Integration of Indoor Air Quality Prediction into Healthy Building Design
Abstract
:1. Introduction
2. Principle of the Toolbox
2.1. Overview of the Framework
- Vi: the volume of room i;
- Ci,k: the concentration of air pollutant k in room i;
- t: time;
- Qj,i: the airflow rate from room j to room i;
- Cj,k: the concentration of air pollutant k in room j;
- Qout,i: the airflow rate from outdoor to room i;
- ηi,k: the one-pass filtration efficiency of air pollutant k from outdoor to room i, for mechanically ventilation equipped with air filters;
- pi,k: the penetration coefficient of air pollutant k from outdoor to room i through openings;
- Cout,k: the outdoor concentration of air pollutant k;
- Qi: the sum of airflow rate from room i;
- Ei,k: the emission rate of air pollutant k in room i;
- βi,k: the deposition rate of air pollutant k in room i;
- CADRi,k: the clean air delivery rate of air cleaners for air pollutant k in room i;
- Si,k: the strength of other sinks in room i for air pollutant k.
2.2. Building Module
2.3. Airflow Module
2.4. Air Pollutant Module
2.5. Diagnosis Module
- When the EXD of six air pollutants all less than 5%, it indicates that the current design has achieved the set guidelines, and the toolbox outputs “good design” and finishes the diagnosis flow. Otherwise, the priority of air pollutant diagnosis is given to CO2, because CO2 is an indicator of whether the air change rate is adequate to remove human bio-effluents.
- If EXDCO2 > 5%, the toolbox delivers a message indicating insufficient ventilation of the designed building and a suggestion to modify building openings or the mechanical ventilation rate to increase the air change rate. Then, the diagnosis flow finishes and waits for the simulation results of a modified design.
- Otherwise, the toolbox selects the pollutant with the largest EXD as the analyzing target. The contribution of outdoor pollution intrusion into the room i is calculated by
- Otherwise, the toolbox sorts out the largest E from those selected from the indoor source/sink database for the target air pollutant. Then, a message containing the name of the source of the largest contribution is delivered, as well as a suggestion to remove or replace the source and to deploy air cleaners inside the room. Finally, the Diagnosis module finishes.
3. Development of the Toolbox
4. Validation of the Toolbox
4.1. The Case Study
4.2. Validation of the Simulation
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marco, E.; Burgess, S. Healthy Housing; Taylor and Francis Inc.: Oxfordshire, UK, 2015; ISBN 9781317542391. [Google Scholar]
- Buildings and Health—GSA Sustainable Facilities Tool. Available online: https://sftool.gov/learn/about/576/buildings-health (accessed on 19 May 2022).
- Healthy Buildings and Healthy People: The next Generation of Green Building|U.S. Green Building Council. Available online: https://www.usgbc.org/articles/healthy-buildings-and-healthy-people-next-generation-green-building (accessed on 19 May 2022).
- Licina, D.; Wargocki, P.; Pyke, C.; Altomonte, S. The Future of IEQ in Green Building Certifications. Build. Cities 2021, 2, 907–927. [Google Scholar] [CrossRef]
- Loftness, V.; Hakkinen, B.; Adan, O.; Nevalainen, A. Elements That Contribute to Healthy Building Design. Environ. Health Perspect. 2007, 115, 965–970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engineer, A.; Gualano, R.J.; Crocker, R.L.; Smith, J.L.; Maizes, V.; Weil, A.; Sternberg, E.M. An Integrative Health Framework for Wellbeing in the Built Environment. Build. Environ. 2021, 205, 108253. [Google Scholar] [CrossRef]
- Gupta, R.; Howard, A. Comparative Evaluation of Measured and Perceived Indoor Environmental Conditions in Naturally and Mechanically Ventilated Office Environments. Build. Simul. 2020, 13, 1021–1042. [Google Scholar] [CrossRef]
- Elnaklah, R.; Fosas, D.; Natarajan, S. Indoor Environment Quality and Work Performance in “Green” Office Buildings in the Middle East. Build. Simul. 2020, 13, 1043–1062. [Google Scholar] [CrossRef]
- Spengler, J.D.; Chen, Q. Indoor Air Quality Factors in Designing a Healthy Building. Annu. Rev. Energy Environ. 2003, 25, 567–600. [Google Scholar] [CrossRef] [Green Version]
- Jones, A.P. Indoor Air Quality and Health. Atmos. Environ. 1999, 33, 4535–4564. [Google Scholar] [CrossRef]
- Wolkoff, P. Indoor Air Humidity, Air Quality, and Health—An Overview. Int. J. Hyg. Environ. Health 2018, 221, 376–390. [Google Scholar] [CrossRef]
- Sundell, J. On the History of Indoor Air Quality and Health. Indoor Air 2004, 14, 51–58. [Google Scholar] [CrossRef]
- Ole Fanger, P. Indoor Air Quality in the 21st Century: Search for Excellence. Indoor Air 2000, 10, 68–73. [Google Scholar] [CrossRef]
- Wyon, D.P. The Effects of Indoor Air Quality on Performance and Productivity. Indoor Air 2004, 14, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.G.; MacNaughton, P.; Satish, U.; Santanam, S.; Vallarino, J.; Spengler, J.D. Associations of Cognitive Function Scores with Carbon Dioxide, Ventilation, and Volatile Organic Compound Exposures in Office Workers: A Controlled Exposure Study of Green and Conventional Office Environments. Environ. Health Perspect. 2016, 124, 805–812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, B.; Tandoc, M.C.; Mack, M.L.; Siegel, J.A. Indoor CO2 Concentrations and Cognitive Function: A Critical Review. Indoor Air 2020, 30, 1067–1082. [Google Scholar] [CrossRef] [PubMed]
- Satish, U.; Mendell, M.J.; Shekhar, K.; Hotchi, T.; Sullivan, D.; Streufert, S.; Fisk, W.J. Is CO2 an Indoor Pollutant? Direct Effects of Low-to-Moderate CO2 Concentrations on Human Decision-Making Performance. Environ. Health Perspect. 2012, 120, 1671–1677. [Google Scholar] [CrossRef] [Green Version]
- Apte, M.G.; Fisk, W.J.; Daisey, J.M. Associations Between Indoor CO2 Concentrations and Sick Building Syndrome Symptoms in U.S. Office Buildings: An Analysis of the 1994–1996 BASE Study Data. Indoor Air 2000, 10, 246–257. [Google Scholar] [CrossRef] [Green Version]
- Chatzidiakou, L.; Mumovic, D.; Summerfield, A. Is CO2 a Good Proxy for Indoor Air Quality in Classrooms? Part 1: The Interrelationships between Thermal Conditions, CO2 Levels, Ventilation Rates and Selected Indoor Pollutants. Build. Serv. Eng. Res. Technol. 2015, 36, 129–161. [Google Scholar] [CrossRef]
- Turanjanin, V.; Vučićević, B.; Jovanović, M.; Mirkov, N.; Lazović, I. Indoor CO2 Measurements in Serbian Schools and Ventilation Rate Calculation. Energy 2014, 77, 290–296. [Google Scholar] [CrossRef]
- Liang, W.; Yang, S.; Yang, X. Long-Term Formaldehyde Emissions from Medium-Density Fiberboard in a Full-Scale Experimental Room: Emission Characteristics and the Effects of Temperature and Humidity. Environ. Sci. Technol. 2015, 49, 10349–10356. [Google Scholar] [CrossRef]
- Yang, S.; Yang, X.; Licina, D. Emissions of Volatile Organic Compounds from Interior Materials of Vehicles. Build. Environ. 2020, 170, 106599. [Google Scholar] [CrossRef]
- Yang, S.; Pernot, J.G.; Jörin, C.H.; Niculita-Hirzel, H.; Perret, V.; Licina, D. Energy, Indoor Air Quality, Occupant Behavior, Self-Reported Symptoms and Satisfaction in Energy-Efficient Dwellings in Switzerland. Build. Environ. 2020, 171, 106618. [Google Scholar] [CrossRef]
- Yang, S.; Perret, V.; Hager Jörin, C.; Niculita-Hirzel, H.; Goyette Pernot, J.; Licina, D. Volatile Organic Compounds in 169 Energy-efficient Dwellings in Switzerland. Indoor Air 2020, 30, 481–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weschler, C.J. Changes in Indoor Pollutants since the 1950s. Atmos. Environ. 2009, 43, 153–169. [Google Scholar] [CrossRef]
- Aksoy, M. Benzene as a Leukemogenic and Carcinogenic Agent. Am. J. Ind. Med. 1985, 8, 9–20. [Google Scholar] [CrossRef]
- Kandyala, R.; Raghavendra, S.P.; Rajasekharan, S. Xylene: An Overview of Its Health Hazards and Preventive Measures. J. Oral Maxillofac. Pathol. 2010, 14, 1. [Google Scholar] [CrossRef] [Green Version]
- Lou, X.; Sun, Y.; Lv, D.; Yin, Y.; Pei, J.; He, J.; Yang, X.; Cui, X.; Liu, Y.; Norback, D.; et al. A Study on Human Perception in Aircraft Cabins and Its Association with Volatile Organic Compounds. Build. Environ. 2022, 219, 109167. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer. Outdoor Air Pollution: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; International Agency for Research on Cancer: Lyon, France, 2016. [Google Scholar]
- Donaldson, K.; Mills, N.; MacNee, W.; Robinson, S.; Newby, D. Role of Inflammation in Cardiopulmonary Health Effects of PM. Toxicol. Appl. Pharmacol. 2005, 207, 483–488. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.A.; Dockery, D.W. Health Effects of Fine Particulate Air Pollution: Lines That Connect. J. Air Waste Manag. Assoc. 2012, 56, 709–742. [Google Scholar] [CrossRef]
- Yang, S.; Beko, G.; Wargocki, P.; Williams, J.; Licina, D. Human Emissions of Size-Resolved Fluorescent Aerosol Particles: Influence of Personal and Environmental Factors. Environ. Sci. Technol. 2021, 55, 509–518. [Google Scholar] [CrossRef]
- You, R.; Cui, W.; Chen, C.; Zhao, B. Measuring the Short-Term Emission Rates of Particles in the “Personal Cloud” with Different Clothes and Activity Intensities in a Sealed Chamber. Aerosol Air Qual. Res. 2013, 13, 911–921. [Google Scholar] [CrossRef]
- Licina, D.; Tian, Y.; Nazaroff, W.W. Emission Rates and the Personal Cloud Effect Associated with Particle Release from the Perihuman Environment. Indoor Air 2017, 27, 791–802. [Google Scholar] [CrossRef] [Green Version]
- Men, Y.; Li, J.; Liu, X.; Li, Y.; Jiang, K.; Luo, Z.; Xiong, R.; Cheng, H.; Tao, S.; Shen, G. Contributions of Internal Emissions to Peaks and Incremental Indoor PM2.5 in Rural Coal Use Households. Environ. Pollut. 2021, 288, 117753. [Google Scholar] [CrossRef] [PubMed]
- Diapouli, E.; Chaloulakou, A.; Koutrakis, P. Estimating the Concentration of Indoor Particles of Outdoor Origin: A Review. J. Air Waste Manag. Assoc. 2013, 63, 1113–1129. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Liu, S.; Sun, Y.; Liu, Y.; Beazley, R.; Hou, X. Assessing NO2-Related Health Effects by Non-Linear and Linear Methods on a National Level. Sci. Total Environ. 2020, 744, 140909. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, J.; Fong, K.; Zanobetti, A. A National Multicity Analysis of the Causal Effect of Local Pollution, NO2, and PM2.5 on Mortality. Environ. Health Perspect. 2018, 126, 087004. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.; Brunekreef, B.; Gehring, U. Meta-Analysis of the Effects of Indoor Nitrogen Dioxide and Gas Cooking on Asthma and Wheeze in Children. Int. J. Epidemiol. 2013, 42, 1724–1737. [Google Scholar] [CrossRef] [Green Version]
- Pandit, S.; Mora Garcia, S.L.; Grassian, V.H. HONO Production from Gypsum Surfaces Following Exposure to NO2 and HNO3: Roles of Relative Humidity and Light Source. Environ. Sci. Technol. 2021, 55, 9761–9772. [Google Scholar] [CrossRef]
- Weschler, C.J. Ozone’s Impact on Public Health: Contributions from Indoor Exposures to Ozone and Products of Ozone-Initiated Chemistry. Environ. Health Perspect. 2006, 114, 1489–1496. [Google Scholar] [CrossRef] [Green Version]
- Ito, K.; De Leon, S.F.; Lippmann, M. Associations between Ozone and Daily Mortality—Analysis and Meta-Analysis. Epidemiology 2005, 16, 446–457. [Google Scholar] [CrossRef]
- Yang, S.; Gao, K.; Yang, X. Volatile Organic Compounds (VOCs) Formation Due to Interactions between Ozone and Skin-Oiled Clothing: Measurements by Extraction-Analysis-Reaction Method. Build. Environ. 2016, 103, 146–154. [Google Scholar] [CrossRef]
- Weschler, C.J. Ozone in Indoor Environments: Concentration and Chemistry. Indoor Air 2000, 10, 269–288. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Licina, D.; Weschler, C.J.; Wang, N.; Zannoni, N.; Li, M.; Vanhanen, J.; Langer, S.; Wargocki, P.; Williams, J.; et al. Ozone Initiates Human-Derived Emission of Nanocluster Aerosols. Environ. Sci. Technol. 2021, 55, 14536–14545. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Lioy, P.J. Ozone in Residential Air: Concentrations, I/O Ratios, Indoor Chemistry, and Exposures. Indoor Air 1994, 4, 95–105. [Google Scholar] [CrossRef]
- Xiang, J.; Weschler, C.J.; Mo, J.; Day, D.; Zhang, J.; Zhang, Y. Ozone, Electrostatic Precipitators, and Particle Number Concentrations: Correlations Observed in a Real Office during Working Hours. Environ. Sci. Technol. 2016, 50, 10236–10244. [Google Scholar] [CrossRef] [PubMed]
- Standard|WELL V2. Available online: https://v2.wellcertified.com/en/wellv2/overview (accessed on 19 May 2022).
- Shen, J.; Krietemeyer, B.; Bartosh, A.; Gao, Z.; Zhang, J. Green Design Studio: A Modular-Based Approach for High-Performance Building Design. Build. Simul. 2021, 14, 241–268. [Google Scholar] [CrossRef]
- Liang, W.; Yang, X.; Chen, F.; Lv, M.; Yang, S. A Pre-Assessment and Control Tool for Indoor Air Quality (PACT-IAQ) Simulation in Actual Buildings. Procedia Eng. 2017, 205, 219–225. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, H.; Chen, X.; Ren, J. Design Method for Interior Decoration Pollution Control of Buildings: Introduction and Application. Build. Simul. 2020, 13, 637–646. [Google Scholar] [CrossRef]
- Lv, M.; Yang, X. Improving Material Selection for Residences Using Volatile Organic Compound Simulation at Design Stage: Field Verifications from a Unique Case Study. Build. Environ. 2019, 157, 277–283. [Google Scholar] [CrossRef]
- D’Amico, A.; Bergonzoni, G.; Pini, A.; Currà, E. BIM for Healthy Buildings: An Integrated Approach of Architectural Design Based on IAQ Prediction. Sustainability 2020, 12, 10417. [Google Scholar] [CrossRef]
- D’Amico, A.; Pini, A.; Zazzini, S.; D’Alessandro, D.; Leuzzi, G.; Currà, E. Modelling VOC Emissions from Building Materials for Healthy Building Design. Sustainability 2020, 13, 184. [Google Scholar] [CrossRef]
- Dogan, T.; Kastner, P. Streamlined CFD Simulation Framework to Generate Wind-Pressure Coefficients on Building Facades for Airflow Network Simulations. Build. Simul. 2021, 14, 1189–1200. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, Y.; Kwok, K.C.S.; Yan, F. CFD-Based Analysis of Urban Haze-Fog Dispersion—A Preliminary Study. Build. Simul. 2021, 14, 365–375. [Google Scholar] [CrossRef]
- Aflaki, A.; Esfandiari, M.; Mohammadi, S. A Review of Numerical Simulation as a Precedence Method for Prediction and Evaluation of Building Ventilation Performance. Sustainability 2021, 13, 12721. [Google Scholar] [CrossRef]
- Dols, W.S.; Brian, J.P. CONTAM User Guide and Program Documentation: Version 3.2; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2020.
- ASHRAE. ASHRAE Handbook: Fundamentals; American Society of Heating, Refrigerating and Air-Conditioning Engineers: Atlanta, GA, USA, 2001. [Google Scholar]
- Climate.Onebuilding.Org. Available online: https://climate.onebuilding.org/default.html (accessed on 17 May 2022).
- Data Query NABEL. Available online: https://www.bafu.admin.ch/bafu/en/home/topics/air/state/data/data-query-nabel.html (accessed on 17 May 2022).
- Daily CO2. Available online: https://www.co2.earth/daily-co2 (accessed on 17 May 2022).
- He, C.; Morawska, L.; Gilbert, D. Particle Deposition Rates in Residential Houses. Atmos. Environ. 2005, 39, 3891–3899. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Abbatt, J.P.D. Liquid Crystal Display Screens as a Source for Indoor Volatile Organic Compounds. Proc. Natl. Acad. Sci. USA 2021, 118, e2105067118. [Google Scholar] [CrossRef]
- Yang, S.; Nie, J.; Wei, F.; Yang, X. Removal of Ozone by Carbon Nanotubes/Quartz Fiber Film. Environ. Sci. Technol. 2016, 50, 9592–9598. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Zhu, Z.; Wei, F.; Yang, X. Enhancement of Formaldehyde Removal by Activated Carbon Fiber via in Situ Growth of Carbon Nanotubes. Build. Environ. 2017, 126, 27–33. [Google Scholar] [CrossRef]
- Yang, S.; Zhu, Z.; Wei, F.; Yang, X. Carbon Nanotubes/Activated Carbon Fiber Based Air Filter Media for Simultaneous Removal of Particulate Matter and Ozone. Build. Environ. 2017, 125, 60–66. [Google Scholar] [CrossRef]
- Persily, A.; de Jonge, L. Carbon Dioxide Generation Rates for Building Occupants. Indoor Air 2017, 27, 868–879. [Google Scholar] [CrossRef] [Green Version]
- Abadie, M.; Blondeau, P. Pandora Database: A Compilation of Indoor Air Pollutant Emissions. HVAC R. Res. 2011, 17, 602–613. [Google Scholar] [CrossRef]
- Sun, X.; He, J.; Yang, X. Human Breath as a Source of VOCs in the Built Environment, Part II: Concentration Levels, Emission Rates and Factor Analysis. Build. Environ. 2017, 123, 437–445. [Google Scholar] [CrossRef]
- Yao, M.; Ke, L.; Liu, Y.; Luo, Z.; Zhao, B. Measurement of Ozone Deposition Velocity onto Human Surfaces of Chinese Residents and Estimation of Corresponding Production of Oxidation Products. Environ. Pollut. 2020, 266, 115215. [Google Scholar] [CrossRef] [PubMed]
- Gao, N.P.; Niu, J.L. Modeling Particle Dispersion and Deposition in Indoor Environments. Atmos. Environ. 2007, 41, 3862–3876. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Zou, Z.; Yang, X. Measuring Whole-Body Volatile Organic Compound Emission by Humans: A Pilot Study Using an Air-Tight Environmental Chamber. Build. Environ. 2019, 153, 101–109. [Google Scholar] [CrossRef]
- Shi, S.; Zhao, B. Deposition of Indoor Airborne Particles onto Human Body Surfaces: A Modeling Analysis and Manikin-Based Experimental Study. Aerosol Sci. Technol. 2013, 47, 1363–1373. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Zhao, B. Emissions of Air Pollutants from Chinese Cooking: A Literature Review. Build. Simul. 2018, 11, 977–995. [Google Scholar] [CrossRef]
- Mendes, L.; Kangas, A.; Kukko, K.; Mølgaard, B.; Säämänen, A.; Kanerva, T.; Flores Ituarte, I.; Huhtiniemi, M.; Stockmann-Juvala, H.; Partanen, J.; et al. Characterization of Emissions from a Desktop 3D Printer. J. Ind. Ecol. 2017, 21, S94–S106. [Google Scholar] [CrossRef]
- Won, D.; Shaw, C.Y.; Won, D. Investigation of Building Materials as VOC Sources in Indoor Air; National Research Council Canada: Ottawa, ON, Canada, 2004.
- Weschler, C.J. Roles of the Human Occupant in Indoor Chemistry. Indoor Air 2016, 26, 6–24. [Google Scholar] [CrossRef]
- Bart, H.; Israel, G.; Marinus, A.K.; André, C.M.R. Factorization of Matrix and Operator Functions: The State Space Method; Springer Science & Business Media: Berlin, Germany, 2007. [Google Scholar]
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Shrubsole, C.; Dimitroulopoulou, S.; Foxall, K.; Gadeberg, B.; Doutsi, A. IAQ Guidelines for Selected Volatile Organic Compounds (VOCs) in the UK. Build. Environ. 2019, 165, 106382. [Google Scholar] [CrossRef]
- ANSES. Concentrations de CO2 Dans l’air Intérieur et Effets Sur La Santé. Avis de l’ANSES. Rapport d’expertise Collective; French Agency for Food, Environmental and Occupational Health & Safety: Maisons-Alfort, France, 2013.
- Zhou, J.; Chen, A.; Cao, Q.; Yang, B.; Chang, V.W.C.; Nazaroff, W.W. Particle Exposure during the 2013 Haze in Singapore: Importance of the Built Environment. Build. Environ. 2015, 93, 14–23. [Google Scholar] [CrossRef]
- Munir, S.; Mayfield, M.; Coca, D.; Jubb, S.A. Structuring an Integrated Air Quality Monitoring Network in Large Urban Areas—Discussing the Purpose, Criteria and Deployment Strategy. Atmos. Environ. X 2019, 2, 100027. [Google Scholar] [CrossRef]
- Schäfer, K.; Lande, K.; Grimm, H.; Jenniskens, G.; Gijsbers, R.; Ziegler, V.; Hank, M.; Budde, M. High-Resolution Assessment of Air Quality in Urban Areas—A Business Model Perspective. Atmosphere 2021, 12, 595. [Google Scholar] [CrossRef]
- Belias, E.; Licina, D. Outdoor PM2.5 Air Filtration: Optimising Indoor Air Quality and Energy. Build. Cities 2022, 3, 186. [Google Scholar] [CrossRef]
- Liu, Z.; Nicolai, A.; Abadie, M.; Qin, M.; Grunewald, J.; Zhang, J. Development of a Procedure for Estimating the Parameters of Mechanistic VOC Emission Source Models from Chamber Testing Data. Build. Simul. 2021, 14, 269–282. [Google Scholar] [CrossRef]
- Liang, W.; Lv, M.; Yang, X. Development of a Physics-Based Model for Analyzing Formaldehyde Emissions from Building Material under Coupling Effects of Temperature and Humidity. Build. Environ. 2021, 203, 108078. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, N.; Wang, S. A Parametric Approach for Performance Optimization of Residential Building Design in Beijing. Build. Simul. 2020, 13, 223–235. [Google Scholar] [CrossRef]
- Lin, B.; Chen, H.; Liu, Y.; He, Q.; Li, Z. A Preference-Based Multi-Objective Building Performance Optimization Method for Early Design Stage. Build. Simul. 2021, 14, 477–494. [Google Scholar] [CrossRef]
Parameter | CO2 (ppm) | TVOC (μg/m3) | PM10 (μg/m3) | PM2.5 (μg/m3) | NO2 (μg/m3) | O3 (μg/m3) |
---|---|---|---|---|---|---|
8-h average | 1200 | - | - | - | - | 100 |
24-h average | 1000 | 500 | 45 | 15 | 25 | - |
Annual average | 800 | 300 | 15 | 5 | 10 | 60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Mahecha, S.D.; Moreno, S.A.; Licina, D. Integration of Indoor Air Quality Prediction into Healthy Building Design. Sustainability 2022, 14, 7890. https://doi.org/10.3390/su14137890
Yang S, Mahecha SD, Moreno SA, Licina D. Integration of Indoor Air Quality Prediction into Healthy Building Design. Sustainability. 2022; 14(13):7890. https://doi.org/10.3390/su14137890
Chicago/Turabian StyleYang, Shen, Sebastian Duque Mahecha, Sergi Aguacil Moreno, and Dusan Licina. 2022. "Integration of Indoor Air Quality Prediction into Healthy Building Design" Sustainability 14, no. 13: 7890. https://doi.org/10.3390/su14137890