Evaluation of Artificial Neural Networks with Satellite Data Inputs for Daily, Monthly, and Yearly Solar Irradiation Prediction for Pakistan
Abstract
:1. Introduction
2. Artificial Neural Networks
2.1. Feed Forward Neural Network (FFNN)
2.2. Cascaded Forward Neural Network (CFNN)
2.3. Elman Neural Network (FFNN)
3. Test Area and Data
4. Methodology
4.1. Data Collection and Processing
4.2. Development of ANN
4.3. Training and Testing of ANN
4.4. Performance Evaluation Using Statistical Metrics
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El-Kenawy, E.-S.M.; Mirjalili, S.; Ghoneim, S.S.; Eid, M.M.; El-Said, M.; Khan, Z.S.; Ibrahim, A. Advanced Ensemble Model for Solar Radiation Forecasting Using Sine Cosine Algorithm and Newton’s Laws. IEEE Access 2021, 9, 115750–115765. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, C.; Peng, X.; Qin, H.; Lv, H.; Fu, J.; Wang, H. Solar Radiation Intensity Probabilistic Forecasting Based on K-Means Time Series Clustering and Gaussian Process Regression. IEEE Access 2021, 9, 89079–89092. [Google Scholar] [CrossRef]
- Braik, A.H.; Sopian, K.; Jarimi, H.; Fazlizan, A.; Ibrahim, A.; Abd Hamid, A.S. Geospatial Analysis of Photovoltaic Plants Potential in Palestine Using a GIS-AHP-Based Technique. Int. J. Renew. Energy Res. (IJRER) 2022, 12, 479–488. [Google Scholar]
- Khatib, T.; Mohamed, A.; Sopian, K.; Mahmoud, M. Assessment of artificial neural networks for hourly solar radiation prediction. Int. J. Photoenergy 2012, 2012, 1–7. [Google Scholar] [CrossRef]
- Hamid, A.; Ibrahim, A.; Assadeg, J.; Ahmad, E.; Sopian, K. Techno-economic Analysis of a Hybrid Solar Dryer with a Vacuum Tube Collector for Hibiscus Cannabinus L Fiber. Int. J. Renew. Energy Res. 2020, 10, 1609–1613. [Google Scholar]
- Patchali, T.E.; Oyewola, O.M.; Ajide, O.O.; Matthew, O.J.; Salau, T.A.; Adaramola, M.S. Assessment of global solar radiation estimates across different regions of Togo, West Africa. Meteorol. Atmos. Phys. 2022, 134, 1–15. [Google Scholar] [CrossRef]
- Oyewola, O.M.; Patchali, T.E.; Ajide, O.O.; Singh, S.; Matthew, O.J. Global solar radiation predictions in Fiji Islands based on empirical models. Alex. Eng. J. 2022, 61, 8555–8571. [Google Scholar] [CrossRef]
- Mustafa, J.; Alqaed, S.; Almehmadi, F.A.; Jamil, B. Development and comparison of parametric models to predict global solar radiation: A case study for the southern region of Saudi Arabia. J. Therm. Anal. Calorim. 2022, 1–31. [Google Scholar] [CrossRef]
- Abd Hamid, A.S.; Razali, H. Solar Car: Brief Review and Challenges. Borneo Sci. J. 2019, 40, 27–37. [Google Scholar]
- Besharat, F.; Dehghan, A.A.; Faghih, A.R. Empirical models for estimating global solar radiation: A review and case study. Renew. Sustain. Energy Rev. 2013, 21, 798–821. [Google Scholar] [CrossRef]
- Wang, L.; Kisi, O.; Zounemat-Kermani, M.; Salazar, G.A.; Zhu, Z.; Gong, W. Solar radiation prediction using different techniques: Model evaluation and comparison. Renew. Sustain. Energy Rev. 2016, 61, 384–397. [Google Scholar] [CrossRef]
- Qin, W.; Wang, L.; Lin, A.; Zhang, M.; Xia, X.; Hu, B.; Niu, Z. Comparison of deterministic and data-driven models for solar radiation estimation in China. Renew. Sustain. Energy Rev. 2018, 81, 579–594. [Google Scholar] [CrossRef]
- Kaba, K.; Sarıgül, M.; Avcı, M.; Kandırmaz, H.M. Estimation of daily global solar radiation using deep learning model. Energy 2018, 162, 126–135. [Google Scholar] [CrossRef]
- Aljanad, A.; Tan, N.M.; Agelidis, V.G.; Shareef, H. Neural Network Approach for Global Solar Irradiance Prediction at Extremely Short-Time-Intervals Using Particle Swarm Optimization Algorithm. Energies 2021, 14, 1213. [Google Scholar] [CrossRef]
- Khatib, T.; Mohamed, A.; Sopian, K.; Mahmoud, M. Modeling of solar energy for Malaysia using artificial neural networks. In Proceedings of the 11th WSEAS/IASME International Conference on Electric Power Systems, High Voltages, Electric Machines, Penang, Malaysia, 3–5 October 2011; pp. 486–489. Available online: https://d1wqtxts1xzle7.cloudfront.net/38267684/ICOPOW-13-with-cover-page-v2.pdf?Expires=1656249562&Signature=R0vhdVyVcYRbBD8AWd2xZ4nSK7JghLuQuZVaqnmlaslhdR3dKS0gWeXUblXVHRF0uoyQr32QZw3bkT4Utk3LZFpoTLkLyZyBIt51Q3Cv-QQZ4Fa0QCFzVswicirgkAEMRob3-7st~SJ3m08GncSamLIZNFwvmWBBzTkjpan0LQWCId48woBq4DbS-qp90Dmc1nnsFcInaIajLCUE-DvHSXw1o5U6kK3-oZE1oolpHi5DbRr3Zw7zH1m67a1s8ScpI7U-QUDgXR8ut4WpiJhd3NaXoxSuq5N7grXIAP~E8RC5-Mv4OQoIsE8ShuB0YvcKEqhcgUNc51kWo4Y5Swj-tA__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA (accessed on 24 May 2022).
- Kuhe, A.; Achirgbenda, V.T.; Agada, M. Global solar radiation prediction for Makurdi, Nigeria, using neural networks ensemble. Energy Sources Part A Recovery Util. Environ. Eff. 2021, 43, 1373–1385. [Google Scholar] [CrossRef]
- Belmahdi, B.; Louzazni, M.; El Bouardi, A. Comparative optimization of global solar radiation forecasting using machine learning and time series models. Environ. Sci. Pollut. Res. 2022, 29, 14871–14888. [Google Scholar] [CrossRef]
- Woldegiyorgis, T.A.; Admasu, A.; Benti, N.E.; Asfaw, A.A. A Comparative Evaluation of Artificial Neural Network and Sunshine Based models in prediction of Daily Global Solar Radiation of Lalibela, Ethiopia. Cogent Eng. 2022, 9, 1996871. [Google Scholar] [CrossRef]
- Ağbulut, Ü.; Gürel, A.E.; Biçen, Y. Prediction of daily global solar radiation using different machine learning algorithms: Evaluation and comparison. Renew. Sustain. Energy Rev. 2021, 135, 110114. [Google Scholar] [CrossRef]
- Mahdi, B.H.; Yousif, K.M.; Dosky, L.M. Using Artificial Neural Networks to Predict Solar Radiation for Duhok City, Iraq. In Proceedings of the 2020 International Conference on Computer Science and Software Engineering (CSASE), Duhok, Iraq, 16–18 April 2020; pp. 1–6. [Google Scholar]
- Ghimire, S.; Deo, R.C.; Downs, N.J.; Raj, N. Global solar radiation prediction by ANN integrated with European Centre for medium range weather forecast fields in solar rich cities of Queensland Australia. J. Clean. Prod. 2019, 216, 288–310. [Google Scholar] [CrossRef]
- Sözen, A.; Arcaklioǧlu, E.; Özalp, M.; Kanit, E.G. Use of artificial neural networks for mapping of solar potential in Turkey. Appl. Energy 2004, 77, 273–286. [Google Scholar] [CrossRef]
- Şenkal, O.; Kuleli, T. Estimation of solar radiation over Turkey using artificial neural network and satellite data. Appl. Energy 2009, 86, 1222–1228. [Google Scholar] [CrossRef]
- Khatib, T.; Mohamed, A.; Mahmoud, M.; Sopian, K. Modeling of daily solar energy on a horizontal surface for five main sites in Malaysia. Int. J. Green Energy 2011, 8, 795–819. [Google Scholar] [CrossRef]
- Tahir, Z.; Asim, M. Surface measured solar radiation data and solar energy resource assessment of Pakistan: A review. Renew. Sustain. Energy Rev. 2018, 81, 2839–2861. [Google Scholar] [CrossRef]
- Azhar, M.; Blanc, P.; Asim, M.; Imran, S.; Hayat, N.; Shahid, H.; Ali, H. The evaluation of reanalysis and analysis products of solar radiation for Sindh province, Pakistan. Renew. Energy 2020, 145, 347–362. [Google Scholar]
- Sukhera, M.; Pasha, M. Solar radiation maps for Pakistan. Sol. Wind. Technol. 1987, 4, 229–238. [Google Scholar] [CrossRef]
- Adnan, S.; Hayat Khan, A.; Haider, S.; Mahmood, R. Solar energy potential in Pakistan. J. Renew. Sustain. Energy 2012, 4, 032701. [Google Scholar] [CrossRef]
- Ghaffar, M.A. The energy supply situation in the rural sector of Pakistan and the potential of renewable energy technologies. Renew. Energy 1995, 6, 941–976. [Google Scholar] [CrossRef]
- Chaudhary, Q.-U.-Z. A procedure to obtain globar solar radiation maps from sunshine duration for Pakistan. Sol. Wind. Technol. (UK) 1990, 7, 245–253. [Google Scholar] [CrossRef]
- Raja, I.; Twidell, J. Distribution of global insolation over Pakistan. Sol. Energy 1989, 43, 355–357. [Google Scholar] [CrossRef]
- Garud, K.S.; Jayaraj, S.; Lee, M.Y. A review on modeling of solar photovoltaic systems using artificial neural networks, fuzzy logic, genetic algorithm and hybrid models. Int. J. Energy Res. 2021, 45, 6–35. [Google Scholar] [CrossRef]
- Hoang, A.T.; Nižetić, S.; Ong, H.C.; Tarelko, W.; Le, T.H.; Chau, M.Q.; Nguyen, X.P. A review on application of artificial neural network (ANN) for performance and emission characteristics of diesel engine fueled with biodiesel-based fuels. Sustain. Energy Technol. Assess. 2021, 47, 101416. [Google Scholar]
- Toghraie, D.; Sina, N.; Jolfaei, N.A.; Hajian, M.; Afrand, M. Designing an Artificial Neural Network (ANN) to predict the viscosity of Silver/Ethylene glycol nanofluid at different temperatures and volume fraction of nanoparticles. Phys. A Stat. Mech. Its Appl. 2019, 534, 122142. [Google Scholar] [CrossRef]
- Khatib, T. A novel approach for solar radiation prediction using artificial neural networks. Energy Sources Part A Recovery Util. Environ. Eff. 2015, 37, 2429–2436. [Google Scholar] [CrossRef]
- Milad, A.; Adwan, I.; Majeed, S.A.; Yusoff, N.I.M.; Al-Ansari, N.; Yaseen, Z.M. Emerging technologies of deep learning models development for pavement temperature prediction. IEEE Access 2021, 9, 23840–23849. [Google Scholar] [CrossRef]
- Cheng, Y.-C.; Qi, W.-M.; Cai, W.-Y. Dynamic properties of Elman and modified Elman neural network. In Proceedings of the International Conference on Machine Learning and Cybernetics, Beijing, China, 4–5 November 2002; pp. 637–640. [Google Scholar]
- Sparks, A.H. nasapower: A NASA POWER global meteorology, surface solar energy and climatology data client for R. J. Open Source Softw. 2018, 3, 1035. [Google Scholar] [CrossRef] [Green Version]
- Mubiru, J. Predicting total solar irradiation values using artificial neural networks. Renew. Energy 2008, 33, 2329–2332. [Google Scholar] [CrossRef]
- Lewis, C.D. Industrial and Business Forecasting Methods: A Practical Guide to Exponential Smoothing and Curve Fitting; Butterworth-Heinemann: Oxford, UK, 1982. [Google Scholar]
Sr. No. | Ref. | Map Type | Solar Radiation Data Used (No. of Stations) | Sunshine Duration Data Used (No. of Stations) | Data Predicted for No. of Stations |
---|---|---|---|---|---|
1. | Adnan et al. (2012) [28] | Annual | - | 58 (37 for SH. 21 for Tmax and Tmin). | 58 |
2. | Ghaffar (1995) [29] | Monthly | 5 | 37 | 37 |
3. | Chaudry (1990) [30] | Annual Monthly | 5 | 37 | 37 |
4. | Raja And Tidwell (1989) [31] | Annual Monthly | 7 (2 sites from India) | 40 | 40 |
5. | Sukhera and Pasha (1987) [27] | Annual, Monthly | 5 | 35 | 35 |
Network | Types of Layers | Connections |
---|---|---|
FFNN | 3 (Input, Hidden, Output) |
|
CFNN | 3 (Input, Hidden, Output) |
|
| ||
EMNN | 4 (Input, Hidden, Output, Context) |
|
|
ANN Model | Inputs |
ANN10 | L, Lon, Alt, d, Tmax, Tmin, RH, AH, KT, Prec, Gsat |
ANN11 | L, Lon, Alt, d, Tmax, Tmin, RH, AH, Gsat |
ANN13 | L, Lon, Alt, m, d, Tmax, Tmin, RH, AH, Gsat |
ANN29 | L, Lon, Alt, m, d, Prec, RH, Gsat |
ANN30 | L, Lon, Alt, d, Prec, RH, Gsat |
ANN31 | L, Lon, Alt, m, d, Prec, RH, AH, Gsat |
ANN43 | L, Lon, Alt, d, Gsat |
ANN45 | Alt, m, d, Tmax, Tmin, RH, AH, Gsat |
Daily | Monthly | Annual | |||||||
---|---|---|---|---|---|---|---|---|---|
Site | MAPE (%) | RMSE | MBE | MAPE (%) | RMSE | MBE | MAPE (%) | RMSE | MBE |
Lahore | 25.31 | 1.07 | 0.53 | 15.27 | 0.53 | 0.53 | 5.25 | 0.29 | 0.24 |
Peshawar | 18.32 | 0.85 | 0.48 | 11.62 | 0.47 | 0.47 | 11.62 | 0.47 | 0.47 |
Bahawalpur | 8.58 | 0.57 | −0.30 | 5.80 | 0.33 | 0.33 | 4.63 | 0.33 | 0.30 |
Hyderabad | 5.53 | 0.40 | −0.26 | 5.01 | 0.30 | 0.30 | 4.09 | 0.30 | 0.26 |
Islamabad | 9.00 | 0.47 | 0.18 | 4.38 | 0.18 | 0.18 | 4.36 | 0.18 | 0.18 |
Karachi | 6.93 | 0.43 | 0.01 | 3.44 | 0.17 | 0.17 | 1.01 | 0.17 | 0.01 |
Khuzdar | 7.82 | 0.67 | −0.35 | 5.59 | 0.35 | 0.35 | 5.59 | 0.35 | 0.35 |
Multan | 7.37 | 0.41 | −0.08 | 4.51 | 0.20 | 0.20 | 0.24 | 0.20 | 0.07 |
Quetta | 5.67 | 0.49 | −0.03 | 1.78 | 0.10 | 0.10 | 0.47 | 0.10 | 0.03 |
Average | 10.50 | 0.60 | 0.02 | 6.38 | 0.29 | 0.29 | 5.25 | 0.29 | 0.24 |
Daily | Monthly | Annual | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Site | Network | MAPE (%) | RMSE | MBE | MAPE (%) | RMSE | MBE | MAPE (%) | RMSE | MBE |
Lahore | FFNN | 16.49 | 0.77 | 0.01 | 8.38 | 0.33 | 0.33 | 0.89 | 0.33 | 0.004 |
CFNN | 18.95 | 0.85 | 0.12 | 8.48 | 0.35 | 0.35 | 0.37 | 0.37 | 0.05 | |
EMNN | 19.54 | 0.89 | 0.03 | 9.00 | 0.34 | 0.34 | 0.69 | 0.43 | 0.00 | |
Peshawar | FFNN | 11.75 | 0.66 | 0.09 | 3.23 | 0.13 | 0.13 | 0.17 | 0.13 | 0.03 |
CFNN | 13.02 | 0.69 | 0.04 | 3.67 | 0.17 | 0.17 | 0.74 | 0.21 | 0.08 | |
EMNN | 12.44 | 0.72 | 0.22 | 3.70 | 0.14 | 0.14 | 0.15 | 0.16 | 0.00 | |
Bahawalpur | FFNN | 6.36 | 0.44 | 0.01 | 2.57 | 0.11 | 0.11 | 0.83 | 0.16 | 0.01 |
CFNN | 6.37 | 0.43 | 0.09 | 2.02 | 0.11 | 0.11 | 0.29 | 0.12 | 0.03 | |
EMNN | 6.68 | 0.46 | 0.06 | 2.26 | 0.13 | 0.13 | 0.09 | 0.16 | 0.04 | |
Hyderabad | FFNN | 3.37 | 0.24 | 0.03 | 1.36 | 0.08 | 0.08 | 0.13 | 0.12 | 0.02 |
CFNN | 3.58 | 0.26 | 0.05 | 2.01 | 0.11 | 0.11 | 0.15 | 0.11 | 0.01 | |
EMNN | 3.56 | 0.25 | 0.00 | 2.00 | 0.11 | 0.11 | 0.05 | 0.11 | 0.004 | |
Islamabad | FFNN | 8.07 | 0.46 | 0.06 | 2.34 | 0.12 | 0.12 | 0.65 | 0.14 | 0.06 |
CFNN | 7.79 | 0.45 | 0.05 | 2.73 | 0.13 | 0.13 | 0.04 | 0.16 | 0.02 | |
EMNN | 7.92 | 0.45 | 0.02 | 2.74 | 0.13 | 0.13 | 0.13 | 0.13 | 0.04 | |
Karachi | FFNN | 6.28 | 0.41 | −0.06 | 2.74 | 0.15 | 0.15 | 0.01 | 0.17 | −0.03 |
CFNN | 6.17 | 0.40 | 0.04 | 1.93 | 0.09 | 0.09 | 0.38 | 0.15 | −0.01 | |
EMNN | 6.40 | 0.41 | −0.06 | 2.46 | 0.11 | 0.11 | 0.02 | 0.18 | −0.03 | |
Khuzdar | FFNN | 5.59 | 0.56 | −0.06 | 1.56 | 0.10 | 0.10 | 0.20 | 0.10 | −0.02 |
CFNN | 5.59 | 0.56 | −0.06 | 1.56 | 0.10 | 0.10 | 0.20 | 0.10 | −0.02 | |
EMNN | 5.55 | 0.56 | −0.07 | 1.74 | 0.11 | 0.11 | −0.05 | 0.12 | −0.01 | |
Multan | FFNN | 6.07 | 0.37 | −0.04 | 1.93 | 0.10 | 0.10 | 0.25 | 0.10 | −0.0002 |
CFNN | 5.76 | 0.35 | 0.0001 | 1.82 | 0.08 | 0.08 | 0.01 | 0.10 | −0.0001 | |
EMNN | 6.05 | 0.35 | −0.003 | 1.82 | 0.09 | 0.09 | 0.34 | 0.10 | −0.01 | |
Quetta | FFNN | 5.25 | 0.47 | 0.02 | 1.65 | 0.09 | 0.09 | 0.07 | 0.13 | 0.01 |
CFNN | 5.41 | 0.47 | 0.002 | 1.81 | 0.10 | 0.10 | 0.10 | 0.14 | 0.02 | |
EMNN | 5.35 | 0.47 | 0.02 | 1.67 | 0.10 | 0.10 | 0.04 | 0.11 | 0.01 | |
Average | FFNN | 7.83 | 0.49 | −0.01 | 3.36 | 0.16 | 0.16 | 0.99 | 0.17 | 0.05 |
CFNN | 8.22 | 0.50 | 0.003 | 3.22 | 0.16 | 0.16 | 0.86 | 0.18 | 0.06 | |
EMNN | 8.23 | 0.51 | −0.05 | 3.16 | 0.16 | 0.16 | 0.47 | 0.18 | 0.04 |
Cities | ANN10 | ANN11 | ANN13 | ANN29 | ANN30 | ANN31 | ANN43 | ANN45 |
---|---|---|---|---|---|---|---|---|
MAPE (%) | ||||||||
FFNN | ||||||||
Peshawar | 11.75 | 12.66 | 12.58 | 12.33 | 13.08 | 12.47 | 12.7 | 12.67 |
Bahawalpur | 6.35 | 6.80 | 6.85 | 6.98 | 7.18 | 7.15 | 7.35 | 6.69 |
Hyderabad | 3.50 | 3.48 | 3.78 | 3.82 | 3.75 | 3.37 | 3.95 | 3.67 |
Islamabad | 8.49 | 8.88 | 8.84 | 8.26 | 8.09 | 8.95 | 8.07 | 8.86 |
Karachi | 6.96 | 6.27 | 6.49 | 6.81 | 6.84 | 6.72 | 6.44 | 6.93 |
Khuzdar | 5.59 | 5.67 | 5.70 | 5.85 | 5.97 | 5.76 | 5.94 | 5.71 |
Multan | 6.07 | 6.42 | 6.63 | 6.70 | 6.85 | 6.49 | 7.00 | 6.52 |
Quetta | 5.25 | 5.45 | 5.39 | 5.61 | 5.66 | 5.40 | 5.77 | 5.63 |
Lahore | 16.48 | 20.24 | 19.99 | 19.78 | 20.07 | 20.18 | 20.19 | 23.83 |
Average | 7.83 | 8.43 | 8.47 | 8.46 | 8.61 | 8.50 | 8.60 | 8.95 |
CFNN | ||||||||
Peshawar | 13.02 | 14.13 | 13.46 | 14.00 | 13.71 | 13.44 | 13.76 | 13.28 |
Bahawalpur | 6.36 | 6.77 | 6.63 | 7.28 | 7.39 | 6.67 | 7.32 | 6.91 |
Hyderabad | 3.57 | 3.79 | 3.83 | 3.69 | 3.94 | 3.70 | 3.95 | 3.93 |
Islamabad | 8.97 | 8.78 | 8.89 | 8.21 | 7.93 | 8.77 | 7.79 | 8.76 |
Karachi | 6.29 | 6.65 | 6.17 | 6.31 | 7.07 | 6.49 | 6.36 | 6.56 |
Khuzdar | 5.59 | 5.67 | 5.70 | 5.85 | 5.97 | 5.76 | 5.94 | 5.71 |
Multan | 5.76 | 6.13 | 6.18 | 6.60 | 6.53 | 6.15 | 7.00 | 6.53 |
Quetta | 5.45 | 5.54 | 5.41 | 5.74 | 5.66 | 5.40 | 5.69 | 5.61 |
Lahore | 18.95 | 21.20 | 20.45 | 19.01 | 19.71 | 19.49 | 19.62 | 24.12 |
Average | 8.22 | 8.74 | 8.53 | 8.52 | 8.66 | 8.43 | 8.60 | 9.04 |
EMNN | ||||||||
Peshawar | 12.44 | 13.06 | 13.72 | 13.29 | 13.20 | 12.78 | 13.50 | 12.70 |
Bahawalpur | 6.67 | 7.02 | 6.84 | 7.04 | 7.13 | 7.16 | 7.32 | 6.79 |
Hyderabad | 3.56 | 3.63 | 3.98 | 3.96 | 3.94 | 3.70 | 3.95 | 3.93 |
Islamabad | 8.49 | 8.93 | 8.89 | 8.35 | 8.04 | 8.95 | 7.92 | 9.04 |
Karachi | 6.40 | 6.48 | 6.45 | 6.68 | 6.63 | 6.79 | 6.60 | 6.86 |
Khuzdar | 5.55 | 5.70 | 5.65 | 5.90 | 5.85 | 5.67 | 5.98 | 5.91 |
Multan | 6.04 | 6.46 | 6.59 | 6.29 | 6.62 | 6.51 | 6.99 | 6.06 |
Quetta | 5.34 | 5.45 | 5.34 | 5.68 | 5.77 | 5.46 | 5.81 | 5.76 |
Lahore | 19.54 | 20.03 | 21.82 | 20.46 | 20.03 | 20.45 | 20.71 | 23.56 |
Average | 8.23 | 8.52 | 8.81 | 8.63 | 8.58 | 8.61 | 8.75 | 8..96 |
Cities | ANN10 | ANN11 | ANN13 | ANN29 | ANN30 | ANN31 | ANN43 | ANN45 |
---|---|---|---|---|---|---|---|---|
MAPE (%) | ||||||||
FFNN | ||||||||
Peshawar | 5.90 | 5.10 | 4.28 | 4.51 | 4.59 | 4.64 | 5.18 | 3.22 |
Bahawalpur | 3.18 | 2.66 | 2.57 | 3.02 | 3.27 | 3.37 | 3.31 | 2.70 |
Hyderabad | 1.52 | 1.95 | 2.14 | 2.33 | 2.28 | 1.35 | 2.37 | 2.13 |
Islamabad | 4.01 | 4.52 | 3.87 | 3.05 | 2.33 | 4.05 | 2.78 | 3.97 |
Karachi | 4.07 | 2.73 | 2.82 | 3.58 | 3.45 | 3.01 | 3.32 | 3.45 |
Khuzdar | 2.41 | 1.84 | 1.81 | 1.61 | 2.40 | 1.72 | 2.11 | 1.55 |
Multan | 1.92 | 2.02 | 2.37 | 2.85 | 3.33 | 2.40 | 3.18 | 3.16 |
Quetta | 1.81 | 2.27 | 1.67 | 2.1 | 2.44 | 1.90 | 2.18 | 1.65 |
Lahore | 8.37 | 9.97 | 8.68 | 11.3 | 8.86 | 9.88 | 11.82 | 8.37 |
Average | 3.69 | 3.67 | 3.36 | 3.82 | 3.66 | 3.59 | 4.03 | 3.336 |
CFNN | ||||||||
Peshawar | 6.30 | 6.30 | 3.89 | 4.92 | 4.79 | 5.31 | 5.04 | 3.67 |
Bahawalpur | 2.02 | 2.61 | 2.54 | 3.43 | 3.66 | 2.20 | 3.51 | 3.22 |
Hyderabad | 2.23 | 2.13 | 2.50 | 2.09 | 2.29 | 2.00 | 2.37 | 2.10 |
Islamabad | 4.86 | 4.69 | 4.36 | 3.67 | 2.73 | 4.51 | 2.72 | 4.39 |
Karachi | 2.73 | 2.90 | 1.92 | 2.58 | 3.80 | 2.77 | 2.93 | 2.82 |
Khuzdar | 2.41 | 1.84 | 1.81 | 1.61 | 2.40 | 1.72 | 2.11 | 1.55 |
Multan | 2.04 | 2.01 | 2.05 | 2.99 | 3.29 | 1.81 | 3.18 | 1.94 |
Quetta | 1.81 | 2.30 | 1.92 | 2.52 | 2.44 | 1.90 | 2.00 | 1.94 |
Lahore | 10.86 | 11.12 | 11.39 | 8.48 | 9.95 | 8.47 | 10.54 | 15.63 |
Average | 3.92 | 3.99 | 3.60 | 3.59 | 3.93 | 3.41 | 3.82 | 4.14 |
EMNN | ||||||||
Peshawar | 6.77 | 5.13 | 6.59 | 3.70 | 4.38 | 5.29 | 4.71 | 4.32 |
Bahawalpur | 2.26 | 3.48 | 2.84 | 2.63 | 3.12 | 3.55 | 3.36 | 2.88 |
Hyderabad | 1.99 | 2.02 | 2.43 | 1.99 | 2.29 | 2.008 | 2.37 | 2.10 |
Islamabad | 4.35 | 4.62 | 4.48 | 3.55 | 2.74 | 4.63 | 2.72 | 4.48 |
Karachi | 2.63 | 2.62 | 2.46 | 3.36 | 3.51 | 3.18 | 3.41 | 3.57 |
Khuzdar | 2.21 | 1.86 | 1.90 | 1.92 | 2.12 | 1.74 | 2.05 | 1.99 |
Multan | 2.04 | 2.53 | 2.20 | 2.08 | 3.16 | 2.30 | 3.35 | 1.82 |
Quetta | 1.67 | 1.66 | 1.40 | 2.24 | 2.52 | 1.86 | 2.40 | 262 |
Lahore | 9.84 | 10.71 | 10.86 | 9.59 | 9.56 | 10.88 | 9.00 | 14.63 |
Average | 3.75 | 3.85 | 3.91 | 3.45 | 3.75 | 3.94 | 3.71 | 4.27 |
Cities | ANN10 | ANN11 | ANN13 | ANN29 | ANN30 | ANN31 | ANN43 | ANN45 |
---|---|---|---|---|---|---|---|---|
MAPE (%) | ||||||||
FFNN | ||||||||
Peshawar | 1.57 | 3.64 | 2.61 | 3.15 | 2.37 | 2.20 | 4.11 | 0.16 |
Bahawalpur | 0.83 | 1.63 | 1.48 | 0.93 | 0.77 | 1.99 | 0.86 | 2.59 |
Hyderabad | 0.48 | 0.67 | 0.13 | 0.66 | 0.07 | 0.46 | 0.15 | 0.28 |
Islamabad | 1.12 | 2.01 | 0.71 | 1.23 | 0.88 | 2.57 | 0.65 | 3.19 |
Karachi | 3.9 | 0.53 | 0.19 | 1.55 | 0.85 | 2.16 | 0.36 | 0.01 |
Khuzdar | 0.66 | 1.05 | 0.76 | 0.20 | 1.15 | 0.00 | 0.74 | 0.81 |
Multan | 0.94 | 0.25 | 1.16 | 0.67 | 0.48 | 0.54 | 2.05 | 2.63 |
Quetta | 0.16 | 0.20 | 0.16 | 0.06 | 0.10 | 0.18 | 0.31 | 057 |
Lahore | 0.89 | 2.74 | 3.00 | 5.74 | 2.27 | 3.97 | 3.89 | 0.89 |
Average | 1.18 | 1.41 | 1.13 | 1.58 | 0.99 | 1.56 | 1.46 | 1.24 |
CFNN | ||||||||
Peshawar | 1.39 | 1.39 | 1.30 | 2.95 | 0.74 | 4.41 | 1.18 | 2.40 |
Bahawalpur | 1.55 | 1.33 | 1.53 | 0.85 | 0.86 | 0.28 | 1.09 | 2.64 |
Hyderabad | 0.53 | 0.14 | 1.87 | 0.70 | 0.22 | 0.35 | 0.15 | 0.32 |
Islamabad | 0.10 | 0.74 | 1.60 | 0.03 | 0.21 | 2.03 | 0.47 | 3.56 |
Karachi | 1.21 | 0.0.38 | 1.05 | 1.33 | 3.11 | 1.54 | 0.26 | 0.96 |
Khuzdar | 0.66 | 1.05 | 0.76 | 0.20 | 1.15 | 0.00 | 0.74 | 0.81 |
Multan | 0.01 | 0.89 | 0.39 | 0.80 | 1.52 | 0.21 | 2.05 | 1.21 |
Quetta | 0.38 | 1.68 | 1.07 | 0.98 | 0.10 | 0.18 | 0.30 | 0.09 |
Lahore | 4.14 | 5.55 | 1.10 | 0.36 | 1.06 | 2.08 | 1.44 | 15.63 |
Average | 1.11 | 1.46 | 1.11 | 0.91 | 1.00 | 1.23 | 0.85 | 3.07 |
EMNN | ||||||||
Peshawar | 5.28 | 2.03 | 2.26 | 3.70 | 0.14 | 2.86 | 2.07 | 2.39 |
Bahawalpur | 0.85 | 3.20 | 0.76 | 0.25 | 0.25 | 2.17 | 0.09 | 1.89 |
Hyderabad | 0.04 | 0.56 | 0.04 | 0.04 | 0.22 | 0.35 | 0.15 | 0.32 |
Islamabad | 0.98 | 2.00 | 1.15 | 1.45 | 0.12 | 0.31 | 1.18 | 2.76 |
Karachi | 0.51 | 0.66 | 1.82 | 0.81 | 0.39 | 2.12 | 0.02 | 2.10 |
Khuzdar | 0.84 | 1.01 | 0.35 | 0.68 | 0.24 | 1.00 | 0.04 | 1.02 |
Multan | 0.49 | 0.97 | 0.76 | 1.08 | 0.82 | 0.33 | 1.92 | 1.00 |
Quetta | 0.29 | 0.57 | 0.63 | 1.13 | 1.07 | 0.03 | 1.12 | 2.08 |
Lahore | 1.06 | 0.79 | 9.51 | 8.55 | 0.93 | 0.69 | 6.50 | 14.60 |
Average | 1.15 | 1.31 | 1.92 | 1.97 | 0.47 | 1.10 | 1.34 | 3.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nawab, F.; Abd Hamid, A.S.; Alwaeli, A.; Arif, M.; Fauzan, M.F.; Ibrahim, A. Evaluation of Artificial Neural Networks with Satellite Data Inputs for Daily, Monthly, and Yearly Solar Irradiation Prediction for Pakistan. Sustainability 2022, 14, 7945. https://doi.org/10.3390/su14137945
Nawab F, Abd Hamid AS, Alwaeli A, Arif M, Fauzan MF, Ibrahim A. Evaluation of Artificial Neural Networks with Satellite Data Inputs for Daily, Monthly, and Yearly Solar Irradiation Prediction for Pakistan. Sustainability. 2022; 14(13):7945. https://doi.org/10.3390/su14137945
Chicago/Turabian StyleNawab, Faisal, Ag Sufiyan Abd Hamid, Ali Alwaeli, Muhammad Arif, Mohd Faizal Fauzan, and Adnan Ibrahim. 2022. "Evaluation of Artificial Neural Networks with Satellite Data Inputs for Daily, Monthly, and Yearly Solar Irradiation Prediction for Pakistan" Sustainability 14, no. 13: 7945. https://doi.org/10.3390/su14137945
APA StyleNawab, F., Abd Hamid, A. S., Alwaeli, A., Arif, M., Fauzan, M. F., & Ibrahim, A. (2022). Evaluation of Artificial Neural Networks with Satellite Data Inputs for Daily, Monthly, and Yearly Solar Irradiation Prediction for Pakistan. Sustainability, 14(13), 7945. https://doi.org/10.3390/su14137945