.B.; van Loon, L.J.C. Protein Content and Amino Acid Composition of Commercially Available Plant-Based Protein Isolates. Amino Acids 2018, 50, 1685–1695. [Google Scholar] [CrossRef] [Green Version]
- Clegg, M.E.; Tarrado Ribes, A.; Reynolds, R.; Kliem, K.; Stergiadis, S. A Comparative Assessment of the Nutritional Composition of Dairy and Plant-Based Dairy Alternatives Available for Sale in the UK and the Implications for Consumers’ Dietary Intakes. Food Res. Int. 2021, 148, 110586. [Google Scholar] [CrossRef]
- Collard, K.M.; McCormick, D.P. A Nutritional Comparison of Cow’s Milk and Alternative Milk Products. Acad. Pediatr. 2020, 21, 1067–1069. [Google Scholar] [CrossRef]
- Astolfi, M.L.; Marconi, E.; Protano, C.; Canepari, S. Comparative Elemental Analysis of Dairy Milk and Plant-Based Milk Alternatives. Food Control 2020, 116, 107327. [Google Scholar] [CrossRef]
- Vanga, S.K.; Raghavan, V. How Well Do Plant Based Alternatives Fare Nutritionally Compared to Cow’s Milk? J. Food Sci. Technol. 2018, 55, 10–20. [Google Scholar] [CrossRef]
- Singhal, S.; Baker, R.D.; Baker, S.S. A Comparison of the Nutritional Value of Cow’s Milk and Nondairy Beverages. J. Pediatr. Gastroenterol. Nutr. 2017, 64, 799–805. [Google Scholar] [CrossRef]
- Scholz-Ahrens, K.E.; Ahrens, F.; Barth, C.A. Nutritional and Health Attributes of Milk and Milk Imitations. Eur. J. Nutr. 2020, 59, 19–34. [Google Scholar] [CrossRef]
- Aydar, E.F.; Tutuncu, S.; Ozcelik, B. Plant-Based Milk Substitutes: Bioactive Compounds, Conventional and Novel Processes, Bioavailability Studies, and Health Effects. J. Funct. Foods 2020, 70, 103975. [Google Scholar] [CrossRef]
- Regulation (EU) 2018/848 of the European Parliament and of the Council of 30 May 2018 on Organic Production and Labeling of Organic Products and Repealing Council Regulation (EC) No 834/Current Consolidated Version: 14/11/. Available online: http://Data.Europa.Eu/Eli/Reg/2018/848/Oj (accessed on 1 March 2022).
- Borin, J.F.; Knight, J.; Holmes, R.P.; Joshi, S.; Goldfarb, D.S.; Loeb, S. Plant-Based Milk Alternatives and Risk Factors for Kidney Stones and Chronic Kidney Disease. J. Ren. Nutr. 2021, 32, 363–365. [Google Scholar] [CrossRef]
- Muthukumar, J.; Selvasekaran, P.; Lokanadham, M.; Chidambaram, R. Food and Food Products Associated with Food Allergy and Food Intolerance—An Overview. Food Res. Int. 2020, 138, 109780. [Google Scholar] [CrossRef] [PubMed]
- Wensing, M.; Knulst, A.C.; Piersma, S.; O’Kane, F.; Knol, E.F.; Koppelman, S.J. Patients with Anaphylaxis to Pea Can Have Peanut Allergy Caused by Cross-Reactive IgE to Vicilin (Ara h 1). J. Allergy Clin. Immunol. 2003, 111, 420–424. [Google Scholar] [CrossRef] [PubMed]
- Röös, E.; Garnett, T.; Watz, V.; Sjörs, C. The Role of Dairy and Plant Based Dairy Alternatives in Sustainable Diets. Swed. Univ. Agric. Sci. Res. Platf. Future Food 2018, 3, 147. Available online: https://pub.epsilon.slu.se/16016/1/roos_e_et_al_190304.pdf (accessed on 1 March 2022).
- Grundy, M.M.-L.; Lapsley, K.; Ellis, P.R. A Review of the Impact of Processing on Nutrient Bioaccessibility and Digestion of Almonds. Int. J. Food Sci. Technol. 2016, 51, 1937–1946. [Google Scholar] [CrossRef] [Green Version]
- Fardet, A.; Rock, E. Ultra-Processed Foods and Food System Sustainability: What Are the Links? Sustainability 2020, 12, 6280. [Google Scholar] [CrossRef]
- Drewnowski, A. Perspective: Identifying Ultra-Processed Plant-Based Milk Alternatives in the USDA Branded Food Products Database. Adv. Nutr. 2021, 12, 2068–2075. [Google Scholar] [CrossRef]
- Lane, M.M.; Davis, J.A.; Beattie, S.; Gómez-Donoso, C.; Loughman, A.; O’Neil, A.; Jacka, F.; Berk, M.; Page, R.; Marx, W.; et al. Ultraprocessed Food and Chronic Noncommunicable Diseases: A Systematic Review and Meta—Analysis of 43 Observational Studies. Obes. Rev. 2021, 22, e13146. [Google Scholar] [CrossRef]
- Pagliai, G.; Dinu, M.; Madarena, M.P.; Bonaccio, M.; Iacoviello, L.; Sofi, F. Consumption of Ultra-Processed Foods and Health Status: A Systematic Review and Meta-Analysis. Br. J. Nutr. 2021, 125, 308–318. [Google Scholar] [CrossRef]
- Matos, R.A.; Adams, M.; Sabaté, J. Review: The Consumption of Ultra-Processed Foods and Non-Communicable Diseases in Latin America. Front. Nutr. 2021, 8, 622714. [Google Scholar] [CrossRef] [PubMed]
- Romero Ferreiro, C.; Lora Pablos, D.; Gómez de la Cámara, A. Two Dimensions of Nutritional Value: Nutri-Score and NOVA. Nutrients 2021, 13, 2783. [Google Scholar] [CrossRef] [PubMed]
- Sosulski, F.W.; Chakraborty, P.; Humbert, E.S. Legume-Based Imitation and Blended Milk Products. Can. Inst. Food Sci. Technol. J. 1978, 11, 117–123. [Google Scholar] [CrossRef]
- Chambers, E.; Jenkins, A.; Mcguire, B.H. Flavor propreties of plain soymilk. J. Sens. Stud. 2006, 21, 165–179. [Google Scholar] [CrossRef]
- Hoppu, U.; Puputti, S.; Sandell, M. Factors Related to Sensory Properties and Consumer Acceptance of Vegetables. Crit. Rev. Food Sci. Nutr. 2021, 61, 1751–1761. [Google Scholar] [CrossRef]
- Bach, V.; Kidmose, U.; Kristensen, H.L.; Edelenbos, M. Eating Quality of Carrots (Daucus Carota L.) Grown in One Conventional and Three Organic Cropping Systems over Three Years. J. Agric. Food Chem. 2015, 63, 9803–9811. [Google Scholar] [CrossRef] [Green Version]
- Janssen, M. Determinants of Organic Food Purchases: Evidence from Household Panel Data. Food Qual. Prefer. 2018, 68, 19–28. [Google Scholar] [CrossRef]
- Tobin, R.; Moane, S.; Larkin, T. Sensory Evaluation of Organic and Conventional Fruits and Vegetables Available to Irish Consumers. Int. J. Food Sci. Technol. 2013, 48, 157–162. [Google Scholar] [CrossRef]
- N’Kouka, K.D.; Klein, B.P.; Lee, S.-Y. Developing a Lexicon for Descriptive Analysis of Soymilks. J. Food Sci. 2006, 69, 259–263. [Google Scholar] [CrossRef]
- Torres-Penaranda, A.V.; Reitmeier, C.A. Sensory Descriptive Analysis of Soymilk. J. Food Sci. 2001, 66, 352–356. [Google Scholar] [CrossRef]
- Yang, A.; Smyth, H.; Chaliha, M.; James, A. Sensory Quality of Soymilk and Tofu from Soybeans Lacking Lipoxygenases. Food Sci. Nutr. 2016, 4, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Pascual, L.; Gras, M.; Vidal-Brotóns, D.; Alcañiz, M.; Martínez-Máñez, R.; Ros-Lis, J.V. A Voltammetric E-Tongue Tool for the Emulation of the Sensorial Analysis and the Discrimination of Vegetal Milks. Sens. Actuators B Chem. 2018, 270, 231–238. [Google Scholar] [CrossRef]
- Toro-Funes, N.; Bosch-Fusté, J.; Veciana-Nogués, M.T.; Vidal-Carou, M.C. Effect of Ultra High Pressure Homogenization Treatment on the Bioactive Compounds of Soya Milk. Food Chem. 2014, 152, 597–602. [Google Scholar] [CrossRef]
- Erten, E.S.; Cadwallader, K.R. Identification of Predominant Aroma Components of Raw, Dry Roasted and Oil Roasted Almonds. Food Chem. 2017, 217, 244–253. [Google Scholar] [CrossRef]
- Alasalvar, C.; Shahidi, F.; Cadwallader, K.R. Comparison of Natural and Roasted Turkish Tombul Hazelnut (Corylus Avellana L.) Volatiles and Flavor by DHA/GC/MS and Descriptive Sensory Analysis. J. Agric. Food Chem. 2003, 51, 5067–5072. [Google Scholar] [CrossRef]
- El Youssef, C.; Bonnarme, P.; Fraud, S.; Péron, A.-C.; Helinck, S.; Landaud, S. Sensory Improvement of a Pea Protein-Based Product Using Microbial Co-Cultures of Lactic Acid Bacteria and Yeasts. Foods 2020, 9, 349. [Google Scholar] [CrossRef] [Green Version]
- McGorrin, R.J. Key Aroma Compounds in Oats and Oat Cereals. J. Agric. Food Chem. 2019, 67, 13778–13789. [Google Scholar] [CrossRef]
Abbreviation $ | Supplements | Raw Material (%) | Energy | Fat | SFA | Carbohydrate | Sugar | Fiber | Protein | Salt | Nutri-Score | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
JA | Z | 2.0 | Almond | 14 | 1.2 | 0.1 | 0.1 | 0.0 | 0.4 | 0.4 | 0.12 | B |
AA | W,X,Y,Z | 2.3 | Almond | 13 | 1.1 | 0.1 | 0.0 | 0.0 | 0.3 | 0.4 | 0.14 | B |
ALA * | 7.0 | Almond | 36 | 3.3 | 0.3 | 0.5 | 0.5 | 0.7 | 1.1 | 0.14 | B | |
RA * | 3.5 | Almond | 22 | 2 | 0.2 | 0.0 | 0.0 | 0.4 ## | 0.9 | 0.12 | B | |
ABA ** | Z | 2.5 | Almond | 24 | 1.2 | 0.1 | 2.6 | 2.5 | 0.3 | 0.5 | 0.08 | B |
OO | W,X,Y1,Z | 10.0 | Oat | 46 | 1.5 | 0.2 | 6.7 | 4.1 | 0.8 | 1.0 | 0.10 | B |
AO | W,X,Y,Z | 9.8 | Oat | 44 | 1.5 | 0.1 | 6.8 | 3.3 | 1.4 | 0.3 | 0.09 | A |
KO * | 11.3 | Oat | 44 | 1.1 | 0.2 | 7.6 | 4.5 | 0.6 | 0.7 | 0.10 | B | |
BO * | 11.0 | Oat | 46 | 1.4 | 0.2 | 7.6 | 5.2 | 0.9 ## | 0.7 | 0.13 | B | |
ABO ** | 12.0 | Oat | 47 | 1.3 | 0.5 | 8.1 | 3.9 | 0.8 | 0.3 | 0.09 | B | |
JS | X,Y,Z | 7.1 | Soy | 38 | 1.7 | 0.2 | 2.5 | 2.4 | 0.5 | 3.0 | 0.09 | A |
AS | W,X,Y,Z | 5.6 | Soy | 28 | 1.2 | 0.2 | 1.7 | 1.5 | 0.9 | 2.1 | 0.11 | A |
ES * | 9.4 | Soy | 53 | 2.6 | 0.4 | 2.9 | 2.7 | 0.7 ## | 4.1 | 0.15 | A | |
BS * | 11.0 | Soy | 28 | 1.5 | 0.3 | 0.9 | 0.7 | 0.7 ## | 2.6 | 0.08 | A | |
ABS ** | W,X,Y,Z | 8.7 | Soy | 42 | 1.9 | 0.3 | 2.7 | 2.5 | 0.6 | 3.3 | 0.10 | A |
Almond drink, Database (mean, n = 6) | 24.0 | 1.39 | 0.07 | 2.26 | 1.89 | 0.27 | 0.57 | 0.15 | B | |||
Oat drink, Database (mean, n = 11) | 51.7 | 1.39 | 0.17 | 7.86 | 2.83 | 1.27 | 1.24 | 0.09 | A | |||
Soy drink, Database (mean, n = 38) | 44.0 | 1.69 | 0.28 | 3.62 | 2.02 | 0.83 | 3.15 | 0.10 | A | |||
Cow’s milk, Database (mean, n = 55) | 53.1 | 2.14 | 1.41 | 5.06 | 4.99 | 0.0 | 3.37 | 0.11 | B |
Attribute | Abbreviation | Scale (from–to) | Reference/Definition 1 | Assessment |
---|---|---|---|---|
Appearance | ||||
Consistency | Con_A | Liquid–Viscous | Water = 0, Whipping cream = 80 | Standard daylight in the booths |
Intensity | Int_A | White–Brownish | Sample hue | |
Odor | ||||
Overall | Over_O | Not perceivable–Strongly perceivable | All perceptible odor | Sample odor, holding it 2 cm under the nose, and sniffing three times |
Cereal | Cer_O | Damp mixture of oats, wheat, rye, barley, spelt (Kölln Multikorn-Flocken) | ||
Nutty | Nut_O | Shredded nut mixture of cashew, walnut, hazelnut, almond (Seeberger) | ||
Cardboard | Card_O | Soaking square of cardboard in water for 30 min | ||
Milk | Milk_O | Fresh cow’s milk, fat content 3.5% | ||
Cooking | Cook_O | Whole milk heated to steaming and cook 10 min | ||
Vanilla | Van_O | Pure vanilla extract diluted with water in a ratio of 1:8 | ||
Taste | ||||
Overall | Over_T | Not perceivable–Strongly perceivable | All perceptible taste | Taste intensity after the first swallow |
Bitter Salty | Bit_T Sal_T | Caffeine solution: 0.17 g/L (medium perceivable) Sodium chloride solution: 0.98 g/L (medium perceivable) | ||
Sour | Sou_T | Citric acid solution: 0.31 g/L (strongly perceivable) | ||
Sweet | Swe_T | Sucrose solution: 4.32 g/L (weakly perceivable) | ||
Cereal | Cer_T | Damp mixture of oats, wheat, rye, barley, spelt (Kölln Multikorn-Flocken) | ||
Nutty | Nut_T | Shredded nut mixture of cashew, walnut, hazelnut, almond (Seeberger) | ||
Milk | Milk_T | Fresh cow’s milk, fat content 3.5% | ||
Cooking | Cook_T | Whole milk heated to steaming and cook 10 min | ||
Vanilla | Van_T | Pure vanilla extract diluted with water in a ratio of 1:8 | ||
Aftertaste | After_T | Intensity overall | Intensity of aftertaste in total, 5 s after swallowing | |
Texture | ||||
Astringent | Ast_TX | Not perceivable–Strongly perceivable | Chemical sensitivity factor on the tongue/oral cavity described as dry or astringent 0.1% Alum solution | Texture intensity after the second swallow |
Viscosity | Vis_TX | Liquid–Viscous | Viscid appearance is perceived when flowing as the product moves over the tongue and palate. Water = 0, Whipping cream = 100 | |
Chalky | Chal_TX | Not perceivable–Strongly perceivable | Mealy, powdery sensory impression Calcium carbonate tablets ground into powder and blended with water at a ratio of 1:10 |
Almond * n = 6 [%] | Almond n = 5 [%] | Oat * n = 11 [%] | Oat n = 5 [%] | Soy * n = 38 [%] | Soy n = 5 [%] | Cow’s Milk * n = 55 [%] | |||
---|---|---|---|---|---|---|---|---|---|
D-A-CH reference values female, 19–25 years | |||||||||
Vitamin D | 20 | μg | 4.50 | nd | 2.64 | 3.00 a | 1.58 | 2.38 b | 2.71 |
Vitamin E | 12 | mg | 20.18 | 8.75 | 4.04 | 5.26 | 6.72 | 2.38 | 0.53 |
Vitamin B1 | 1 | mg | 2.66 | 0.32 | 2.73 | 3.05 | 5.95 | 2.08 | 2.10 |
Vitamin B2 | 1.1 | mg | 10.86 | 7.37 | 9.27 | 8.99 | 14.61 | 8.86 | 17.30 |
Vitamin B3 | 13 | mg | 0.84 | 0.95 | 2.32 | 0.44 | 2.87 | 0.88 | 2.58 |
Vitamin B6 | 1.4 | mg | 0.64 | 0.52 | 6.54 | 1.00 | 7.80 | 2.06 | 2.57 |
Folic acid | 300 | μg | 0.33 | 1.34 | 1.94 | 1.98 | 8.11 | 3.06 | 3.09 |
Vitamin B12 | 4 | μg | 11.04 | 6.55 b | 4.55 | 11.45 b | 8.03 | 12.92 c | 11.12 |
Na | 1500 | mg | 4.09 | 3.71 | 2.34 | 2.74 | 2.60 | 3.47 | 2.91 |
K | 4000 | mg | 1.09 | 1.22 | 0.86 | 0.72 | 4.11 | 4.61 | 3.90 |
Mg | 310 | mg | 2.59 | 2.57 | 4.00 | 1.09 | 6.00 | 6.76 | 3.71 |
Ca | 1000 | mg | 14.67 | 10.26 | 8.70 | 4.77 | 9.31 | 11.01 | 12.06 |
Fe | 15 | mg | 1.56 | 0.12 | 2.52 | nd | 3.77 | 1.99 | 0.73 |
P | 700 | mg | 1.63 | 7.30 | 5.38 | 6.20 | 8.29 | 12.97 | 13.32 |
Cu | 1.3 (1.0–1.6) | mg | 1.92 | 3.91 | 1.54 | 10.33 | 8.67 | 17.48 | 0.77 |
Zn | 8.5 (7–10) | mg | 1.75 | 1.26 | 3.34 | 0.89 | 1.74 | 4.45 | 4.79 |
D-A-CH reference values female, ≥65 years | |||||||||
Vitamin E | 11 | mg | 22.02 | 9.55 | 4.41 | 5.73 | 7.34 | 2.59 | 0.58 |
Vitamin B2 | 1 | mg | 11.95 | 8.11 | 10.20 | 9.89 | 16.07 | 9.75 | 19.02 |
Vitamin B3 | 11 | mg | 0.99 | 1.12 | 2.75 | 0.52 | 3.40 | 1.04 | 3.05 |
Mg | 300 | mg | 2.68 | 2.66 | 4.13 | 1.12 | 6.2 | 6.99 | 3.84 |
Fe | 10 | mg | 2.35 | 0.18 | 3.78 | nd | 5.65 | 2.99 | 1.1 |
D-A-CH reference male, 19–25 years | |||||||||
Vitamin E | 15 | mg | 16.14 | 7.00 | 3.23 | 4.20 | 5.38 | 1.90 | 0.43 |
Vitamin B1 | 1.3 | mg | 2.05 | 0.24 | 2.10 | 2.35 | 4.58 | 1.60 | 1.62 |
Vitamin B2 | 1.4 | mg | 8.54 | 5.79 | 7.28 | 7.06 | 11.48 | 6.96 | 13.59 |
Vitamin B3 | 16 | mg | 0.68 | 0.77 | 1.89 | 0.35 | 2.34 | 0.72 | 2.10 |
Vitamin B6 | 1.6 | mg | 0.56 | 0.45 | 5.73 | 0.88 | 6.82 | 1.80 | 2.25 |
Mg | 400 | mg | 2.01 | 2.00 | 3.10 | 0.84 | 4.65 | 5.24 | 2.88 |
Fe | 10 | mg | 2.35 | 0.18 | 3.78 | nd | 5.65 | 2.99 | 1.10 |
Cu | 1.25 (1.0–1.5) | mg | 2.00 | 4.07 | 1.60 | 10.74 | 9.01 | 18.18 | 0.80 |
Zn | 13.5 (11–16) | mg | 1.10 | 0.80 | 2.11 | 0.56 | 1.10 | 2.80 | 3.02 |
D-A-CH reference male, ≥65 years | |||||||||
Vitamin E | 12 | mg | 20.18 | 8.75 | 4.04 | 5.26 | 6.72 | 2.38 | 0.53 |
Vitamin B1 | 1.1 | mg | 2.42 | 0.29 | 2.48 | 2.78 | 5.41 | 1.89 | 1.91 |
Vitamin B2 | 1.3 | mg | 9.19 | 6.24 | 7.84 | 7.61 | 12.36 | 7.50 | 14.63 |
Vitamin B3 | 14 | mg | 0.78 | 0.88 | 2.16 | 0.40 | 2.67 | 0.82 | 2.39 |
Mg | 350 | mg | 2.30 | 2.28 | 3.54 | 0.96 | 5.31 | 5.99 | 3.29 |
Acids | Alcohols | Aldehydes | Alkanes | Aromatic/ Cyclic Compounds | Esters | Furans | Organic Compounds | Pyrazines | |
---|---|---|---|---|---|---|---|---|---|
Almond (n/%) | 3/8.6 | 6/17.1 | 8/22.9 | 8/22.9 | 4/11.4 | 2/5.7 | 1/2.9 | 2/5.7 | 1/2.9 |
%-Qualitative similarity | 84.7 | 91.7 | 87.9 | 92.1 | 83.3 | 76.0 | 76.0 | 82.0 | 93.0 |
Oat (n/%) | 6/24.0 | 1/4.0 | 4/16.0 | 9/36.0 | 1/4.0 | 0/0 | 2/8.0 | 2/8.0 | 0/0 |
%-Qualitative similarity | 87.3 | 88.0 | 86.3 | 94.8 | 83.0 | 0 | 85.5 | 85.0 | 0 |
Soy (n/%) | 9/26.5 | 3/8.8 | 5/14.7 | 7/20.6 | 1/2.9 | 0/0 | 1/2.9 | 6/17.6 | 2/5.9 |
%-Qualitative similarity | 88.8 | 92.0 | 87.6 | 91.0 | 97.0 | 0 | 97.0 | 80.5 | 92.0 |
Class | Compound | Odor Impression a | Described in PBMA b | Almond | Oat | Soy | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AA | JA | ALA | RA | ABA | AO | OO | BO | KO | ABO | AS | JS | ES | BS | ABS | ||||
Acids | Tetradecanoic acid | Burnt, cheese, harsh | 83 | 84 | 89 | 93 | 93 | 92 | 93 | |||||||||
Acids | Dodecanoic acid | Coconut, fatty, metal | 89 | 89 | ||||||||||||||
Acids | Oleic Acid | Fatty | 89 | 89 | 89 | 87 | ||||||||||||
Acids | Hexadecanoic acid | Fatty | 81 | 85 | 89 | 94 | 95 | 95 | 95 | 94 | 95 | |||||||
Acids | Acetic acid, methyl ester | Honey, fruity, green | 5 | 86 | ||||||||||||||
Acids | Acetic acid | Sour, fruity, vinegar | 98 | 97 | 91 | 98 | 98 | 95 | 97 | 98 | 98 | 97 | 86 | 95 | 97 | 93 | ||
Acids | Pentadecanoic acid | Waxy | 80 | 89 | 91 | 90 | 91 | |||||||||||
Alcohols | 1-Butanol, 3-methyl- | Banana, floral, fruity, malt, wheat | 91 | 82 | ||||||||||||||
Alcohols | 1-Octanol | Bitter almond, fatty, green, rose | 3 | 96 | ||||||||||||||
Alcohols | 1-Heptanol | Coconut, green, mushroom, nutty, woody | 1, 2, 3, 4 | 91 | ||||||||||||||
Alcohols | 1-Hexadecanol | Flower, wax | 88 | |||||||||||||||
Alcohols | 1-Pentanol | Fruity, green, grain, mushroom, vanilla | 1, 2, 3, 4 | 93 | ||||||||||||||
Alcohols | 1-Hexanol | Green, beany, fruity, grain, nutty, wheat | 3, 5, 4, 1, 2 | 84 | 96 | 97 | ||||||||||||
Alcohols | 1-Octen-3-ol | Mushroom, cooked bean, fatty | 1, 2, 3, 4, 5, 6 | 88 | 97 | |||||||||||||
Alcohols | Phenylethyl Alcohol | Rose, floral, fruity, honey | 5 | 95 | ||||||||||||||
Aldehydes | 2,4-Decadienal | Citrus, fatty, green | 2, 3, 4, 5, 6 | 87 | 87 | 89 | ||||||||||||
Aldehydes | Nonanal | Almond, fatty, green, lemon, rose, soapy | 1, 2, 3, 4, 5 | 90 | ||||||||||||||
Aldehydes | Benzaldehyde | Almond, malt, woody | 2, 3, 4 | 97 | 91 | |||||||||||||
Aldehydes | Piperonal | Anise, coconut, flower, vanilla | 93 | |||||||||||||||
Aldehydes | Benzaldehyde, 3-methoxy- | Anise | 82 | |||||||||||||||
Aldehydes | Benzaldehyde, 4-methyl | Cherry, fruity, sweet | 2, 3 | 83 | ||||||||||||||
Aldehydes | Octanal | Citrus, fatty, green, soap | 2, 3, 4, 5 | 96 | ||||||||||||||
Aldehydes | Hexanal | Green, fruity, leafy | 1, 2, 3, 4, 5, 6 | 75 | 96 | 90 | 93 | 88 | ||||||||||
Aldehydes | Hexanal, 3-methyl- | Green | 78 | |||||||||||||||
Aldehydes | Pentanal | Green, almond-like, cooked beans, nutty | 1, 2, 3, 4, 5 | 93 | 82 | 85 | 81 | |||||||||||
Aldehydes | Heptanal | Green, citrus, nutty, rancid | 1, 2, 3, 4, 5 | 89 | ||||||||||||||
Alkanes | Eicosane | Waxy | 82 | 83 | ||||||||||||||
Alkanes | Heneicosane | Waxy | 95 | 90 | 93 | 88 | 89 | |||||||||||
Alkanes | Tetradecane | Waxy, sweet, fusel-like | 3, 4 | 95 | 96 | 96 | 95 | 96 | 96 | 97 | 80 | 97 | 96 | 96 | 95 | 95 | 96 | |
Alkanes | Pentadecane | Waxy | 96 | 96 | 95 | 96 | 95 | 95 | ||||||||||
Aromatic/Cyclic compounds | D-Limonene | Citrus, mint, fruity | 2, 3 | 95 | ||||||||||||||
Aromatic/Cyclic compounds | 3-Carene | Lemon | 9 | 77 | ||||||||||||||
Aromatic/Cyclic compounds | Phenylephrine | Bitter | 81 | |||||||||||||||
Aromatic/Cyclic compounds | Acetylbenzoyl | Savory, buttery, honey | 80 | |||||||||||||||
Aromatic/Cyclic compounds | Vanillin | Vanilla | 5 | 79 | 83 | 81 | 97 | 95 | ||||||||||
Ethers | 1,1-Dimethoxydecane | Citrus, green, herbal | 77 | |||||||||||||||
Furans | Furan, 2-pentyl- | Bean, floral, fruity, green | 2, 3, 4, 5 | 76 | 94 | 95 | 97 | |||||||||||
Organic compounds | gamma.-Dodecalactone | Apricot, floral, fruity, peach | 80 | |||||||||||||||
Organic compounds | 9-Octadecenal | Dairy, fatty | 79 | |||||||||||||||
Organic compounds | Octadecanoic acid | Fatty | 88 | 86 | 79 | 89 | 86 | |||||||||||
Organic compounds | Propyl propionate | Fruity, pineapple, banana | 78 | |||||||||||||||
Pyrazines | Pyrazine, 2,5-dimethyl- | Nutty, chocolate-like | 2, 4, 5 | 91 | 92 | |||||||||||||
Pyrazines | Pyrazine, 2,6-dimethyl- | Nutty | 9 | 93 | 93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pointke, M.; Albrecht, E.H.; Geburt, K.; Gerken, M.; Traulsen, I.; Pawelzik, E. A Comparative Analysis of Plant-Based Milk Alternatives Part 1: Composition, Sensory, and Nutritional Value. Sustainability 2022, 14, 7996. https://doi.org/10.3390/su14137996
Pointke M, Albrecht EH, Geburt K, Gerken M, Traulsen I, Pawelzik E. A Comparative Analysis of Plant-Based Milk Alternatives Part 1: Composition, Sensory, and Nutritional Value. Sustainability. 2022; 14(13):7996. https://doi.org/10.3390/su14137996
Chicago/Turabian StylePointke, Marcel, Elke Herta Albrecht, Katrin Geburt, Martina Gerken, Imke Traulsen, and Elke Pawelzik. 2022. "A Comparative Analysis of Plant-Based Milk Alternatives Part 1: Composition, Sensory, and Nutritional Value" Sustainability 14, no. 13: 7996. https://doi.org/10.3390/su14137996