Demand-Side Flexibility in Power Systems: A Survey of Residential, Industrial, Commercial, and Agricultural Sectors
Abstract
1. Introduction
2. Demand Flexibility
3. Residential Demand Flexibility
4. Industrial Demand Flexibility
5. Commercial Demand Flexibility
6. Agricultural Demand Flexibility
7. Challenges and Future Insights
- (1)
- Regulatory barriers, e.g., lack of regulation or tax issues for flexible industries;
- (2)
- Financial incentives for flexible consumers;
- (3)
- Lack of motivation and widespread adoption of DRPs;
- (4)
- Technological challenges, e.g., lack of IoT and data storage/processing facilities.
8. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jakučionytė-Skodienė, M.; Liobikienė, G. Climate change concern, personal responsibility and actions related to climate change mitigation in EU countries: Cross-cultural analysis. J. Clean. Prod. 2021, 281, 125189. [Google Scholar] [CrossRef]
- Li, M.; Virguez, E.; Shan, R.; Tian, J.; Gao, S.; Patiño-Echeverri, D. High-resolution data shows China’s wind and solar energy resources are enough to support a 2050 decarbonized electricity system. Appl. Energy 2022, 306, 117996. [Google Scholar] [CrossRef]
- Erenoğlu, A.K.; Şengör, İ.; Erdinç, O.; Taşcıkaraoğlu, A.; Catalão, J.P.S. Optimal energy management system for microgrids considering energy storage, demand response and renewable power generation. Int. J. Electr. Power Energy Syst. 2022, 136, 107714. [Google Scholar] [CrossRef]
- Sasaki, K.; Aki, H.; Ikegami, T. Application of model predictive control to grid flexibility provision by distributed energy resources in residential dwellings under uncertainty. Energy 2022, 239, 122183. [Google Scholar] [CrossRef]
- Panuschka, S.; Hofmann, R. Impact of thermal storage capacity, electricity and emission certificate costs on the optimal operation of an industrial energy system. Energy Convers. Manag. 2019, 185, 622–635. [Google Scholar] [CrossRef]
- Van Zoest, V.; El Gohary, F.; Ngai, E.C.H.; Bartusch, C. Demand charges and user flexibility—Exploring differences in electricity consumer types and load patterns within the Swedish commercial sector. Appl. Energy 2021, 302, 117543. [Google Scholar] [CrossRef]
- Pamučar, D.; Behzad, M.; Božanić, D.; Behzad, M. Decision making to support sustainable energy policies corresponding to agriculture sector: Case study in Iran’s Caspian Sea coastline. J. Clean. Prod. 2021, 292, 125302. [Google Scholar] [CrossRef]
- Bahramara, S. Robust Optimization of the Flexibility-constrained Energy Management Problem for a Smart Home with Rooftop Photovoltaic and an Energy Storage. J. Energy Storage 2021, 36, 102358. [Google Scholar] [CrossRef]
- Vellei, M.; Le Dréau, J.; Abdelouadoud, S.Y. Predicting the demand flexibility of wet appliances at national level: The case of France. Energy Build. 2020, 214, 109900. [Google Scholar] [CrossRef]
- Lakshmanan, V.; Sæle, H.; Degefa, M.Z. Electric water heater flexibility potential and activation impact in system operator perspective—Norwegian scenario case study. Energy 2021, 236, 121490. [Google Scholar] [CrossRef]
- Zehir, M.A.; Bagriyanik, M. Demand Side Management by controlling refrigerators and its effects on consumers. Energy Convers. Manag. 2012, 64, 238–244. [Google Scholar] [CrossRef]
- Javaid, N.; Ahmed, F.; Ullah, I.; Abid, S.; Abdul, W.; Alamri, A.; Almogren, A.S. Towards Cost and Comfort Based Hybrid Optimization for Residential Load Scheduling in a Smart Grid. Energies 2017, 10, 1546. [Google Scholar] [CrossRef]
- Mor, G.; Cipriano, J.; Grillone, B.; Amblard, F.; Menon, R.P.; Page, J.; Brennenstuhl, M.; Pietruschka, D.; Baumer, R.; Eicker, U. Operation and energy flexibility evaluation of direct load controlled buildings equipped with heat pumps. Energy Build. 2021, 253, 111484. [Google Scholar] [CrossRef]
- Cañigueral, M.; Meléndez, J. Flexibility management of electric vehicles based on user profiles: The Arnhem case study. Int. J. Electr. Power Energy Syst. 2021, 133, 107195. [Google Scholar] [CrossRef]
- Lee, E.; Baek, K.; Kim, J. Evaluation of Demand Response Potential Flexibility in the Industry Based on a Data-Driven Approach. Energies 2020, 13, 6355. [Google Scholar] [CrossRef]
- Cuvelier, T. Embedding reservoirs in industrial models to exploit their flexibility. SN Appl. Sci. 2020, 2, 2171. [Google Scholar] [CrossRef]
- Marton, S.; Langner, C.; Svensson, E.; Harvey, S. Costs vs. Flexibility of Process Heat Recovery Solutions Considering Short-Term Process Variability and Uncertain Long-Term Development. Front. Chem. Eng. 2021, 3, 25. [Google Scholar] [CrossRef]
- Hovgaard, T.G.; Larsen, L.F.S.; Jørgensen, J.B. Flexible and cost efficient power consumption using economic MPC a supermarket refrigeration benchmark. In Proceedings of the 2011 50th IEEE Conference on Decision and Control and European Control Conference, Orlando, FL, USA, 12–15 December 2011; pp. 848–854. [Google Scholar] [CrossRef]
- Yin, R.; Kara, E.C.; Li, Y.; DeForest, N.; Wang, K.; Yong, T.; Stadler, M. Quantifying flexibility of commercial and residential loads for demand response using setpoint changes. Appl. Energy 2016, 177, 149–164. [Google Scholar] [CrossRef]
- Babic, J.; Carvalho, A.; Ketter, W.; Podobnik, V. A data-driven approach to managing electric vehicle charging infrastructure in parking lots. Transp. Res. Part D Transp. Environ. 2022, 105, 103198. [Google Scholar] [CrossRef]
- Pardo Picazo, M.Á.; Juárez, J.M.; García-Márquez, D. Energy Consumption Optimization in Irrigation Networks Supplied by a Standalone Direct Pumping Photovoltaic System. Sustainability 2018, 10, 4203. [Google Scholar] [CrossRef]
- Muralidhar, K.; Rajasekar, N. A review of various components of solar water-pumping system: Configuration, characteristics, and performance. Int. Trans. Electr. Energy Syst. 2021, 31, e13002. [Google Scholar] [CrossRef]
- Chou, S.K.; Chua, K.J.; Ho, J.C.; Ooi, C.L. On the study of an energy-efficient greenhouse for heating, cooling and dehumidification applications. Appl. Energy 2004, 77, 355–373. [Google Scholar] [CrossRef]
- Byrne, P.S.; Carton, J.G.; Corcoran, B. Investigating the Suitability of a Heat Pump Water-Heater as a Method to Reduce Agricultural Emissions in Dairy Farms. Sustainability 2021, 13, 5736. [Google Scholar] [CrossRef]
- Wu, Y.-K.; Tang, K.-T. Frequency Support by Demand Response—Review and Analysis. Energy Procedia 2019, 156, 327–331. [Google Scholar] [CrossRef]
- Singh, V.P.; Samuel, P.; Kishor, N. Impact of demand response for frequency regulation in two-area thermal power system. Int. Trans. Electr. Energy Syst. 2017, 27, e2246. [Google Scholar] [CrossRef]
- Chassin, D.P.; Behboodi, S.; Shi, Y.; Djilali, N. H2-optimal transactive control of electric power regulation from fast-acting demand response in the presence of high renewables. Appl. Energy 2017, 205, 304–315. [Google Scholar] [CrossRef]
- Xie, Q.; Hui, H.; Ding, Y.; Ye, C.; Lin, Z.; Wang, P.; Song, Y.; Ji, L.; Chen, R. Use of demand response for voltage regulation in power distribution systems with flexible resources. IET Gener. Transm. Distrib. 2020, 14, 883–892. [Google Scholar] [CrossRef]
- Mimica, M.; Sinovčić, Z.; Jokić, A.; Krajačić, G. The role of the energy storage and the demand response in the robust reserve and network-constrained joint electricity and reserve market. Electr. Power Syst. Res. 2022, 204, 107716. [Google Scholar] [CrossRef]
- Golmohamadi, H.; Ramezani, M.; Bashian, A.; Falaghi, H. Risk-based maintenance scheduling of generating units in the deregulated environment considering transmission network congestion. J. Mod. Power Syst. Clean Energy 2014, 2, 150–162. [Google Scholar] [CrossRef]
- Zhao, L.; Aravinthan, V. Strategies of residential peak shaving with integration of demand response and V2H. In Proceedings of the 2013 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Hong Kong, China, 8–11 December 2013; pp. 1–5. [Google Scholar] [CrossRef]
- Misconel, S.; Zöphel, C.; Möst, D. Assessing the value of demand response in a decarbonized energy system—A large-scale model application. Appl. Energy 2021, 299, 117326. [Google Scholar] [CrossRef]
- McPherson, M.; Stoll, B. Demand response for variable renewable energy integration: A proposed approach and its impacts. Energy 2020, 197, 117205. [Google Scholar] [CrossRef]
- Davarzani, S.; Pisica, I.; Taylor, G.A.; Munisami, K.J. Residential Demand Response Strategies and Applications in Active Distribution Network Management. Renew. Sustain. Energy Rev. 2021, 138, 110567. [Google Scholar] [CrossRef]
- Golmohamadi, H. Demand-side management in industrial sector: A review of heavy industries. Renew. Sustain. Energy Rev. 2022, 156, 111963. [Google Scholar] [CrossRef]
- Golmohamadi, H. Agricultural Demand Response Aggregators in Electricity Markets: Structure, Challenges and Practical Solutions- a Tutorial for Energy Experts. Technol. Econ. Smart Grids Sustain. Energy 2020, 5, 17. [Google Scholar] [CrossRef]
- Darwazeh, D.; Duquette, J.; Gunay, B.; Wilton, I.; Shillinglaw, S. Review of peak load management strategies in commercial buildings. Sustain. Cities Soc. 2022, 77, 103493. [Google Scholar] [CrossRef]
- Golmohamadi, H.; Keypour, R.; Niasati, M. Composite System Maintenance Coordination in a Smart Grid Considering Demand Response. Technol. Econ. Smart Grids Sustain. Energy 2016, 1, 13. [Google Scholar] [CrossRef][Green Version]
- Babatunde, O.M.; Munda, J.L.; Hamam, Y. Power system flexibility: A review. Energy Rep. 2020, 6, 101–106. [Google Scholar] [CrossRef]
- Golmohamadi, H.; Keypour, R.; Hassanpour, A.; Davoudi, M. Optimization of green energy portfolio in retail market using stochastic programming. In Proceedings of the 2015 North American Power Symposium (NAPS), Charlotte, NC, USA, 4–6 October 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Golmohamadi, H.; Keypour, R. Application of Robust Optimization Approach to Determine Optimal Retail Electricity Price in Presence of Intermittent and Conventional Distributed Generation Considering Demand Response. J. Control. Autom. Electr. Syst. 2017, 28, 664–678. [Google Scholar] [CrossRef]
- Jin, M.; Feng, W.; Marnay, C.; Spanos, C. Microgrid to enable optimal distributed energy retail and end-user demand response. Appl. Energy 2018, 210, 1321–1335. [Google Scholar] [CrossRef]
- Metwaly, M.K.; Teh, J. Probabilistic Peak Demand Matching by Battery Energy Storage Alongside Dynamic Thermal Ratings and Demand Response for Enhanced Network Reliability. IEEE Access 2020, 8, 181547–181559. [Google Scholar] [CrossRef]
- Hui, H.; Ding, Y.; Song, Y. Adaptive time-delay control of flexible loads in power systems facing accidental outages. Appl. Energy 2020, 275, 115321. [Google Scholar] [CrossRef]
- McKenna, K.; Keane, A. Residential Load Modeling of Price-Based Demand Response for Network Impact Studies. IEEE Trans. Smart Grid 2016, 7, 2285–2294. [Google Scholar] [CrossRef]
- Zheng, S.; Sun, Y.; Li, B.; Qi, B.; Shi, K.; Li, Y.; Tu, X. Incentive-Based Integrated Demand Response for Multiple Energy Carriers Considering Behavioral Coupling Effect of Consumers. IEEE Trans. Smart Grid 2020, 11, 3231–3245. [Google Scholar] [CrossRef]
- Golmohamadi, H.; Keypour, R. Stochastic optimization for retailers with distributed wind generation considering demand response. J. Mod. Power Syst. Clean Energy 2018, 6, 733–748. [Google Scholar] [CrossRef]
- Chen, W.; Qiu, J.; Chai, Q. Customized Critical Peak Rebate Pricing Mechanism for Virtual Power Plants. IEEE Trans. Sustain. Energy 2021, 12, 2169–2183. [Google Scholar] [CrossRef]
- Zhang, D.; Zhu, H.; Zhang, H.; Goh, H.H.; Liu, H.; Wu, T. Multi-Objective Optimization for Smart Integrated Energy System Considering Demand Responses and Dynamic Prices. IEEE Trans. Smart Grid 2022, 13, 1100–1112. [Google Scholar] [CrossRef]
- Golmohamadi, H. Virtual Storage Plants in Parking Lots of Electric Vehicles Providing Local/Global Power System Supports. Energy Storage 2021, 43, 103249. [Google Scholar] [CrossRef]
- Engels, J.; Claessens, B.; Deconinck, G. Grid-Constrained Distributed Optimization for Frequency Control With Low-Voltage Flexibility. IEEE Trans. Smart Grid 2020, 11, 612–622. [Google Scholar] [CrossRef]
- Wang, W.; Jing, S.; Sun, Y.; Liu, J.; Niu, Y.; Zeng, D.; Cui, C. Combined heat and power control considering thermal inertia of district heating network for flexible electric power regulation. Energy 2019, 169, 988–999. [Google Scholar] [CrossRef]
- Khatami, R.; Parvania, M.; Narayan, A. Flexibility Reserve in Power Systems: Definition and Stochastic Multi-Fidelity Optimization. IEEE Trans. Smart Grid 2020, 11, 644–654. [Google Scholar] [CrossRef]
- Guo, N.; Wang, Y.; Yan, G. A double-sided non-cooperative game in electricity market with demand response and parameterization of supply functions. Int. J. Electr. Power Energy Syst. 2021, 126, 106565. [Google Scholar] [CrossRef]
- Hamedi, K.; Sadeghi, S.; Esfandi, S.; Azimian, M.; Golmohamadi, H. Eco-Emission Analysis of Multi-Carrier Microgrid Integrated with Compressed Air and Power-to-Gas Energy Storage Technologies. Sustainability 2021, 13, 4681. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, J.; Dong, F.; Qin, Y.; Ma, Z.; Ma, Y.; Li, J. Novel flexibility evaluation of hybrid combined cooling, heating and power system with an improved operation strategy. Appl. Energy 2021, 300, 117358. [Google Scholar] [CrossRef]
- Li, J.; Liu, F.; Li, Z.; Shao, C.; Liu, X. Grid-side flexibility of power systems in integrating large-scale renewable generations: A critical review on concepts, formulations and solution approaches. Renew. Sustain. Energy Rev. 2018, 93, 272–284. [Google Scholar] [CrossRef]
- Ndawula, M.B.; Hernando-Gil, I.; Li, R.; Gu, C.; De Paola, A. Model order reduction for reliability assessment of flexible power networks. Int. J. Electr. Power Energy Syst. 2021, 127, 106623. [Google Scholar] [CrossRef]
- Fonteijn, R.; Nguyen, P.H.; Morren, J.; Slootweg, J.G. Demonstrating a generic four-step approach for applying flexibility for congestion management in daily operation. Sustain. Energy Grids Netw. 2020, 23, 100378. [Google Scholar] [CrossRef]
- Bashian, A.; Hojat, M.; Javidi, M.H.; Golmohamadi, H. Security-Based Tariff for Wheeling Contracts Considering Fair Congestion Cost Allocation. J. Control. Autom. Electr. Syst. 2014, 25, 368–380. [Google Scholar] [CrossRef]
- Li, P.; Wei, M.; Ji, H.; Xi, W.; Yu, H.; Wu, J.; Yao, H.; Chen, J. Deep Reinforcement Learning-Based Adaptive Voltage Control of Active Distribution Networks with Multi-terminal Soft Open Point. Int. J. Electr. Power Energy Syst. 2022, 141, 108138. [Google Scholar] [CrossRef]
- Jangdoost, A.; Keypour, R.; Golmohamadi, H. Optimization of distribution network reconfiguration by a novel RCA integrated with genetic algorithm. Energy Syst. 2020, 12, 801–833. [Google Scholar] [CrossRef]
- Alshehri, J.; Khalid, M. Power Quality Improvement in Microgrids Under Critical Disturbances Using an Intelligent Decoupled Control Strategy Based on Battery Energy Storage System. IEEE Access 2019, 7, 147314–147326. [Google Scholar] [CrossRef]
- McKenna, R.; Pfenninger, S.; Heinrichs, H.; Schmidt, J.; Staffell, I.; Bauer, C.; Gruber, K.; Hahmann, A.N.; Jansen, M.; Klingler, M.; et al. High-resolution large-scale onshore wind energy assessments: A review of potential definitions, methodologies and future research needs. Renew. Energy 2022, 182, 659–684. [Google Scholar] [CrossRef]
- Sward, J.A.; Siff, J.; Gu, J.; Zhang, K.M. Strategic planning for utility-scale solar photovoltaic development—Historical peak events revisited. Appl. Energy 2019, 250, 1292–1301. [Google Scholar] [CrossRef]
- Hu, Y.; Cheng, H.; Tao, S. Opportunity and challenges in large-scale geothermal energy exploitation in China. Crit. Rev. Environ. Sci. Technol. 2021, 1–22. [Google Scholar] [CrossRef]
- Bakken, T.H.; Sundt, H.; Ruud, A.; Harby, A. Development of Small Versus Large Hydropower in Norway– Comparison of Environmental Impacts. Energy Procedia 2012, 20, 185–199. [Google Scholar] [CrossRef]
- Venus, T.E.; Hinzmann, M.; Bakken, T.H.; Gerdes, H.; Godinho, F.N.; Hansen, B.; Pinheiro, A.; Sauer, J. The public’s perception of run-of-the-river hydropower across Europe. Energy Policy 2020, 140, 111422. [Google Scholar] [CrossRef]
- Kalair, A.R.; Abas, N.; Hasan, Q.U.; Seyedmahmoudian, M.; Khan, N. Demand side management in hybrid rooftop photovoltaic integrated smart nano grid. J. Clean. Prod. 2020, 258, 120747. [Google Scholar] [CrossRef]
- Odou, O.D.T.; Bhandari, R.; Adamou, R. Hybrid off-grid renewable power system for sustainable rural electrification in Benin. Renew. Energy 2020, 145, 1266–1279. [Google Scholar] [CrossRef]
- Thopil, M.S.; Bansal, R.C.; Zhang, L.; Sharma, G. A review of grid connected distributed generation using renewable energy sources in South Africa. Energy Strategy Rev. 2018, 21, 88–97. [Google Scholar] [CrossRef]
- Tuomela, S.; de Castro Tomé, M.; Iivari, N.; Svento, R. Impacts of home energy management systems on electricity consumption. Appl. Energy 2021, 299, 117310. [Google Scholar] [CrossRef]
- Olawale, O.W.; Gilbert, B.; Reyna, J. Residential Demand Flexibility: Modeling Occupant Behavior using Sociodemographic Predictors. Energy Build. 2022, 262, 111973. [Google Scholar] [CrossRef]
- D’hulst, R.; Labeeuw, W.; Beusen, B.; Claessens, S.; Deconinck, G.; Vanthournout, K. Demand response flexibility and flexibility potential of residential smart appliances: Experiences from large pilot test in Belgium. Appl. Energy 2015, 155, 79–90. [Google Scholar] [CrossRef]
- Stamminger, R.; Schmitz, A. Load profiles and flexibility in operation of washing machines and dishwashers in Europe. Int. J. Consum. Stud. 2017, 41, 178–187. [Google Scholar] [CrossRef]
- Dortans, C.; Jack, M.W.; Anderson, B.; Stephenson, J. Lightening the load: Quantifying the potential for energy-efficient lighting to reduce peaks in electricity demand. Energy Effic. 2020, 13, 1105–1118. [Google Scholar] [CrossRef]
- Utama, C.; Troitzsch, S.; Thakur, J. Demand-side flexibility and demand-side bidding for flexible loads in air-conditioned buildings. Appl. Energy 2021, 285, 116418. [Google Scholar] [CrossRef]
- Pan, Z.; Guo, Q.; Sun, H. Impacts of optimization interval on home energy scheduling for thermostatically controlled appliances. CSEE J. Power Energy Syst. 2015, 1, 90–100. [Google Scholar] [CrossRef]
- Pied, M.; Anjos, M.F.; Malhamé, R.P. A flexibility product for electric water heater aggregators on electricity markets. Appl. Energy 2020, 280, 115168. [Google Scholar] [CrossRef]
- Aduda, K.O.; Labeodan, T.; Zeiler, W. Towards critical performance considerations for using office buildings as a power flexibility resource-a survey. Energy Build. 2018, 159, 164–178. [Google Scholar] [CrossRef]
- Golmohamadi, H.; Keypour, R.; Bak-Jensen, B.; Radhakrishna Pillai, J. Optimization of household energy consumption towards day-ahead retail electricity price in home energy management systems. Sustain. Cities Soc. 2019, 47, 101468. [Google Scholar] [CrossRef]
- Kuboth, S.; Heberle, F.; Weith, T.; Welzl, M.; König-Haagen, A.; Brüggemann, D. Experimental short-term investigation of model predictive heat pump control in residential buildings. Energy Build. 2019, 204, 109444. [Google Scholar] [CrossRef]
- Golmohamadi, H. Stochastic energy optimization of residential heat pumps in uncertain electricity markets. Appl. Energy 2021, 303, 117629. [Google Scholar] [CrossRef]
- Golmohamadi, H.; Larsen, K.G.; Jensen, P.G.; Hasrat, I.R. Hierarchical flexibility potentials of residential buildings with responsive heat pumps: A case study of Denmark. J. Build. Eng. 2021, 41, 102425. [Google Scholar] [CrossRef]
- Emhofer, J.; Marx, K.; Sporr, A.; Barz, T.; Nitsch, B.; Wiesflecker, M.; Pink, W. Experimental demonstration of an air-source heat pump application using an integrated phase change material storage as a desuperheater for domestic hot water generation. Appl. Energy 2022, 305, 117890. [Google Scholar] [CrossRef]
- Li, H.; Hou, J.; Tian, Z.; Hong, T.; Nord, N.; Rohde, D. Optimize heat prosumers’ economic performance under current heating price models by using water tank thermal energy storage. Energy 2022, 239, 122103. [Google Scholar] [CrossRef]
- Golmohamadi, H.; Guldstrand Larsen, K.; Gjøl Jensen, P.; Riaz Hasrat, I. Optimization of power-to-heat flexibility for residential buildings in response to day-ahead electricity price. Energy Build. 2021, 232, 110665. [Google Scholar] [CrossRef]
- Ahmed, A.; Qayoum, A.; Mir, F.Q. Spectroscopic studies of renewable insulation materials for energy saving in building sector. J. Build. Eng. 2021, 44, 103300. [Google Scholar] [CrossRef]
- Golmohamadi, H.; Larsen, K.G. Economic heat control of mixing loop for residential buildings supplied by low-temperature district heating. J. Build. Eng. 2021, 46, 103286. [Google Scholar] [CrossRef]
- Boodi, A.; Beddiar, K.; Amirat, Y.; Benbouzid, M. Building Thermal-Network Models: A Comparative Analysis, Recommendations, and Perspectives. Energies 2022, 15, 1328. [Google Scholar] [CrossRef]
- Brastein, O.M.; Ghaderi, A.; Pfeiffer, C.F.; Skeie, N.-O. Analysing uncertainty in parameter estimation and prediction for grey-box building thermal behaviour models. Energy Build. 2020, 224, 110236. [Google Scholar] [CrossRef]
- Killian, M.; Mayer, B.; Kozek, M. Effective fuzzy black-box modeling for building heating dynamics. Energy Build. 2015, 96, 175–186. [Google Scholar] [CrossRef]
- Golmohamadi, H. Data-Driven Approach to Forecast Heat Consumption of Buildings with High-Priority Weather Data. Buildings 2022, 12, 289. [Google Scholar] [CrossRef]
- Wang, S.; Xu, X. Parameter estimation of internal thermal mass of building dynamic models using genetic algorithm. Energy Convers. Manag. 2006, 47, 1927–1941. [Google Scholar] [CrossRef]
- Zhou, X.; Xu, L.; Zhang, J.; Niu, B.; Luo, M.; Zhou, G.; Zhang, X. Data-driven thermal comfort model via support vector machine algorithms: Insights from ASHRAE RP-884 database. Energy Build. 2020, 211, 109795. [Google Scholar] [CrossRef]
- Golmohamadi, H.; Larsen, K.G.; Jensen, P.G.; Hasrat, I.R. Integration of flexibility potentials of district heating systems into electricity markets: A review. Renew. Sustain. Energy Rev. 2022, 159, 112200. [Google Scholar] [CrossRef]
- Halvgaard, R.; Poulsen, N.K.; Madsen, H.; Jørgensen, J.B. Economic Model Predictive Control for building climate control in a Smart Grid. In Proceedings of the 2012 IEEE PES Innovative Smart Grid Technologies (ISGT), Washington, DC, USA, 16–20 January 2012; pp. 1–6. [Google Scholar] [CrossRef]
- Clauß, J.; Stinner, S.; Sartori, I.; Georges, L. Predictive rule-based control to activate the energy flexibility of Norwegian residential buildings: Case of an air-source heat pump and direct electric heating. Appl. Energy 2019, 237, 500–518. [Google Scholar] [CrossRef]
- Marijanovic, Z.; Theile, P.; Czock, B. Value of short-term heating system flexibility—A case study for residential heat pumps on the German intraday market. Energy 2022, 249, 123664. [Google Scholar] [CrossRef]
- Abokersh, M.H.; Saikia, K.; Cabeza, L.F.; Boer, D.; Vallès, M. Flexible heat pump integration to improve sustainable transition toward 4th generation district heating. Energy Convers. Manag. 2020, 225, 113379. [Google Scholar] [CrossRef]
- Harild Rasmussen, T.B.; Wu, Q.; Zhang, M. Primary frequency support from local control of large-scale heat pumps. Int. J. Electr. Power Energy Syst. 2021, 133, 107270. [Google Scholar] [CrossRef]
- Yu, T.; Kim, D.S.; Son, S.-Y. Optimization of scheduling for home appliances in conjunction with renewable and energy storage resources. Int. J. Smart Home 2013, 7, 261–272. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84883259313&partnerID=40&md5=6e48e1b22ff77efacfe8f401d2068a14 (accessed on 2 June 2022).
- Stadler, M.; Krause, W.; Sonnenschein, M.; Vogel, U. Modelling and evaluation of control schemes for enhancing load shift of electricity demand for cooling devices. Environ. Model. Softw. 2009, 24, 285–295. [Google Scholar] [CrossRef]
- Adika, C.O.; Wang, L. Smart charging and appliance scheduling approaches to demand side management. Int. J. Electr. Power Energy Syst. 2014, 57, 232–240. [Google Scholar] [CrossRef]
- Gottwalt, S.; Ketter, W.; Block, C.; Collins, J.; Weinhardt, C. Demand side management—A simulation of household behavior under variable prices. Energy Policy 2011, 39, 8163–8174. [Google Scholar] [CrossRef]
- Shen, G.; Lee, Z.E.; Amadeh, A.; Zhang, K.M. A data-driven electric water heater scheduling and control system. Energy Build. 2021, 242, 110924. [Google Scholar] [CrossRef]
- Tejero-Gómez, J.A.; Bayod-Rújula, A.A. Energy management system design oriented for energy cost optimization in electric water heaters. Energy Build. 2021, 243, 111012. [Google Scholar] [CrossRef]
- Kapsalis, V.; Hadellis, L. Optimal operation scheduling of electric water heaters under dynamic pricing. Sustain. Cities Soc. 2017, 31, 109–121. [Google Scholar] [CrossRef]
- Pereira, T.C.; Amaral Lopes, R.; Martins, J. Exploring the Energy Flexibility of Electric Water Heaters. Energies 2020, 13, 46. [Google Scholar] [CrossRef]
- Finn, P.; O’Connell, M.; Fitzpatrick, C. Demand side management of a domestic dishwasher: Wind energy gains, financial savings and peak-time load reduction. Appl. Energy 2013, 101, 678–685. [Google Scholar] [CrossRef]
- Ladenburg, J.; Jensen, K.L.; Lodahl, C.; Keles, D. Testing for non-linear willingness to accept compensation for controlled electricity switch-offs using choice experiments. Energy 2022, 238, 121749. [Google Scholar] [CrossRef]
- Azizi, E.; Ahmadiahangar, R.; Rosin, A.; Martins, J.; Lopes, R.A.; Beheshti, M.T.H.; Bolouki, S. Residential energy flexibility characterization using non-intrusive load monitoring. Sustain. Cities Soc. 2021, 75, 103321. [Google Scholar] [CrossRef]
- Costanzo, G.T.; Zhu, G.; Anjos, M.F.; Savard, G. A System Architecture for Autonomous Demand Side Load Management in Smart Buildings. IEEE Trans. Smart Grid 2012, 3, 2157–2165. [Google Scholar] [CrossRef]
- Bozchalui, M.C.; Hashmi, S.A.; Hassen, H.; Canizares, C.A.; Bhattacharya, K. Optimal Operation of Residential Energy Hubs in Smart Grids. IEEE Trans. Smart Grid 2012, 3, 1755–1766. [Google Scholar] [CrossRef]
- Hassan, N.U.; Pasha, M.A.; Yuen, C.; Huang, S.; Wang, X. Impact of Scheduling Flexibility on Demand Profile Flatness and User Inconvenience in Residential Smart Grid System. Energies 2013, 6, 6608. [Google Scholar] [CrossRef]
- Babaei, M.; Abazari, A.; Soleymani, M.M.; Ghafouri, M.; Muyeen, S.M.; Beheshti, M.T.H. A data-mining based optimal demand response program for smart home with energy storages and electric vehicles. J. Energy Storage 2021, 36, 102407. [Google Scholar] [CrossRef]
- Tostado-Véliz, M.; León-Japa, R.S.; Jurado, F. Optimal electrification of off-grid smart homes considering flexible demand and vehicle-to-home capabilities. Appl. Energy 2021, 298, 117184. [Google Scholar] [CrossRef]
- Borge-Diez, D.; Icaza, D.; Açıkkalp, E.; Amaris, H. Combined vehicle to building (V2B) and vehicle to home (V2H) strategy to increase electric vehicle market share. Energy 2021, 237, 121608. [Google Scholar] [CrossRef]
- Golmohamadi, H.; Keypour, R.; Bak-Jensen, B.; Pillai, J.R.; Khooban, M.H. Robust Self-Scheduling of Operational Processes for Industrial Demand Response Aggregators. IEEE Trans. Ind. Electron. 2020, 67, 1387–1395. [Google Scholar] [CrossRef]
- Aras Nejad, M.; Golmohamadi, H.; Bashian, A.; Mahmoodi, H.; Hammami, M. Application of Demand Response Programs to Heavy Industries: A Case Study on a Regional Electric Company. Int. J. Smart Electr. Eng. 2017, 6, 93–99. Available online: http://ijsee.iauctb.ac.ir/article_537456.html (accessed on 2 June 2022).
- Yao, M.; Hu, Z.; Zhang, N.; Duan, W.; Zhang, J. Low-carbon benefits analysis of energy-intensive industrial demand response resources for ancillary services. J. Mod. Power Syst. Clean Energy 2015, 3, 131–138. [Google Scholar] [CrossRef]
- Zhang, X.; Hug, G.; Harjunkoski, I. Cost-Effective Scheduling of Steel Plants With Flexible EAFs. IEEE Trans. Smart Grid 2017, 8, 239–249. [Google Scholar] [CrossRef]
- Alarfaj, O.; Bhattacharya, K. Material Flow Based Power Demand Modeling of an Oil Refinery Process for Optimal Energy Management. IEEE Trans. Power Syst. 2019, 34, 2312–2321. [Google Scholar] [CrossRef]
- Golmohamadi, H.; Asadi, A. Integration of Joint Power-Heat Flexibility of Oil Refinery Industries to Uncertain Energy Markets. Energies 2020, 13, 4874. [Google Scholar] [CrossRef]
- Summerbell, D.L.; Khripko, D.; Barlow, C.; Hesselbach, J. Cost and carbon reductions from industrial demand-side management: Study of potential savings at a cement plant. Appl. Energy 2017, 197, 100–113. [Google Scholar] [CrossRef]
- Ramin, D.; Spinelli, S.; Brusaferri, A. Demand-side management via optimal production scheduling in power-intensive industries: The case of metal casting process. Appl. Energy 2018, 225, 622–636. [Google Scholar] [CrossRef]
- Helin, K.; Käki, A.; Zakeri, B.; Lahdelma, R.; Syri, S. Economic potential of industrial demand side management in pulp and paper industry. Energy 2017, 141, 1681–1694. [Google Scholar] [CrossRef]
- Hasanbeigi, A.; Price, L. A review of energy use and energy efficiency technologies for the textile industry. Renew. Sustain. Energy Rev. 2012, 16, 3648–3665. [Google Scholar] [CrossRef]
- Seck, G.S.; Guerassimoff, G.; Maïzi, N. Heat recovery using heat pumps in non-energy intensive industry: Are Energy Saving Certificates a solution for the food and drink industry in France? Appl. Energy 2015, 156, 374–389. [Google Scholar] [CrossRef]
- Ma, S.; Zhang, Y.; Liu, Y.; Yang, H.; Lv, J.; Ren, S. Data-driven sustainable intelligent manufacturing based on demand response for energy-intensive industries. J. Clean. Prod. 2020, 274, 123155. [Google Scholar] [CrossRef]
- Otashu, J.I.; Baldea, M. Grid-level “battery” operation of chemical processes and demand-side participation in short-term electricity markets. Appl. Energy 2018, 220, 562–575. [Google Scholar] [CrossRef]
- Gholian, A.; Mohsenian-Rad, H.; Hua, Y.; Qin, J. Optimal industrial load control in smart grid: A case study for oil refineries. In Proceedings of the 2013 IEEE Power Energy Society General Meeting, Vancouver, BC, Canada, 21–25 July 2013; pp. 1–5. [Google Scholar]
- Seo, K.; Edgar, T.F.; Baldea, M. Optimal demand response operation of electric boosting glass furnaces. Appl. Energy 2020, 269, 115077. [Google Scholar] [CrossRef]
- Wierman, A.; Liu, Z.; Liu, I.; Mohsenian-Rad, H. Opportunities and challenges for data center demand response. In Proceedings of the International Green Computing Conference, Dallas, TX, USA, 3–5 November 2014; pp. 1–10. [Google Scholar] [CrossRef]
- Xu, W.; Zhou, D.; Huang, X.; Lou, B.; Liu, D. Optimal allocation of power supply systems in industrial parks considering multi-energy complementarity and demand response. Appl. Energy 2020, 275, 115407. [Google Scholar] [CrossRef]
- Pedersen, R.; Schwensen, J.; Biegel, B.; Green, T.; Stoustrup, J. Improving Demand Response Potential of a Supermarket Refrigeration System: A Food Temperature Estimation Approach. IEEE Trans. Control Syst. Technol. 2017, 25, 855–863. [Google Scholar] [CrossRef]
- Wohlfarth, K.; Klobasa, M.; Gutknecht, R. Demand response in the service sector—Theoretical, technical and practical potentials. Appl. Energy 2020, 258, 114089. [Google Scholar] [CrossRef]
- Meschede, H. Analysis on the demand response potential in hotels with varying probabilistic influencing time-series for the Canary Islands. Renew. Energy 2020, 160, 1480–1491. [Google Scholar] [CrossRef]
- Akerma, M.; Hoang, H.M.; Leducq, D.; Flinois, C.; Clain, P.; Delahaye, A. Demand response in refrigerated warehouse. In Proceedings of the 2018 IEEE International Smart Cities Conference (ISC2), Kansas City, MO, USA, 16–19 September 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Yu, Z.; Lu, F.; Zou, Y.; Yang, X. Quantifying the flexibility of lighting systems by optimal control in commercial buildings: Insight from a case study. Energy Build. 2020, 225, 110310. [Google Scholar] [CrossRef]
- Daryabari, M.K.; Keypour, R.; Golmohamadi, H. Stochastic energy management of responsive plug-in electric vehicles characterizing parking lot aggregators. Appl. Energy 2020, 279, 115751. [Google Scholar] [CrossRef]
- Daryabari, M.K.; Keypour, R.; Golmohamadi, H. Robust self-scheduling of parking lot microgrids leveraging responsive electric vehicles. Appl. Energy 2021, 290, 116802. [Google Scholar] [CrossRef]
- Golmohamadi, H.; Asadi, A. A multi-stage stochastic energy management of responsive irrigation pumps in dynamic electricity markets. Appl. Energy 2020, 265, 114804. [Google Scholar] [CrossRef]
- Raza, F.; Tamoor, M.; Miran, S.; Arif, W.; Kiren, T.; Amjad, W.; Hussain, M.I.; Lee, G.-H. The Socio-Economic Impact of Using Photovoltaic (PV) Energy for High-Efficiency Irrigation Systems: A Case Study. Energies 2022, 15, 1198. [Google Scholar] [CrossRef]
- Golmohamadi, H. Operational scheduling of responsive prosumer farms for day-ahead peak shaving by agricultural demand response aggregators. Int. J. Energy Res. 2021, 45, 938–960. [Google Scholar] [CrossRef]
- Aghajanzadeh, A.; Therkelsen, P. Agricultural demand response for decarbonizing the electricity grid. J. Clean. Prod. 2019, 220, 827–835. [Google Scholar] [CrossRef]
- Lim, T.; Baik, Y.-K.; Kim, D.D. Heating Performance Analysis of an Air-to-Water Heat Pump Using Underground Air for Greenhouse Farming. Energies 2020, 13, 3863. [Google Scholar] [CrossRef]
- Tong, Y.; Kozai, T.; Nishioka, N.; Ohyama, K. Reductions in Energy Consumption and CO2 Emissions for Greenhouses Heated with Heat Pumps. Appl. Eng. Agric. 2012, 28, 401–406. [Google Scholar] [CrossRef]
- Chiriboga, G.; Capelo, S.; Bunces, P.; Guzmán, C.; Cepeda, J.; Gordillo, G.; Montesdeoca, D.E.; Carvajal, C.G. Harnessing of geothermal energy for a greenhouse in Ecuador employing a heat pump: Design, construction, and feasibility assessment. Heliyon 2021, 7, e08608. [Google Scholar] [CrossRef] [PubMed]
- Zeyad, M.; Ahmed, S.M.M.; Hossain, E.; Anubhove, M.S.T.; Hasan, S.; Mahmud, D.M.; Islam, S. Optimization of a Solar PV Power Plant with Poultry Demand Side Management (PoDSM) for Poultry Farm. In Proceedings of the 2021 International Conference on Computational Performance Evaluation (ComPE), Shillong, India, 1–3 December 2021; pp. 73–78. [Google Scholar] [CrossRef]
- Dew, J.J.W.; Jack, M.W.; Stephenson, J.; Walton, S. Reducing electricity demand peaks on large-scale dairy farms. Sustain. Prod. Consum. 2021, 25, 248–258. [Google Scholar] [CrossRef]
- Theofanous, E.; Kythreotou, N.; Panayiotou, G.; Florides, G.; Vyrides, I. Energy production from piggery waste using anaerobic digestion: Current status and potential in Cyprus. Renew. Energy 2014, 71, 263–270. [Google Scholar] [CrossRef]
- Jeong, M.G.; Rathnayake, D.; Mun, H.S.; Dilawar, M.A.; Park, K.W.; Lee, S.R.; Yang, C.J. Effect of a Sustainable Air Heat Pump System on Energy Efficiency, Housing Environment, and Productivity Traits in a Pig Farm. Sustainability 2020, 12, 9772. [Google Scholar] [CrossRef]
Household Appliances | Flexibility Targets | Ref. | |
---|---|---|---|
Thermostatically Controlled Appliances TCAs | Heat Pump | (1) Reduction of energy costs for heating of household buildings (2) Reduction of annual emission (CO2) (3) Reduction of energy consumption for heating system during peak hours | [98] |
Maximizing profit of buildings through trading flexibility in intraday markets | [99] | ||
(1) Minimization of life cycle cost (2) Reduction of environmental impacts of heat pumps and district heating | [100] | ||
Improving power system frequency control | [101] | ||
Refrigerator | (1) Minimization of household electricity bill (2) Reduction of peak load | [102] | |
Load shifting of electrical demand using cooling devices | [103] | ||
(1) Minimize electricity consumption cost of households (2) Regulation of peak demand in power systems | [104] | ||
(1) Cost saving of smart household appliances (2) Providing residential load for shifting to help balance demand and supply | [105] | ||
Electric Water Heater | (1) Minimization of electricity cost under TOU (2) Satisfying the comfort water temperature within the predefined bound | [106] | |
Minimization of cost function under Spanish electricity price tariff | [107] | ||
(1) Minimization of energy cost under day-ahead and real-time pricing (2) Maximization of residents’ comfort | [108] | ||
Cost saving for household to remote control electric water heater | [109] | ||
Non-Thermostatically Controlled Appliances Non-TCAs | Wet Appliances | (1) Minimization of energy cost (2) Maximization of renewable energy demand (3) Minimization of carbon emission | [110] |
Proposing compensation contract to increase flexibility of wet appliances | [111] | ||
Harness energy flexibility of buildings to flatten demand consumption | [112] | ||
Providing load balancing for power system and minimizing the energy cost | [113] | ||
(1) Minimizing energy consumption (2) Reduction of emission and environmental impacts (3) Reduction of peak demand | [114] | ||
(1) Flattening of peak demand (2) Meeting residents’ convenience | [115] | ||
Private Parking | Vehicle-to-Home (V2H) | (1) Increase energy efficiency of homes (2) Improvement of energy consumption pattern (3) Shift of peak demand | [116] |
(1) Increase electrification of off-grid smart homes (2) Reduction of investment cost on the electronification | [117] | ||
(1) Reduction of building peak demand (2) Increase profit of household (3) Reduction of emission production | [118] |
Industry | Key Objective(s) | Ref. |
---|---|---|
Cement Manufacturing | (1) Cost reduction (2) Emission reduction (3) Reduction of electricity cost | [125] |
Metal Smelting Industry | (1) Providing reserve for electricity market (2) Minimization of operation cost (3) Integration of flexibility into capacity market | [126] |
Pulp and Paper | Providing up-regulation for power markets | [127] |
Textile Industry | Energy- and cost-saving measures in industrial processes | [128] |
Food/Drink Industry | (1) Reduction of energy consumption (2) Reduction of emission production (3) Facilitate use of heat pumps in the industry | [129] |
Ceramics Industry | (1) Optimize energy cost (2) Increase energy efficiency (3) The industrial DRPs benefit the environment, economy, society | [130] |
Chemical Industry | (1) Improving grid operation, e.g., reliability, resilience (2) Making profit in the industry | [131] |
Oil Refinery Industries | Providing industrial load control in smart-grid operation | [132] |
Glass Manufacturing | (1) Making balance for power and gas (2) Reduction of energy consumption cost (3) Reduction of strain on power grids | [133] |
Data Centers | (1) Facilitate the integration of renewable energies to power grids (2) Providing peak-load shaving | [134] |
Industrial Parks and Zones | (1) Optimization of investment cost on industrial parks (2) Prevent imbalance of energy shifting | [135] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golmohamadi, H. Demand-Side Flexibility in Power Systems: A Survey of Residential, Industrial, Commercial, and Agricultural Sectors. Sustainability 2022, 14, 7916. https://doi.org/10.3390/su14137916
Golmohamadi H. Demand-Side Flexibility in Power Systems: A Survey of Residential, Industrial, Commercial, and Agricultural Sectors. Sustainability. 2022; 14(13):7916. https://doi.org/10.3390/su14137916
Chicago/Turabian StyleGolmohamadi, Hessam. 2022. "Demand-Side Flexibility in Power Systems: A Survey of Residential, Industrial, Commercial, and Agricultural Sectors" Sustainability 14, no. 13: 7916. https://doi.org/10.3390/su14137916
APA StyleGolmohamadi, H. (2022). Demand-Side Flexibility in Power Systems: A Survey of Residential, Industrial, Commercial, and Agricultural Sectors. Sustainability, 14(13), 7916. https://doi.org/10.3390/su14137916