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Abstract: Healthy building design is an emerging field of architecture and building engineering.
Indoor air quality (IAQ) is an inevitable factor that should be considered in healthy building design
due to its demonstrated links with human health and well-being. This paper proposes to integrate
IAQ prediction into healthy building design by developing a simulation toolbox, termed i-IAQ,
using MATLAB App Designer. Within the i-IAQ, users can input information of building layout and
wall-openings and select air pollutant sources from the database. As an output, the toolbox simulates
indoor levels of carbon dioxide (CO2), total volatile organic compounds (TVOC), inhalable particles
(PM10), fine particles (PM2.5), nitrogen dioxide (NO2), and ozone (O3) during the occupied periods.
Based on the simulation results, the toolbox also offers diagnosis and recommendations to improve
the design. The accuracy of the toolbox was validated by a case study in an apartment where physical
measurements of air pollutants took place. The results suggest that designers can integrate the i-IAQ
toolbox in building design, so that the potential IAQ issues can be resolved at the early design stage
at a low cost. The paper outcomes have the potential to pave a way towards more holistic healthy
building design, and novel and cost-effective IAQ management.

Keywords: building simulation; health and well-being; holistic and digital design; mass balance
equation; toolbox

1. Introduction

Healthy buildings aim to support the physical, psychological, and social health and
well-being of the occupants in the built environment [1,2]. According to the U.S. Green
Building Council, healthy buildings are considered as the next generation of green building,
which put more emphasis on human well-being and productivity [3,4]. Hence, healthy
building design is an emerging need in the field of architecture and building engineering,
especially in the face of increasing episodes of pandemics and climate events. The design
of a healthy building requires comprehensive consideration of elements that are associated
with human well-being and performance [5–8]. Among the factors, indoor air quality (IAQ)
plays a crucial role in achieving healthy buildings [9].

Physical IAQ can be quantified using a matrix of concentrations of various indoor
air pollutants. Exposure to indoor airborne contaminants is a long-standing issue directly
linked with human health [10–12] and productivity outcomes [13,14]. A commonly used
IAQ matrix can include gaseous and particulate pollutants, such as carbon dioxide (CO2),
total volatile organic compounds (TVOC), inhalable particles (PM10), fine particles (PM2.5),
nitrogen dioxide (NO2), and ozone (O3). Indoor CO2 mainly originates from human exha-
lation and indoor combustion. Although the health effect of CO2 within a common indoor
concentration range remains unclear, the association between elevated CO2 level and de-
creased human productivity and cognitive performance has been well documented [15–18].

Sustainability 2022, 14, 7890. https://doi.org/10.3390/su14137890 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su14137890
https://doi.org/10.3390/su14137890
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0001-6964-4814
https://orcid.org/0000-0003-4606-474X
https://orcid.org/0000-0001-5945-0872
https://doi.org/10.3390/su14137890
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su14137890?type=check_update&version=1


Sustainability 2022, 14, 7890 2 of 18

Moreover, due to the direct link with the occupants’ metabolism, indoor CO2 level is also
known as an indicator of the sufficiency of building ventilation [19,20]. TVOC is a sum
of indoor gaseous organic chemicals that originate from various materials, personal care
products, humans and their activities, and intrusion from outdoors [21–25]. Some of the
chemicals are carcinogenic, such as benzene [26], while others are found to cause human
irritation and respiratory symptoms [27,28]. Airborne particles are classified as carcino-
genic to humans [29]. Exposure to PM10 and PM2.5 is also associated with respiratory
and cardiopulmonary health [30,31]. Indoor particles can come from human-associated
sources [32–34], indoor combustion [35], and outdoor penetration [36]. As an inorganic
gaseous pollutant, NO2 is significantly related to mortality and morbidity [37,38]. Indoor
NO2 can originate from outdoor intrusion and indoor gas cooking [39]. It also plays an
important role in indoor chemistry [40]. Another inorganic gaseous pollutant, O3, also has
adverse effects on human health [41,42]. O3-initiated chemistry has been found to alter
indoor level and composition of VOCs and particles [43–45]. Indoor O3 mainly comes from
outdoor penetration [46], whereas some indoor electrical appliances can also contribute
to building up indoor O3 levels [47]. Represented by such a matrix of health-relevant air
pollutants, IAQ is given a large weight in evaluating and certifying healthy buildings. The
widely acknowledged healthy building rating tool, WELL, has given the priority to IAQ
regarding air pollutant levels and IAQ management [48]. Therefore, IAQ is an inevitable
factor that should be considered in healthy building design.

Current integration of IAQ into healthy building design, however, is disappointingly
scarce, whereas the traditional IAQ control strategies are followed; IAQ management
steps in after a building is constructed and occupied. Such post-intervention poses a risk
for inadequate IAQ that requires tedious and expensive field commissioning, including
multi-point measurements and investigations. Hence, the absence of involvement of IAQ
in the building design stage leads not only to impaired health and productivity outcomes,
but also to elevated costs of post-interventions. Although designers can refer to some
general and qualitative guidelines, such as increasing ventilation and using low-emissive
materials, they cannot ensure good IAQ. Even if some qualitative design approaches are
implemented, they cannot match the emerging digitalized and parametric design trends of
buildings.

The idea of this study is to integrate IAQ prediction into healthy building design to
overcome the aforementioned shortages of the traditional strategies. IAQ is influenced by
the interactions among outdoor air, indoor sources, ventilation, filtration, and occupants.
The process is governed by fundamental mass transfer and material balance laws, which
enables sufficiently accurate simulation of IAQ. Based on the quantitative prediction, de-
signers can modify the design accordingly to achieve their IAQ goals, so that potential
IAQ issues can be resolved at the very beginning (design) stage at the lowest costs. Re-
cently, few studies have attempted to predict post-occupancy IAQ before the building is
occupied [49]. Liang et al. [50], Chen et al. [51], and Lv et al. [52] focused on building
renovation stage to simulate formaldehyde concentration after building renovation and
proved that pre-intervention based on the simulation results can reduce health risks and
management costs. D’Amico et al. also proposed to model VOC emissions from building
materials in order to ensure healthy building design and integrated the VOC prediction
with building information modelling (BIM) [53,54]. These studies, however, mainly focused
on VOC emanated from materials while neglecting other potent indoor sources. In addition,
to better represent IAQ and to propose pre-intervention methods, a comprehensive air
pollutant matrix should be considered. It can not only better evaluate human exposure,
but also elucidate which aspects of the design needs modification, as different pollutants
correspond to distinct sources and management strategies.

This study aims to develop a simulation toolbox (i-IAQ) to predict post-occupancy IAQ
at the building design stage. Based on the basic mass balance law, ventilation simulation,
and indoor and outdoor pollution database, the i-IAQ toolbox can simulate post-occupancy
indoor levels of CO2, TVOC, PM10, PM2.5, NO2, and O3 at the design building stage. The



Sustainability 2022, 14, 7890 3 of 18

toolbox is also capable of offering diagnosis and suggestions for the design based on the
simulation results. We performed a case study in an apartment to validate the reliability of
the i-IAQ toolbox. The toolbox is currently developed targeting Switzerland, where the
authors are located, but can also be applied to other countries and regions if the ambient
weather and pollution databases get enriched. The project outcomes have the potential to
pave a way towards novel and cost-effective IAQ management, and more holistic healthy
building design.

2. Principle of the Toolbox
2.1. Overview of the Framework

Indoor air pollutant level is influenced by the interactions among outdoor air, indoor
sources, ventilation, filtration, and occupants. The process is governed by mass balance
laws, which enables accurate simulation of IAQ. For a building consisting of multiple
rooms, the concentration of air pollutant k in room i can be described by Equation (1),
which is as follows:

Vi
dCi,k

dt
= ∑j Qj,iCj,k + Qout,i(ηi,k + pi,k)Cout,k − QiCi,k + Ei,k − (βi,kVi + CADRi,k)Ci,k − Si,k (1)

where

Vi: the volume of room i;
Ci,k: the concentration of air pollutant k in room i;
t: time;
Qj,i: the airflow rate from room j to room i;
Cj,k: the concentration of air pollutant k in room j;
Qout,i: the airflow rate from outdoor to room i;
ηi,k: the one-pass filtration efficiency of air pollutant k from outdoor to room i, for mechani-
cally ventilation equipped with air filters;
pi,k: the penetration coefficient of air pollutant k from outdoor to room i through openings;
Cout,k: the outdoor concentration of air pollutant k;
Qi: the sum of airflow rate from room i;
Ei,k: the emission rate of air pollutant k in room i;
βi,k: the deposition rate of air pollutant k in room i;
CADRi,k: the clean air delivery rate of air cleaners for air pollutant k in room i;
Si,k: the strength of other sinks in room i for air pollutant k.

As observed from Equation (1), the factors governing the indoor air pollutant level can
be categorized into building characteristics (V, η, and p); ventilation/infiltration (Q); and
indoor sources and sinks (E, β, CADR, and S). An IAQ simulation toolbox needs to take
these categorical factors into consideration to achieve reasonable IAQ prediction. Therefore,
the framework of the i-IAQ toolbox can be summarized as shown in Figure 1, which also
represents the workflow of the toolbox.

The i-IAQ toolbox contains four modules, namely, Building, Airflow, Air pollutant, and
Diagnosis module. The Building module acquires the input of building information, includ-
ing layout, size, location, type, and occupied period. Within the Airflow module, together
with the ambient weather database, the toolbox simulates ventilation and infiltration of
each room of the building. Based on the obtained airflow results, with additional input
from the ambient pollution database and indoor source/sink database, the Air pollutant
module calculates air pollutant concentrations in each room of the building. Finally, the
Diagnosis module offers diagnosis and suggestions for the design based on the simulation
results. The following sections describe each module in detail.
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Figure 1. The framework of the i-IAQ toolbox.

2.2. Building Module

The Building module aims to collect basic information of the target building that is
essential to perform ventilation/infiltration simulation and IAQ prediction. Building infor-
mation should include the following: (1) layout, including information about number and
size of rooms to be analyzed, including floor area, free height, and adjacency; (2) location,
including the ambient weather and pollution data used in the Airflow and Air pollutant mod-
ules; (3) openings, including the location, size, height and direction of interior and exterior
openings (windows and doors) enabling air exchanges between indoors and outdoors, as
well as among rooms; (4) building type, including office or residential building, so that
the toolbox can determine from predefined ventilation type and occupancy schedule of
the building. Note that the selection of building type is optional, as users can customize
the ventilation type and occupancy schedule. (6) Mechanical ventilation, including the
designed outdoor air supply rate and the one-pass filtration efficiency for six air pollutants;
(6) occupied period, to determine the starting date of IAQ prediction, as the toolbox runs
a one-year simulation by default. The obtained data are then transferred to the Airflow
module for ventilation/infiltration simulation of the target building.

2.3. Airflow Module

Generally, there are two approaches to perform airflow simulation in buildings, which
are as follows: computational fluid dynamics (CFD) and multizone modelling, of which
the former one can provide more accurate and refined characterization of the flow field
but at considerably higher computational cost and time [55–57]. Therefore, aiming at
rapid simulation with adequate accuracy, the Airflow module in the i-IAQ toolbox applies
multizone modelling for ventilation and infiltration simulation of the target building.
CONTAM is a widely used open-access multizone airflow modelling software developed
by the US National Institute of Standards and Technology (NIST). The Airflow module of
the i-IAQ toolbox principally follows the simulation setup of CONTAM as described below
in brief, whereas details can be found in the CONTAM guide [58].

The toolbox considers each room and the outdoor space as an individual zone. Airflow
between each adjacent zone is mainly driven by pressure difference, demonstrated by the
following equation:

Q = C(∆P)n (2)

where Q represents airflow rate; C represents flow coefficient; ∆P represents pressure
difference between two zones; and n represents flow exponent. The flow coefficient C
and flow exponent n depend on the property of airflow paths, i.e., openings of the target
building. To simplify the settings, the i-IAQ toolbox adopts the leakage area model in
CONTAM to simulate air infiltration when the openings are closed, of which the effective
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leakage areas of building components are obtained from the ASHRAE Handbook [59].
When the windows or doors are open, the single opening with two-way flow model in
CONTAM is applied to consider the potential two-way flow at the opening caused by
air density and elevation differences. Details of these two models are described in the
CONTAM guide [58]. In addition, for buildings equipped with mechanical ventilation
systems, to simplify the simulation, the i-IAQ toolbox assumes an equal air supply and
exhaust rate in each zone, which means that the simulation of natural ventilation and
infiltration is independent from mechanical ventilation.

Considering the pressure deviation caused by temperature and wind, ∆P can be
further segregated into the following equation:

∆P = Pi − Pj + PS + PW (3)

where Pi and Pj represent the total pressures at zone i and j; PS represents pressure difference
due to density and elevation differences; and PW represents pressure difference due to wind.
The ambient weather is essential to calculate air exchange between indoor and outdoor
space. The i-IAQ toolbox collects typical-year ambient weather data, including time stamp,
dry-bulb air temperature, pressure, wind speed and wind direction, from an open source
global database [60]. At present, the ambient weather database of the toolbox contains
weather data of 25 major cities in Switzerland, which are the capitals of 25 Swiss cantons
(Canton Appenzell Ausserrhoden was excluded due to lack of data).

The airflow across each zone is constrained by the following basic air mass balance
equation:

∆Fi ≡ ρiQi − ∑j ρjQj,i = 0 (4)

ρ =
PV
RT

(5)

where ∆Fi is the mass imbalance rate of zone i; ρi and ρj represent air density in zone
i and j, which is determined by zone pressure (P), zone volume (V), zone temperature
(T), and gas constant for air (R), as shown in Equation (5), for the ideal gas law. The
airflow network of the target building can be obtained by solving Equations (2)–(5). The
iteration procedure follows, (1) assuming P in each zone and calculating the mass imbalance
rate ∆F of each zone; (2) correcting P based on ∆F in each zone and entering the next
iteration; and (3) keeping iteration until the ∆F of each zone is less than the acceptable error
(ε = 10−8 kg/s), viewed as a convergence, and then the airflow rate between each adjacent
zone can be obtained. Afterwards, the airflow matrix can be passed to the Air pollutant
module for simulation of air pollutant concentrations.

2.4. Air Pollutant Module

In addition to the airflow results from the Airflow module, the Air pollutant module
also requires input from the ambient air pollution database and the indoor source/sink
database to perform air pollutant level simulation.

The i-IAQ toolbox establishes the ambient air pollution database by collecting hourly
mean atmospheric pollution data in the year 2019 (prior to the pandemic) from the National
Air Pollution Monitoring Network (NABEL) in Switzerland [61]. The collected target air
pollutants include non-methane VOCs (an approximation to TVOC), PM10, PM2.5, NO2,
and O3. The NABEL has 16 monitoring locations, which is less than the number of major
cities (25). Hence, for cities without a monitoring station, the ambient air pollution data are
approximated using that from the closest station. The ambient CO2 concentration in the
database is considered as constant at 420 ppm, as the level remains relatively stable within
a year [62].

The indoor source/sink database is established by collecting indoor source and sink
strength data reported in the literature [32,34,63–76]. As shown in Figure 2, the source/sink
types collected in the database can be classified into the following five categories: human,
furniture, building material, appliance, and other, which cover the commonly encountered
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indoor air pollutant sources and sinks. At present, the database comprises 101 source/sink
items. For each item, there are 20 columns of information stored, which can be aggregated
into 3 categories of info (4 columns), emission per unit (10 columns), and deposition per unit
(6 columns) (Figure 2). The info category contains miscellaneous data of the ID, name, note
and unit of the item. The category of emission per unit collects emission rate data for the
six air pollutants. Note that the TVOC emission rate data have four columns, considering
that TVOC emissions from furniture and building materials are time-dependent, which
can be described by various models. The database has three models (constant, exponential,
and power models) [77] to characterize TVOC emission rate, indicated by the model flag,
a1, a2, and tp, as shown in Equation (6), which is as follows:

ETVOC(t) =


a1, f lag = 0

a1e
−0.5×(ln ( t

tp )/a2)
2

, f lag = 1

a1
(
max

(
t, tp

))−a2 , f lag = 2

(6)
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the i-IAQ toolbox.

The category of deposition per unit stores deposition rates of six air pollutants of each
item. It is not mutually exclusive for each item to be a source or a sink for IAQ simulation.
For instance, humans are a potent source of indoor CO2, TVOC, PM10, and PM2.5 [32,68,70],
whereas they serve as a strong indoor sink of O3 [71,78]. The comprehensive consideration
of source and sink effect of occupants and building components can also be understood as
a uniqueness and novelty of the database.

After gathering the inputs of airflow matrix, ambient air pollutant level, and indoor
source/sink data, the Air pollutant module calculates multizone air pollutant concentrations
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using the state-space method [79]. For the simulation of each air pollutant, Equation (1)
can be rewritten as Equations (7) and (8), which are as follows:

dC
dt

= AC + Bu (7)

C =



C1
...

Ci
...

CN

 (8)

where C represents the state vector containing air pollutant concentrations in all rooms
(1, . . . , N); A represents the system matrix relative to airflow and deposition, and the
elements are shown in Equation (9); B is an identity matrix; and u represents the input
vector containing intrusion of outdoor air pollutants, and indoor emissions and other sinks,
of which the elements are calculated by Equation (10).

aii = −Qi
Vi

− βiVi + CADRi
Vi

; aij =
Qj,i

Vi
; i, j = 1, . . . , N (9)

ui =
Ei
Vi

+
Qout,i(ηi + pi)Cout

Vi
− Si

Vi
; i = 1, . . . , N (10)

Then, by discretizing Equation (7) using the time step ∆t, the multizone air pollutant
concentration C(t) can be obtained by the following equation:

C(t) = C(t − ∆t) + ∆t × (A(t)C(t − ∆t) + Bu(t)) (11)

Afterwards, the simulation results of concentrations of six air pollutants in each room
can be passed to the Diagnosis module for result interpretation and diagnosis.

2.5. Diagnosis Module

The Diagnosis module aims to deeply explore the simulation results of each room to
provide suggestions for the design if there is a space for improvement. The first step of the
diagnosis is to summarize the statistics of the air pollutant concentrations in each room and
compare them with the set guideline values. The statistics mainly include calculating the
maximum, mean, and median values of annual, 8-h average, and 24-h average air pollutant
concentrations, which are parameters commonly adopted in the guidelines [48,80–82]. The
default setting of the guideline values in the Diagnosis module is summarized in Table 1.

Table 1. The default guideline values [48,80–82] of air pollutant concentrations in the i-IAQ toolbox.

Parameter CO2 (ppm) TVOC (µg/m3) PM10 (µg/m3) PM2.5 (µg/m3) NO2 (µg/m3) O3 (µg/m3)

8-h average 1200 - - - - 100
24-h average 1000 500 45 15 25 -

Annual average 800 300 15 5 10 60

After obtaining the air pollutant concentration statistics and comparisons, the i-IAQ
toolbox calculates a simple index, EXDk, indicating the duration exceeding the guidelines
of air pollutant k by

EXDk =
Nexceeding,k

Ntotal
× 100% (12)

where Nexceeding,k represents the number of data points that exceed the set guideline value
of air pollutant k; and Ntotal represents the number of total data points.
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With the EXD, the toolbox runs an automatic diagnosis, of which the flow is illustrated
in Figure 3 and described in detail as below.
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• When the EXD of six air pollutants all less than 5%, it indicates that the current design
has achieved the set guidelines, and the toolbox outputs “good design” and finishes
the diagnosis flow. Otherwise, the priority of air pollutant diagnosis is given to CO2,
because CO2 is an indicator of whether the air change rate is adequate to remove
human bio-effluents.

• If EXDCO2 > 5%, the toolbox delivers a message indicating insufficient ventilation of
the designed building and a suggestion to modify building openings or the mechanical
ventilation rate to increase the air change rate. Then, the diagnosis flow finishes and
waits for the simulation results of a modified design.

• Otherwise, the toolbox selects the pollutant with the largest EXD as the analyzing
target. The contribution of outdoor pollution intrusion into the room i is calculated by

Outdoor contribution i = average
(

Qout,iηi piCout

Vi × ui

)
× 100% (13)

A value larger than 50% indicates that outdoor intrusion is the major contributor to
build up indoor air pollutant levels and should, thus, be prioritized for improvement.
The suggestions could include upgrading air filters in the mechanical ventilation
system (if it exists) and deploying air cleaners inside the room. The diagnosis flow
ends afterwards.

• Otherwise, the toolbox sorts out the largest E from those selected from the indoor
source/sink database for the target air pollutant. Then, a message containing the name
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of the source of the largest contribution is delivered, as well as a suggestion to remove
or replace the source and to deploy air cleaners inside the room. Finally, the Diagnosis
module finishes.

3. Development of the Toolbox

The i-IAQ toolbox was developed using MATLAB App Designer 2021a (The Math-
Works, Inc., Natick, MA, USA) based on the principles described in Section 2. The App
Designer can develop a straightforward user interface with the powerful matrix operations
of MATLAB. As observed from Figure 4, the main user interface of the i-IAQ toolbox
contains the following four tabs: the building, the ventilation, the pollution source, and the
concentration, which are in accordance with the four modules described in Section 2.1.
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The building tab aims to collect basic building information. Users can directly input
the number, area, volume, floor, and name of each room in the table, and define building
type, city, altitude, and the start date of occupancy.

The ventilation tab receives information regarding the simulation of building ventila-
tion and infiltration. Users can input the length, width, height, and direction of external
openings for each room, as well as the size of internal openings between rooms. There
is also a table to collect inputs regarding mechanical ventilation, including outdoor air
delivery rate and filtration efficiency for each air pollutant. Operation schedule of openings
and mechanical ventilation is important to capture the variation in building ventilation.
Users can define and edit weekly schedules in the “schedule” panel of this tab, by inputting
the start and end hours of window/door opening and mechanical ventilation running in
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each day of a week. Then, users can assign the schedule of each opening and mechanical
ventilation by selecting from the defined ones. Temperature also plays an essential role in
airflow simulation (Equation (5)). In the ventilation tab, users can select to assign a uniform
temperature in all rooms, or to read time-series temperature data from an external file. For
the temperature file, users need to prepare an m × N matrix, where m is the total simulation
hours, 8760, and N is the number of rooms. The time stamp of the first data row should be
in accordance with the start data of the building being occupied.

In the pollution source tab, users can select indoor sources/sinks from the database for
each room and define the number, starting date, and schedule of each added source/sink.

Finally, in the concentration tab, users can visualize the plot of each air pollutant
in each room, whereas the statistical results are presented in the adjacent table. When
users press the “export . . . ” button, the time-series concentrations of six air pollutants and
their statistics in the selected room will be exported. The Diagnosis module starts to run
following the scheme shown in Figure 3 after the “diagnose” button is pressed. The toolbox
pops up a message box (Figure 5a) describing the detected issue in the selected room and
corresponding suggestions to modify the design. In addition, a bar chart (Figure 5b) is
shown to illustrate the relative contributions of outdoor intrusion and each indoor source,
where air pollutants with EXD > 5% are emphasized with bold black edges.
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air pollutant level.

It is worth mentioning that the toolbox is compatible to read outputs from commonly
used design software. This is the case for Rhino/Grasshopper (Robert McNeel & Associates,
Seattle, WA, USA) by which users can select target building/rooms, calculate the floor area
and volume of each room, collect the length, width, height, and direction of each opening,
and export the collected data in a .csv file. Afterwards, users can import the file by the “read
from file . . . ” button in the building tab, after which the information will automatically fill
the tables of rooms, external openings, and internal openings. Similarly, users who would
like to perform building ventilation simulation in the CONTAM software can also run a
CONTAM transient simulation of the target building for a year, export airflow results of
each flow path, and store them in a folder. Additionally, users need to include in the folder
a .csv file containing an N × X matrix to specify the belonging of each flow path to each
room, where N and X is the number of rooms and flow paths, respectively. Afterwards, the
users can press the “read contam . . . ” button in the ventilation tab to import the folder to
the toolbox. Then, the toolbox will calculate the airflow network by summing up airflows
via flow paths between each two rooms.
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4. Validation of the Toolbox

To validate the accuracy of the i-IAQ toolbox, we conducted a case study in a residential
building. The concentrations of the six air pollutants were measured continuously for one
week, during which the building characteristics and occupant schedule were also collected.
Then, the simulation results from the i-IAQ toolbox on the building were compared with the
measurements to elucidate the accuracy of the toolbox. Details are presented hereinafter.

4.1. The Case Study

We performed the case study in a 41.6 m2 residential building on the ground floor
located in Fribourg, Switzerland, renovated in July 2021. As shown in Figure 6, the
apartment had a 28 m2 living room (including dining and kitchen), a 10.6 m2 bedroom
and a 3 m2 bathroom. The living room had two external doors, one external window, and
two internal doors connected with the bedroom and bathroom. The bedroom also had one
additional door accessible to the outside space, and the bathroom was equipped with an
external window. Regarding major indoor sources, the living room was furnished with
three tables, four chairs, one cabinet, and one monitor screen, whereas cooking was also a
potent and intermittent source. Sources in the bedroom included a bed, a cabinet, a table, a
chair, and a monitor screen. The apartment was normally occupied by two adults and one
child. There was a main road located in the west of the apartment at a distance of 50 m,
and a railway track in the south at 50 m, when the apartment was surrounded by a park
with trees to reduce the traffic noise.
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We conducted on-site continuous measurements of indoor air pollutants in the tar-
get building for a week from 3 May 2022 to 10 May 2022. We deployed two sampling
stations located in the living room and bedroom, respectively (Figure 6). The sampling
stations were located at a height of 1.0–1.3 m above the floor, and the locations aimed to
not interfere with the daily life of the occupants. Each sampling station was equipped
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with two instruments recording at a 10-min interval, including one gas sensing probe
(AdvancedSensePro with a DS-II probe, Graywolf Sensing Solutions, LLC, Shelton, CT,
USA) measuring real-time CO2 (resolution: 1 ppm; drift: <20 ppm/year), TVOC (resolution:
2.5 µg/m3; drift: <25 µg/m3/day), NO2 (resolution: 20 µg/m3; drift: 10%/year), and O3
(resolution: 20 µg/m3; drift: 10%/6 months); and one optical particle counter (HPCC 6+,
Beckman Coulter, Inc., Brea, CA, USA) measuring real-time particle concentrations. The
particle counter measured number concentrations segregated into five size bins, including
0.3–0.5 µm, 0.5–1.0 µm, 1.0–2.0 µm, 2.0–5.0 µm, and 5.0–10 µm. For number-to-mass conver-
sion, we assumed spherical particles with 1.0 g/cm3 density and constant mass-weighted
size distribution within each size bin [83]. The PM10 and PM2.5 concentrations were ap-
proximated by summing up particle mass of 0.3–10 µm and 0.3–2.0 µm, respectively. All
instruments went through factory calibration less than 6 months before the measurement.
We implemented side-by-side measurements prior to the case study to mutually correct the
disparity between the instruments.

During the case study, we asked the occupants to record the status of window/door
openings, occupant number, and specific time of cooking and cleaning events. Afterwards,
we input the schedule records, together with the building characteristics, openings, and
indoor sources/sinks to the i-IAQ toolbox, to perform IAQ simulation in the case building.

4.2. Validation of the Simulation

Comparisons between the simulation results from the i-IAQ toolbox and the on-site
measurement are shown in Figure 7. As observed in Figure 7a, measured CO2 concentration
inside the bedroom regularly fluctuated within 420–1000 ppm, owing to the variation in
ventilation and occupant number of the building. The simulation results from the i-IAQ
toolbox successfully caught the variation trend of the measured data and generally agreed
well with the time-series measured CO2 values. It demonstrates that the i-IAQ toolbox is
reliable to simulate building ventilation and infiltration.

For quantitative comparisons for air pollutant levels, we calculated average simulated
and measured concentrations of six air pollutants in the sampled rooms during the case-
study week and compared them in Figure 7b. It can be clearly observed that the disparities
between the simulated and measured data were within 20% for CO2, PM10, PM2.5, and
O3 in two rooms, indicating good accuracy of the i-IAQ predicting indoor air pollutant
levels. For TVOC and NO2, the gap between simulation and measurement, however, was
relatively large; the i-IAQ toolbox underestimated the concentrations by 3–4 times relative
to the measured data. The disparity could be owing to the following three reasons: (1) the
toolbox underestimated the indoor source strength of the pollutants. This could particularly
be the case for TVOC, since there are many sporadic but strong TVOC sources, such as
perfume and sanitizer, which may have not been covered by the indoor source database of
the toolbox. (2) The outdoor air pollutant level surrounding the case building was higher
than that recorded at the ambient stations. Particularly for TVOC and NO2 that are easily
influenced by local emissions, such as traffic and industry site, using ambient station data
to approximate local surrounding air pollution may introduce bias to the simulation results.
(3) The accuracy issue of the measurement instrument and deployment. The TVOC sensor
had a resolution of 2.5 µg/m3 and a potential drift of up to 25 µg/m3 per day, which may
cause considerable uncertainty to the measured data. Similarly, the resolution of the NO2
sensor was 20 µg/m3, which was close to the measured average value (24 and 28 µg/m3).
The deployment of the sampling stations might also introduce bias to the measurement,
as they measured only at one point of each room. Although the stations were able to
capture the variations in air pollutant levels (Figure 7a), owing to the non-uniformity of
air distribution in the sampled rooms, we expected a discrepancy between the measured
values and simulation based on the well-mixed assumption. Potential solutions and future
work tackling the bias caused by these three assumptions are discussed hereinafter in
Section 5.
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of CO2, TVOC, PM10, PM2.5, NO2, and O3 in the bedroom and living room during the case-study
week.

In conclusion, through a validation case study in a residential building, the i-IAQ
toolbox has demonstrated reliability in simulating building ventilation and infiltration, and
good accuracy in predicting indoor air pollutant levels.

5. Discussion

As described above, based on the mass balance law and multizone modelling and
benefiting from the comprehensive indoor/outdoor database, the i-IAQ toolbox is able to
reliably predict IAQ and offer diagnosis and suggestions accordingly. The toolbox also has
the features of straightforward interface, automatic diagnosis, high prediction accuracy,
and compatibility with outputs from widely used design software. These characteristics
enable the toolbox to potentially pave a way towards novel and cost-effective IAQ control,
and more holistic and quantitative healthy building design, compared to the traditional
post-intervention IAQ control strategies. Additionally, in comparison with the existing IAQ
prediction tools [50–54], the i-IAQ toolbox has covered a comprehensive air pollutant matrix
to better represent IAQ and to propose suggestions for design modification. However, there
are several opportunities for improvement of the i-IAQ toolbox. Future work is expected to
focus on, but not limited to, the following directions.

One of the priorities should be given to enriching the indoor source/sink database.
The toolbox should collect the strengths of indoor sources and sinks from the literature
on a regular basis, especially the most recent ones considering the evolution of building
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materials, furniture, and other emerging sources/sinks. Similarly, the ambient pollution
database requires improvement both in terms of refinement and breadth (increase the
number of stations, cities, and countries). The refinement means that in addition to data
from ambient stations, the toolbox needs to collect ambient pollution data on a smaller
scale (city or community), which can better represent outdoor pollution surrounding a
target building. It requires input from high-geological-resolution mapping of air quality
in urban environments, which is a trend in the field of smart and healthy cities [84–86].
Future work should also perform more case studies with the i-IAQ toolbox to further
validate and enhance the accuracy of the toolbox. It is recommended to measure indoor
air pollutant levels at multiple room locations with high-grade instruments or standard
passive sampling methods to ensure the reliability of the measurements. These three
directions are in accordance with the potential reasons causing the disparities between
simulation and measurement data, as discussed in Section 4.2. The i-IAQ toolbox will be
made open-accessible after improvements from the three aforementioned perspectives.

To further improve the accuracy of the simulation results from the i-IAQ toolbox,
future work should also consider refined zone settings in multizone modelling. Currently,
the toolbox sets one room in a building as one zone in the modelling. The setting may be
appropriate for residential buildings with relatively small rooms, but not for large spaces
in commercial buildings, because large spaces tend to have large gradients of pressure and
air pollutant distributions. Hence, it is recommended to discretize large-space rooms into
several zones, of which the discretization method and criteria merit further investigations
to ensure both accuracy and efficiency. Improving the air pollutant emission model can
also enhance the accuracy of the i-IAQ toolbox. For instance, the toolbox currently adopts
empirical models to describe TVOC emissions from building materials and furniture.
Future work could integrate a mechanism model based on mass transfer to simulate TVOC
emissions [87], by which the influence of temperature and humidity on TVOC emissions
could also be considered [88]. In addition, regarding the compatibility of the i-IAQ toolbox,
currently, the toolbox can only communicate with widely used design software, such as
Rhino/Grasshopper and CONTAM, in a simple and one-way approach by reading outputs
from them. Future work can consider developing more effective communications between
the i-IAQ toolbox and the software, such as creating an i-IAQ plug-in for the software.
Moreover, mutual data exchanges between the toolbox and software may enable automatic
optimization of the building design [89,90].

6. Conclusions

IAQ is an inevitable factor that should be considered in healthy building design. This
paper proposes to integrate IAQ prediction into healthy building design by developing
a simulation toolbox, i-IAQ, using MATLAB App Designer. Within the i-IAQ, users can
define characteristics of designed buildings and openings, and select potential pollutant
sources from the pollution database. Afterwards, the toolbox can simulate indoor levels
of CO2, TVOC, PM10, PM2.5, NO2, and O3 after occupancy. The toolbox is also capable
of offering diagnosis and suggestions for the design based on the simulation results. The
reliability of the i-IAQ toolbox was validated by a case study in a residential building.
The paper outcomes have the potential to pave a way towards novel and cost-effective
IAQ control, and more holistic healthy building design. Future work directions include
the following: to enrich and refine indoor/outdoor pollutant databases, to perform more
validation case studies and to enhance the accuracy and compatibility of the toolbox.
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