Georesources as an Alternative for Sustainable Development in COVID-19 Times—A Study Case in Ecuador
Abstract
:1. Introduction
Literature Review
2. Geographical and Geological Setting
2.1. Geographical and Geological Situation of the Area
2.2. Socio-Economic Aspect
3. Methodology
3.1. Inventory and Georesources Cartography
3.2. Description and Assessment of Georesources
3.2.1. Sites of Geological Interest (SGI) and Potential Geosites Assessment
3.2.2. Groundwater Resource Assessment
3.2.3. Assessment of Materials with Industrial-Artisanal Interest
3.3. Georesources Complementary Applications
3.3.1. Sanitary Landfill (SL) Assessment
3.3.2. Tsunamis Shelter Areas
3.3.3. Identification of Ecosystem Services (ES)
3.4. SWOT Analysis
4. Results
4.1. Location of Georesources
4.2. Potencial Geosites and SGI Assessment
4.3. Groundwater Resource Assessment
4.4. Assessment of Materials with Industrial and Artisanal Interest
4.5. Tsunamis Shelter Areas
4.6. Assessment of Areas for Sanitary Landfill (SL)
- TV > 50: Constructible with minor precautions;
- 35 < TV < 50: Constructible under essential considerations;
- TV < 35: Not buildable.
4.7. Ecosystem Services (ES) Identification
4.8. SWOT Analysis
4.9. Georoute Proposal
5. Discussion
- An online database.
- Delimit strictly protected areas that contribute preserving species, geological landscapes and ecosystems.
- Selection of areas for scientific use, monitoring, education and training.
- Areas for economic activities responsible for the socio-cultural and ecological aspects of the communities [197].
6. Conclusions
- Creation of a website with images, videos and virtual tours through geosites to encourage visits to such places;
- Training for communities on the importance of geosites for their sustainable management;
- Cooperation between scientific organizations to disseminate geosites;
- Use of georesources for the preservation of local cultural practices.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gray, M. Geodiversity–Valuing and Conserving Abiotic Nature; John Wiley & Sons: London, UK, 2004; ISBN 0470848960. [Google Scholar]
- Gray, M. Geodiversity. In Geoheritage; Elsevier: Amsterdam, The Netherlands, 2018; pp. 13–25. [Google Scholar]
- Megía, M.V.; Alarcón, J.C.B.; Romero, J.S.G.; Pérez Muñoz, A.B. El inventario andaluz de georrecursos culturales. In De re metallica (Madrid) Revista de la Sociedad Española para la Defensa del Patrimonio Geológico y Minero; Dialnet: Madrid, Spain, 2004; Volume 3, pp. 9–22. [Google Scholar]
- Ruban, D.A. Karst as important resource for Geopark-Based Tourism: Current state and biases. Resources 2018, 7, 82. [Google Scholar] [CrossRef] [Green Version]
- Villalobos, M. Estrategias en la protección del patrimonio geológico andaluz. Medio Ambient. 2001, 31, 36–39. [Google Scholar]
- Brilha, J.; Gray, M.; Pereira, D.I.; Pereira, P. Geodiversity: An integrative review as a contribution to the sustainable management of the whole of nature. Environ. Sci. Policy 2018, 86, 19–28. [Google Scholar] [CrossRef] [Green Version]
- Ruban, D.A.; Tiess, G.; Sallam, E.S.; Ponedelnik, A.A.; Yashalova, N.N. Combined mineral and geoheritage resources related to kaolin, phosphate, and cement production in Egypt: Conceptualization, assessment, and policy implications. Sustain. Environ. Res. 2018, 28, 454–461. [Google Scholar] [CrossRef]
- Henriques, M.H.; dos Reis, R.P.; Brilha, J.; Mota, T. Geoconservation as an emerging geoscience. Geoheritage 2011, 3, 117–128. [Google Scholar] [CrossRef] [Green Version]
- Tiess, G. General and International Mineral Policy; Springer: Vienna, Austria, 2011; ISBN 978-3-211-89004-2. [Google Scholar]
- Wimbledon, W.A.P. Geosites a new conservation initiative. Episodes 1996, 19, 87–88. [Google Scholar] [CrossRef] [Green Version]
- Lamelas, M.T.; Hoppe, A.; de la Riva, J.; Marinoni, O. Modelling environmental variables for geohazards and georesources assessment to support sustainable land-use decisions in Zaragoza (Spain). Geomorphology 2009, 111, 88–103. [Google Scholar] [CrossRef]
- Ayala, J.N.S. Geoparque en Potosí-Bolivia. Sus potencialidades y avance. I Simposio Red REUSE y Seminário Internacional de Reconversión de Territórios-Belo Horizonte 2012. In Reutilización Sostenible del Espacio Minero; Aja, A.H., Meza, M.I.L., Eds.; Universidad Federal de Minas Gerais (UFMG): Belo Horizonte, Chile, 2013; pp. 81–89. ISBN 978-84-9728-455-4. [Google Scholar]
- Gordon, J.E. Geoconservation principles and protected area management. Int. J. Geoheritage Park. 2019, 7, 199–210. [Google Scholar] [CrossRef]
- Singtuen, V.; Gałka, E.; Phajuy, B.; Won-In, K. Evaluation and geopark perspective of the geoheritage resources in Chiang Mai area, northern Thailand. Geoheritage 2019, 11, 1955–1972. [Google Scholar] [CrossRef]
- Newsome, D.; Dowling, R. Geoheritage and geotourism. In Geoheritage; Elsevier: Amsterdam, The Netherlands, 2018; pp. 305–321. [Google Scholar]
- Joyce, E.B. Australia’s geoheritage: History of study, a new inventory of geosites and applications to geotourism and geoparks. Geoheritage 2010, 2, 39–56. [Google Scholar] [CrossRef]
- Gray, M. Geodiversity, geoheritage and geoconservation for society. Int. J. Geoheritage Park. 2019, 7, 226–236. [Google Scholar] [CrossRef]
- Nasier, S. Utilization of recycled form of concrete, E-wastes, glass, quarry rock dust and waste marble powder as reliable construction materials. Mater. Today Proc. 2021, 45, 3231–3234. [Google Scholar] [CrossRef]
- Chakhmouradian, A.R.; Wall, F. Rare earth elements: Minerals, mines, magnets (and more). Elements 2012, 8, 333–340. [Google Scholar] [CrossRef]
- Bookhagen, B.; Bastian, D.; Buchholz, P.; Faulstich, M.; Opper, C.; Irrgeher, J.; Prohaska, T.; Koeberl, C. Metallic resources in smartphones. Resour. Policy 2020, 68, 101750. [Google Scholar] [CrossRef]
- Wei, G.C. Transparent ceramics for lighting. J. Eur. Ceram. Soc. 2009, 29, 237–244. [Google Scholar] [CrossRef]
- Murray, H.H. Traditional and new applications for kaolin, smectite, and palygorskite: A general overview. Appl. Clay Sci. 2000, 17, 207–221. [Google Scholar] [CrossRef]
- Vaneeckhaute, C.; Meers, E.; Michels, E.; Buysse, J.; Tack, F.M.G. Ecological and economic benefits of the application of bio-based mineral fertilizers in modern agriculture. Biomass Bioenergy 2013, 49, 239–248. [Google Scholar] [CrossRef] [Green Version]
- Cartier, L.E. Gemstones and sustainable development: Perspectives and trends in mining, processing and trade of precious stones. Extr. Ind. Soc. 2019, 6, 1013–1016. [Google Scholar] [CrossRef]
- Intarasiri, S.; Wijaikhum, A.; Bootkul, D.; Suwannakachorn, D.; Tippawan, U.; Yu, L.D.; Singkarat, S. Development of vertical compact ion implanter for gemstones applications. Appl. Surf. Sci. 2014, 310, 94–99. [Google Scholar] [CrossRef]
- Jalloh, A.B.; Sasaki, K.; Thomas, M.O.; Jalloh, Y. The geology, mineral resources of Sierra Leone and how the resources can be used to develop the nation. Procedia Earth Planet. Sci. 2013, 6, 131–138. [Google Scholar] [CrossRef] [Green Version]
- Brilha, J. Inventory and quantitative assessment of geosites and geodiversity sites: A review. Geoheritage 2016, 8, 119–134. [Google Scholar] [CrossRef] [Green Version]
- Ruban, D.A.; Sallam, E.S.; Khater, T.M.; Ermolaev, V.A. Golden triangle geosites: Preliminary geoheritage assessment in a geologically rich area of eastern Egypt. Geoheritage 2021, 13, 54. [Google Scholar] [CrossRef]
- Ferreira, A.R.R.; Lobo, H.A.S.; de Jesus Perinotto, J.A. Inventory and quantification of geosites in the State Tourist Park of Alto Ribeira (PETAR, São Paulo State, Brazil). Geoheritage 2019, 11, 783–792. [Google Scholar] [CrossRef]
- European Geoparks Network. The Arouca Declaration; European Geoparks Network: Arouca, Portugal, 2012. [Google Scholar]
- Pérez-álvarez, R.; Torres-Ortega, S.; Díaz-Simal, P.; Husillos-Rodríguez, R.; De Luis-Ruiz, J.M. Economic valuation of mining heritage from a recreational approach: Application to the case of El Soplao Cave in Spain (Geosite UR004). Sustainability 2016, 8, 185. [Google Scholar] [CrossRef] [Green Version]
- Prosser, C.D.; Díaz-Martínez, E.; Larwood, J.G. The conservation of geosites. In Geoheritage; Elsevier: Amsterdam, The Netherlands, 2018; pp. 193–212. [Google Scholar]
- Kubalíková, L.; Kirchner, K.; Bajer, A. Secondary geodiversity and its potential for urban geotourism: A case study from Brno city, Czech Republic. Quaest. Geogr. 2017, 36, 63–73. [Google Scholar] [CrossRef] [Green Version]
- Kubalikova, L.; Kirchner, K.; Kuda, F.; Machar, I. The role of anthropogenic landforms in sustainable landscape management. Sustainability 2019, 11, 4331. [Google Scholar] [CrossRef] [Green Version]
- Kubalíková, L.; Zapletalová, D. Geo-cultural aspects of building stone extracted within Brno city (Czech Republic): A bridge between natural and cultural heritage. Geoheritage 2021, 13, 78. [Google Scholar] [CrossRef]
- Reynard, E.; Brilha, J. Geoheritage: Inventories and evaluation. In Geoheritage Assessment, Protection, and Management; Emmanuel Reynard, J.B., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 3–9. ISBN 9780128095423. [Google Scholar]
- Spyrou, E.; Triantaphyllou, M.V.; Tsourou, T.; Vassilakis, E.; Asimakopoulos, C.; Konsolaki, A.; Markakis, D.; Marketou-Galari, D.; Skentos, A. Assessment of geological heritage sites and their significance for geotouristic exploitation: The case of Lefkas, Meganisi, Kefalonia and Ithaki Islands, Ionian Sea, Greece. Geosciences 2022, 12, 55. [Google Scholar] [CrossRef]
- McBriar, M. A report prepared for the Australian Heritage Commission by the Standing Committee for the Geological Heritage. J. Geol. Soc. Aust. 1995, 12–21. [Google Scholar]
- Vujičić, M.D.; Vasiljević, D.A.; Marković, S.B.; Hose, T.A.; Lukić, T.; Hadžić, O.; Janićević, S. Preliminary geosite assessment model (gam) and its application on Fruška gora mountain, potential geotourism destination of Serbia. Acta Geogr. Slov. 2011, 51, 361–376. [Google Scholar] [CrossRef]
- Henriques, M.H.; Tavares, A.O.; Bala, A.L.M. The geological heritage of Tundavala (Angola): An integrated approach to its characterisation. J. Afr. Earth Sci. 2013, 88, 62–71. [Google Scholar] [CrossRef]
- De Lima, F.F.; Brilha, J.B.; Salamuni, E. Inventorying Geological Heritage in Large Territories: A Methodological Proposal Applied to Brazil. Geoheritage 2010, 2, 91–99. [Google Scholar] [CrossRef] [Green Version]
- Brilha, J. Geoconservation and protected areas. Environ. Conserv. 2002, 29, 273–276. [Google Scholar] [CrossRef] [Green Version]
- Sallam, E.S.; Ruban, D.A.; Mostafa, M.T.; Elkhodery, M.K.; Alwilily, R.L.; Molchanova, T.K.; Zorina, S.O. Unique desert caves as a valuable geological resource: First detailed geological heritage assessment of the Sannur Cave, Egypt. Arab. J. Geosci. 2020, 13, 141. [Google Scholar] [CrossRef]
- Huang, Y.; Raza, S.M.F.; Hanif, I.; Alharthi, M.; Abbas, Q.; Zain-ul-Abidin, S. The role of forest resources, mineral resources, and oil extraction in economic progress of developing Asian economies. Resour. Policy 2020, 69, 101878. [Google Scholar] [CrossRef]
- Haseeb, M.; Kot, S.; Iqbal Hussain, H.; Kamarudin, F. The natural resources curse-economic growth hypotheses: Quantile–on–Quantile evidence from top Asian economies. J. Clean. Prod. 2020, 279, 123596. [Google Scholar] [CrossRef]
- Davis, G.A. Brazil’s comparative advantage in the global economy. Miner. Energy-Raw Mater. Rep. 1995, 11, 4–10. [Google Scholar] [CrossRef]
- Carvalho, I.S.; Henriques, M.H.; Castro, A.R.S.F.; Félix, Y.R. Promotion of the geological heritage of Araripe Unesco Global Geopark, Brazil: The Casa da Pedra Reference Center. Geoheritage 2020, 12, 17. [Google Scholar] [CrossRef]
- IIGE Mapa Geológico de la República del Ecuador, Escala 1:1000000. Available online: https://www.geoenergia.gob.ec/mapas-geologicos/ (accessed on 21 February 2022).
- BGS; CODIGEM. Geological and Metal Occurrence Maps of the Southern Cordillera Real and El Oro Metamorphic Belts, Ecuador Escala 1:500000; British Geological Survey: Nottingham, UK, 1994. [Google Scholar]
- Winkler, W.; Villagómez, D.; Spikings, R.; Abegglen, P.; Tobler, S.; Eguez, A. The Chota basin and its significance for the inception and tectonic setting of the Inter-Andean Depression in Ecuador. J. S. Am. Earth Sci. 2005, 19, 5–19. [Google Scholar] [CrossRef]
- Berrezueta, E.; López, K.; González-Menéndez, L.; Ordóñez-Casado, B.; Benítez, S. Ophiolitic rocks and plagiorhyolites from SW Ecuador (Cerro San José): Petrology, geochemistry and tectonic setting. J. Iber. Geol. 2021, 47, 367–386. [Google Scholar] [CrossRef]
- BGS; CODIGEM. Geological and Metal Occurrence Maps of the Northern Cordillera Real Metamorphic Belts, Ecuador Escala 1:500000. Available online: https://www.worldcat.org/title/geological-and-metal-occurrence-maps-of-the-northern-cordillera-real-metamorphic-belt-ecuador/oclc/891455130?referer=di&ht=edition#borrow (accessed on 7 March 2022).
- A.S W. Sauer 1971. Geologie von Ecuador, ix + 316 pp., 29 figs, 15 tables, 4 folded figs. 2 folded maps. In German. Gebruder Borntraeger, Berlin, Stuttgart. Price DM 130. Geol. Mag. 1973, 110, 189–190. [CrossRef]
- Reyes, P.; Michaud, F. Mapa Geológico del Margen Costero Ecuatoriano; Springer: Quito, Ecuador, 2012. [Google Scholar]
- Luzieux, L.; Heller, F.; Spikings, R.; Vallejo, C.; Winkler, W. Origin and Cretaceous tectonic history of the coastal Ecuadorian forearc between 1°N and 3°S: Paleomagnetic, radiometric and fossil evidence. Earth Planet. Sci. Lett. 2006, 249, 400–414. [Google Scholar] [CrossRef]
- Eguez, A.; Gaona, M.; Albán, A. Mapa Geológico de la República del Ecuador 2017; Instituto Nacional de Investigación Geológico Minero Metalúrgico: Quito, Ecuador, 2017; p. 37. [Google Scholar]
- BGS; CODIGEM. Mapa Geológico de la Cordillera Occidental del Ecuador entre 3°-4° S. Escala 1:200.000; British Geological Survey: Nottingham, UK, 1997. [Google Scholar]
- BGS; CODIGEM. Mapa Geológico de la Cordillera Occidental del Ecuador entre 0°-1° N. Escala 1:200.000; British Geological Survey: Nottingham, UK, 1997. [Google Scholar]
- Litherland, M.; Aspden, J.A.; Jemielita, R.A. The Metamorphic Belts of Ecuador; British Geological Survey: Nottingham, UK, 1994. [Google Scholar]
- IIGE. Mapa Metalogenético de la República del Ecuador Escala 1:1000000. Available online: https://www.geoenergia.gob.ec/mapa-metalogenetico-de-ecuador-escala-11-000-000-version-2019/ (accessed on 5 February 2022).
- Goossens, P.J. Metallogeny in ecuadorian andes. Econ. Geol. 1972, 67, 458–468. [Google Scholar] [CrossRef]
- Stoll, W.C. Notes on the mineral resources of Ecuador. Econ. Geol. 1962, 57, 799–808. [Google Scholar] [CrossRef]
- DGGM; IIGE. Mapa Metalogénico de la República del Ecuador, 1980 Escala 1:1’000.000. Available online: https://www.geoenergia.gob.ec/mapas-tematicos-11000-000/ (accessed on 2 February 2022).
- INIGEMM. Mapa de Indicios de Minerales Metálicos de la República del Ecuador, 2009, escala 1:1’000.000. Available online: https://drive.google.com/file/d/12x2aEqdRHAqM3xtBbsrl1SVj_1HEcTkj/view (accessed on 2 February 2022).
- Berrezueta, E.; Ordóñez-Casado, B.; Espinoza-Santos, C.; Loayza-Ramírez, J.; Carrión-Mero, P.; Morante-Carballo, F.; Bonilla, W. Caracterización mineralógica y petrográfica de las vetas Vizcaya, Octubrina y Gabi del yacimiento aurífero epitermal Zaruma-Portovelo, Ecuador. Bol. Geol. Min. 2021, 132, 421–437. [Google Scholar] [CrossRef]
- INIGEMM. Mapa de Ocurrencias de Minerales no Metálicos, 2011, Escala 1:1’000.000. Available online: https://drive.google.com/file/d/1htTEX0_tYWlKlRamP4vc7GvCqnHWhQux/view (accessed on 2 February 2022).
- Goossens, P.; INIGEMM. Mapa de Índice Mineralógico de la Repúblicca del Ecuador, 1969, Escala 1:1’000.00. Available online: https://drive.google.com/file/d/1RwYVeqP4akCSs3OL34lIJNDCZAOqcIUz/view (accessed on 2 February 2022).
- Machiels, L.; Garcés, D.; Snellings, R.; Vilema, W.; Morante, F.; Paredes, C.; Elsen, J. Zeolite occurrence and genesis in the Late-Cretaceous Cayo arc of Coastal Ecuador: Evidence for zeolite formation in cooling marine pyroclastic flow deposits. Appl. Clay Sci. 2014, 87, 108–119. [Google Scholar] [CrossRef]
- Ministerio del Ambiente; Consejo Nacional de Recursos Hídricos. División Hidrográfica del Ecuador; Ministerio del Ambiente; Consejo Nacional de Recursos Hídricos: Quito, Ecuador, 2002. [Google Scholar]
- INAMHI. Cuencas Hidrográficas del Ecuador; INAMHI: Quito, Ecuador, 2014. [Google Scholar]
- INAMHI. Mapa de Ubicación de la Red Hidrológica en Operación por Cuencas Hidrográficas del Ecuador; INAMHI: Quito, Ecuador, 2007. [Google Scholar]
- UICN. Delimitación y Codificación de Unidades Hidrográficas del Ecuador. Escala 1:250000; UICN: Quito, Ecuador, 2009. [Google Scholar]
- Gallardo, G.; Melia, E.; García, M.; Artacho, M. Identification and measurement of complementarity variables in strategic projects of water irrigation from the sustainability practices. Case: Republic of Ecuador. In Project Management and Engineering Research; Springer: Cham, Switzerland, 2017; pp. 121–136. [Google Scholar]
- CIPAT-ESPOL; SENAGUA; AECID. Proceso: Re-Senagua-026-2012. Proyecto: Elaboración del mapa hidrogeológico a ascala 1:250.000. Informe Final; CIPAT-ESPOL, SENAGUA, AECID: Guayaquil, Ecuador, 2014. [Google Scholar]
- Berrezueta, E.; Sánchez-Cortez, J.L.; Aguilar-Aguilar, M. Inventory and characterization of geosites in Ecuador: A review. Geoheritage 2021, 13, 93. [Google Scholar] [CrossRef]
- Chang, C.; McAleer, M.; Ramos, V. A charter for sustainable tourism after COVID-19. Sustainability 2020, 12, 3671. [Google Scholar] [CrossRef]
- Romagosa, F. The COVID-19 crisis: Opportunities for sustainable and proximity tourism. Tour. Geogr. 2020, 22, 690–694. [Google Scholar] [CrossRef]
- Cave, J.; Dredge, D. Regenerative tourism needs diverse economic practices. Tour. Geogr. 2020, 22, 503–513. [Google Scholar] [CrossRef]
- OECD. Tourism Policy Responses to the Coronavirus (COVID-19); OECD: Paris, France, 2020; pp. 1–75. [Google Scholar]
- ONU. Informe de Políticas: La COVID-19 y la Transformación del Turismo; ONU: Madrid, Spain, 2020. [Google Scholar]
- OMT. COVID-19 y Sector Turístico 2020: Análisis del Año. Available online: https://www.unwto.org/es/covid-19-y-sector-turistico-2020 (accessed on 4 February 2022).
- Secretaría General de Comunicación de la Presidencia. El presidente Lenín Moreno Decreta Estado de Excepción para Evitar la Propagación del COVID-19; Secretaría General de Comunicación de la Presidencia: Quito, Ecuador, 2021. [Google Scholar]
- Loor Bravo, L.; Plaza Macías, N.; Medina Valdés, Z. Turismo comunitario en Ecuador: Apuntes en tiempos de pandemia. Rev. Cienc. Soc. 2021, 26, 266–277. [Google Scholar]
- Diaz, C.; Torres, J. Analysis of the Measures Taken by the Governments of Colombia and Ecuador in Favor of the Tourism Industry during the Pandemic Generated by COVID-19; RISTI: Lousada, Portugal, 2020; Volume 36, pp. 127–139. [Google Scholar]
- Guerrero, G.; Noblecilla, F. Análisis Socioeconómico de la Incidencia del COVID-19 en el Turismo de la Parroquia Manglaralto, año 2020; UG: Guayaquil, Ecuador, 2021. [Google Scholar]
- Marie-Therese, L. Las comunas costeras del Ecuador frente al COVID-19: Alianzas sociales, territorio, autonomía y dependencia. Perif. Rev. Investig. Form. Antropol. 2020, 25, 30–51. [Google Scholar] [CrossRef]
- Carrión-Mero, P.; Montalván-Burbano, N.; Herrera-Narváez, G.; Morante-Carballo, F. Geodiversity and mining towards the development of geotourism: A global perspective. Int. J. Des. Nat. Ecodynamics 2021, 16, 191–201. [Google Scholar] [CrossRef]
- UNESCO List of Geoparks and Regional Networks. Available online: https://en.unesco.org/global-geoparks/list (accessed on 3 February 2022).
- UNESCO Imbabura UNESCO Global Geopark (Ecuador). Available online: https://en.unesco.org/global-geoparks/imbabura (accessed on 7 April 2022).
- Geoparque Imbabura Geoparque Imbabura. Available online: https://geoparque.imbabura.gob.ec/ (accessed on 11 April 2022).
- Ministerio de Turismo Establecimientos Registrados. Portal Servicios MINTUR. Available online: https://servicios.turismo.gob.ec/index.php/turismo-cifras/2018-09-18-21-11-17/establecimientos-registrados (accessed on 9 April 2022).
- Ministerio de Turismo Indicadores de Turismo. Portal Servicios MINTUR. Available online: https://servicios.turismo.gob.ec/index.php/turismo-cifras/2018-09-24-21-06-03/indicadores-de-turismo (accessed on 10 April 2022).
- Ministerio de Turismo Visualizador económico. Portal Servicios MINTUR. Available online: https://servicios.turismo.gob.ec/visualizador-economico (accessed on 12 April 2022).
- GAD. Parroquia Manglaralto Plan de Desarrollo y Ordenamiento Territorial (PDOT) de la Parroquia Rural Manglaralto 2014-2019; GAD: Manglaralto, Ecuador, 2015. [Google Scholar]
- DGGM; IIGE. Hoja Geológica Manglaralto-Escala 1:100.000. Available online: https://www.geoenergia.gob.ec/mapas-tematicos-1-100-000/ (accessed on 3 February 2022).
- Morante-Carballo, F.; Montalván-Burbano, N.; Carrión-Mero, P.; Espinoza-Santos, N. Cation exchange of natural eeolites: Worldwide research. Sustainability 2021, 13, 7751. [Google Scholar] [CrossRef]
- Carrión-Mero, P.; Quiñonez-Barzola, X.; Morante-Carballo, F.; Montalván, F.J.; Herrera-Franco, G.; Plaza-Úbeda, J. Geometric model of a coastal aquifer to promote the sustainable use of water. Manglaralto, Ecuador. Water 2021, 13, 923. [Google Scholar] [CrossRef]
- Carrión-Mero, P.; Montalván, F.J.; Morante-Carballo, F.; Loor-Flores de Valgas, C.; Apolo-Masache, B.; Heredia, J. Flow and transport numerical model of a coastal aquifer based on the hydraulic importance of a dyke and its impact on water quality. Manglaralto—Ecuador. Water 2021, 13, 443. [Google Scholar] [CrossRef]
- Boros-Lajszner, E.; Wyszkowska, J.; Kucharski, J. Use of zeolite to neutralise nickel in a soil environment. Environ. Monit. Assess. 2018, 190, 54. [Google Scholar] [CrossRef] [Green Version]
- Alshameri, A.; Xinghu, W.; Dawood, A.; Assabri, A.; Xin, C.; Yan, C. Characterization of Yemeni natural zeolite (Al-Ahyuq area) and its environment applications: A review. J. Ecol. Eng. 2019, 20, 157–166. [Google Scholar] [CrossRef]
- Morante-Carballo, F.; Montalván-Burbano, N.; Carrión-Mero, P.; Jácome-Francis, K. Worldwide research analysis on natural zeolites as environmental remediation materials. Sustainability 2021, 13, 6378. [Google Scholar] [CrossRef]
- Malamis, S.; Katsou, E. A review on zinc and nickel adsorption on natural and modified zeolite, bentonite and vermiculite: Examination of process parameters, kinetics and isotherms. J. Hazard. Mater. 2013, 252–253, 428–461. [Google Scholar] [CrossRef]
- Lalangui Roldán, K.L.; Cruz Arreaga, G.R. Análisis de los Procesos de Desarrollo Local: Caso, el Rol de la Junta Administradora de Agua Potable Regional de Manglaralto (JAAPMAN). Santa Elena-Ecuador. Periodo 2008-2017; UG: Guayaquil, Ecuador, 2020. [Google Scholar]
- Ron-Chóez, F.J.; Arévalo-Ávila, F.A. Análisis Socioeconómico de la Parroquia Manglaralto. Cantón Santa Elena. Periodo 2015–2019; UG: Guayaquil, Ecuador, 2021. [Google Scholar]
- Carrión-Mero, P.; Morante-Carballo, F.; Herrera-Franco, G.; Jaya-Montalvo, M.; Rodríguez, D.; Loor-Flores de Valgas, C.; Berrezueta, E. Community-university partnership in water education and linkage process. Study case: Manglaralto, Santa Elena, Ecuador. Water 2021, 13, 1998. [Google Scholar] [CrossRef]
- León-Castro, C.M. La Economía Popular y Solidaria. Análisis y Perspectivas de Desarrollo Económico y Territorial de la Provincia de Santa Elena-Ecuador; Universidad de León: Leon, Spain, 2018. [Google Scholar]
- Mendoza Tarabó, A.E.; Ramírez Frías, C.H.; Yumisaca Tuquinga, J.E.; Peralta Mendoza, S.P. Artesanías autóctonas como atractivo turístico en la provincia de Santa Elena, Ecuador. Explor. Digit. 2019, 3, 5–15. [Google Scholar] [CrossRef] [Green Version]
- García Espinoza, L.C.; Sarabia Molina, M.Y.; Mendoza Trabó, A.E. Turismo comunitario y responsabilidad social en Santa Elena: Un modelo para armar. Estud. Turísticos 2018, 211–2012, 171–187. [Google Scholar]
- Yumisaca Tuquinga, J.E.; Bohórquez Armijos, E.A.; Mendoza Tarabó, E.A.; Gonzabay Rosales, J. Cadena de valor del destino Dos Mangas como herramienta para el análisis de la sostenibilidad de la oferta turística. Univ. Soc. 2020, 12, 88–96. [Google Scholar]
- Sarabia Molina, M.Y.; García Espinoza, L.C.; Mendoza Tarabó, A.E. Small businesses like a sign of innovation and sustainable development in the community tourism centers in Santa Elena. In Innovation and Entrepreneurial Opportunities in Community Tourism; ICI Global: Hershey, PA, USA, 2021; pp. 15–36. ISBN 9781799848554. [Google Scholar]
- Yumisaca, J.; Mendoza, E.; Silvia, P. Planificación turística: Perspectivas desde las comunidades de Santa Elena. Espirales 2019, 3, 131–141. [Google Scholar] [CrossRef] [Green Version]
- Gavilanes Sánchez, M.S.; Soriano Miranda, J.I. Estudio Técnico para la Exportación de Artesanías de Madera y Caña GUADUA como Elemento Fundamental del Comercio Internacional y su Incidencia en el Desarrollo Socioeconómico de los Artesanos de la Asociación Herencia Cultural de la Comuna Atravezado, PAR; Universidad de Guayaquil: Guayaquil, Ecuador, 2016. [Google Scholar]
- Guapi Flores, S.J. Plan de Desarrollo Económico para la Comuna Montañita, Parroquia Manglaralto, Cantón Santa Elena, Provincia de Santa Elena, año 2015; UPSE University: Santa Elena, Ecuador, 2015. [Google Scholar]
- Carvache Franco, W.; Torres Naranjo, M.; Carvache Franco, M. Análisis del perfil y satisfacción del turista que visita Montañita–Ecuador. Cuad. Tur. 2017, 39, 113–129. [Google Scholar] [CrossRef]
- Gálvez-Izquieta, P.C.; Mendoza-Tarabó, A.E. Capacidad de carga turística como herramienta para el desarrollo sostenible de playas: Caso Montañita, provincia de Santa Elena, Ecuador. Empresarial 2020, 14, 1–7. [Google Scholar] [CrossRef]
- Yumisaca Tuquinga, J.E.; Mendoza Tarabó, A.E.; Villón Perero, S.G. Perfil sociodemográfico del turista de la provincia de Santa Elena en Ecuador. Referencias para nuevas propuestas de desarrollo. Univ. Soc. 2017, 9, 52–59. [Google Scholar]
- Nakai, H.; Itatani, T.; Kaganoi, S.; Okamura, A.; Horiike, R.; Yamasaki, M. Needs of children with neurodevelopmental disorders and geographic location of emergency shelters suitable for vulnerable people during a tsunami. Int. J. Environ. Res. Public Health 2021, 18, 1845. [Google Scholar] [CrossRef]
- Picchi, D.; Caballero, J.P. Employment of three methodologies of geosities inventory for geoconservation. Case study: Grutas del Palacio geosite. Soc. Urug. Geol. 2018, 21, 53–65. [Google Scholar]
- Poch Serra, J. Revisión y Propuesta de Mejora del Modelo de Gestión de la Geodiversidad de los Geoparques Mundiales de la UNESCO; Universitat Autònoma de Barcelona: Barcelona, Spain, 2019. [Google Scholar]
- Herrera-Franco, G.; Carrión-Mero, P.; Mora-Frank, C.; Caicedo-Potosí, J. Comparative analysis of methodologies for the evaluation of geosites in the context of the Santa Elena-Ancón geopark project. Int. J. Des. Nat. Ecodynamics 2020, 15, 183–188. [Google Scholar] [CrossRef]
- Turner-Carrión, M.; Carrión-Mero, P.; Turner-Salamea, I.; Morante-Carballo, F.; Aguilar-Aguilar, M.; Zambrano-Ruiz, K.; Berrezueta, E. A mineralogical museum as a geotourism attraction: A case study. Minerals 2021, 11, 582. [Google Scholar] [CrossRef]
- Navarrete, E.; Morante-Carballo, F.; Dueñas-Tovar, J.; Carrión-Mero, P.; Jaya-Montalvo, M.; Berrezueta, E. Assessment of geosites within a natural protected area: A case study of Cajas National Park. Sustainability 2022, 14, 3120. [Google Scholar] [CrossRef]
- Herrera-Franco, G.; Erazo, K.; Mora-Frank, C.; Carrión-Mero, P.; Berrezueta, E. Evaluation of a paleontological museum as geosite and base for geotourism. A case study. Heritage 2021, 4, 1208–1227. [Google Scholar] [CrossRef]
- Carrión-Mero, P.; Montalván, F.J.; Morante-Carballo, F.; Heredia, J.; Elorza, F.J.; Solórzano, J.; Aguilera, H. Hydrochemical and isotopic characterization of the waters of the Manglaralto river basin (Ecuador) to contribute to the management of the coastal aquifer. Water 2021, 13, 537. [Google Scholar] [CrossRef]
- ESRI ArcGIS Desktop. Available online: https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview (accessed on 2 February 2022).
- Miller, G.T.; Spoolman, S.E. Living in the Environment; Nineteenth; National Geographic Learning: Boston, USA, 2016; ISBN 978-1-337-10010-6. [Google Scholar]
- Gutscher, M.-A.; Malavieille, J.; Lallemand, S.; Collot, J.-Y. Tectonic segmentation of the North Andean margin: Impact of the Carnegie Ridge collision. Earth Planet. Sci. Lett. 1999, 168, 255–270. [Google Scholar] [CrossRef]
- Pulido, N.; Yoshimoto, M.; Sarabia, A.M. Broadband wavelength slip model of the 1906 Ecuador-Colombia megathrust-earthquake based on seismic intensity and tsunami data. Tectonophysics 2020, 774, 228226. [Google Scholar] [CrossRef]
- Ioualalen, M.; Monfret, T.; Béthoux, N.; Chlieh, M.; Ponce Adams, G.; Collot, J.Y.; Martillo Bustamante, C.; Chunga, K.; Navarrete, E.; Montenegro, G.; et al. Tsunami mapping in the Gulf of Guayaquil, Ecuador, due to local seismicity. Mar. Geophys. Res. 2014, 35, 361–378. [Google Scholar] [CrossRef]
- Herd, D.G.; Youd, T.L.; Meyer, H.; Arango C., J.L.; Person, W.J.; Mendoza, C. The Great Tumaco, Colombia earthquake of 12 December 1979. Science 1981, 211, 441–445. [Google Scholar] [CrossRef]
- Kanamori, H.; McNally, K.C. Variable rupture mode of the subduction zone along the Ecuador-Colombia coast. Bull. Seismol. Soc. Am. 1982, 72, 1241–1253. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, J.; Yun, Y. Strategies for increasing tsunami shelter accessibility to enhance hazard risk adaptive capacity in coastal port cities: A study of Nagoya city, Japan. Nat. Hazards Earth Syst. Sci. 2019, 19, 927–940. [Google Scholar] [CrossRef] [Green Version]
- Fadly, U.; Ruslin, A.M.; Keisuke, M.; Fadhilatus, S.; Sari Indah, C. Evacuation road, shelter plan and preparedness for Tsunami disaster mitigation in Watulimo District, Trenggalek Regency, Indonesia. Disaster Adv. 2020, 13, 23–31. [Google Scholar]
- Langa, C.; Hara, J.; Wang, J.; Nakamura, K.; Watanabe, N.; Komai, T. Dynamic evaluation method for planning sustainable landfills using GIS and multi-criteria in areas of urban sprawl with land-use conflicts. PLoS ONE 2021, 16, e0254441. [Google Scholar] [CrossRef] [PubMed]
- Maheshwari, S.; Deswal, S. Role of waste management at landfills in sustainable waste management. Int. J. Emerg. Technol. 2017, 8, 324–328. [Google Scholar]
- Nanda, S.; Berruti, F. Municipal solid waste management and landfilling technologies: A review. Environ. Chem. Lett. 2021, 19, 1433–1456. [Google Scholar] [CrossRef]
- Kiper, T. Role of ecotourism in sustainable development. In Advances in Landscape Architecture; Ozyavuz, M., Ed.; InTech: Tekirdağ, Turkey, 2013; pp. 773–802. ISBN 9789535111672. [Google Scholar]
- Wegner, G.; Pascual, U. Cost-benefit analysis in the context of ecosystem services for human well-being: A multidisciplinary critique. Glob. Environ. Chang. 2011, 21, 492–504. [Google Scholar] [CrossRef]
- Schleyer, C.; Görg, C.; Hauck, J.; Winkler, K.J. Opportunities and challenges for mainstreaming the ecosystem services concept in the multi-level policy-making within the EU. Ecosyst. Serv. 2015, 16, 174–181. [Google Scholar] [CrossRef]
- Costanza, R.; Erikson, J.D.; Farley, J.; Kubiszewski, I. How ecosystem services research can advance ecological economics principles. In Sustainable Wellbeing Futures: A Research and Action Agenda for Ecological Economics; Edward Elgar: Trotterham, UK, 2020; pp. 127–150. [Google Scholar]
- Morante-Carballo, F.; Apolo-Masache, B.; Carrión-Mero, P.; Cedeño, B.; Montalvan-Toala, J. Considerations in the Methodology for the Technical-Environmental Viability of Sanitary Landfills in Rural Communities. Northern Case of the Province of Santa Elena, Ecuador. Int. J. Sustain. Dev. Plan. 2021, 16, 317–325. [Google Scholar] [CrossRef]
- INAHMI Instituto Nacional de Meteorología e Hidrología. Available online: http://www.inamhi.gob.ec/ (accessed on 7 August 2021).
- GAD. Manglaralto Actualización del Plan de Desarrollo y Ordenamiento Territorial (PDOT) 2019–2023; GAD: Manglaralto, Ecuador, 2019. [Google Scholar]
- Holguín Ramírez, K.M. Componentes de la Sostenibilidad Turística en la Comuna Dos Mangas, Parroquia Manglaralto, año 2019; UPSE University: Manglaralto, Ecuador, 2019. [Google Scholar]
- Muñoz Catuto, M.J. Potencialidades del Agroturismo en la Comuna Sitio Nuevo; UPSE University: La Libertad, Ecuador, 2019. [Google Scholar]
- Salazar Párraga, M.J. Plan de Desarrollo Económico para la Comuna Pajiza de la Parroquia Manglaralto, Cantón de Santa Elena, Provincia de Santa Elena, año 2015; UPSE University: La Libertad, Ecuador, 2015. [Google Scholar]
- Valencia, J. Análisis Hidrogeológico de la Cuenca del río Manglaralto para la Caracterización de sus Sistemas Acuíferos; UPSE University: Manglaralto, Ecuador, 2017. [Google Scholar]
- Angelone, S.; Garibay, M.T.; Casaux, M.C. Geología y Geotecnia-Permeabilidad de Suelos; Universidad Nacional del Rosario: Santa Fe, Argentina, 2006. [Google Scholar]
- Parraga-Alava, J.; Garzon, G.M.; Alcivar Cevallos, R.; Inostroza-Ponta, M. Unsupervised pattern recognition for geographical clustering of seismic eventspPost Mw 7.8 Ecuador earthquake. In Proceedings of the 37th International Conference of the Chilean Computer Science Society (SCCC), Santiago, Chile, 5–9 November 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–8. [Google Scholar]
- Cando-Jácome, M.; Martínez-Graña, A.; Chunga, K.; Ortíz-Hernández, E. Satellite radar interferometry for assessing coseismic liquefaction in Portoviejo city, induced by the Mw 7.8 2016 Pedernales, Ecuador earthquake. Environ. Earth Sci. 2020, 79, 467. [Google Scholar] [CrossRef]
- Meltzer, A.; Beck, S.; Ruiz, M.; Hoskins, M.; Soto-Cordero, L.; Stachnik, J.C.; Lynner, C.; Porritt, R.; Portner, D.; Alvarado, A.; et al. The 2016 Mw 7.8 Pedernales, Ecuador, Earthquake: Rapid Response Deployment. Seismol. Res. Lett. 2019, 90, 1346–1354. [Google Scholar] [CrossRef] [Green Version]
- Millenium Ecosystem Assessment. Ecosystems and Human Well-being: Synthesis; Island Pre.: Washington, DC, USA, 2005. [Google Scholar]
- The Economics of Ecosystems and Biodiversity. Ecological and Economic Foundations; Kumar, P., Ed.; Routledge: London, UK, 2010; ISBN 9781849712125. [Google Scholar]
- Mapping Ecosystem Services; Burkhard, B.; Maes, J. (Eds.) Pensoft Publishers: Sofia, Bulgaria, 2017; ISBN 0632049987. [Google Scholar]
- Danley, B.; Widmark, C. Evaluating conceptual definitions of ecosystem services and their implications. Ecol. Econ. 2016, 126, 132–138. [Google Scholar] [CrossRef]
- Ruskule, A.; Vinogradovs, I.; Villoslada, M. The Guidebook on “The Introduction to the Ecosystem Service Framework and its Application in Integrated Planning”; Kasparinskis, R., Ed.; University of Latvia: Riga, Latvia, 2018; ISBN 9789934556395. [Google Scholar]
- Müller, F.; Fohrer, N.; Chicharo, L. (Eds.) The basic ideas of the ecosystem service concept. In Ecosystem Services and River Basin Ecohydrology; Springer: Dordrecht, The Netherlands, 2015; p. 341. ISBN 9789401798464. [Google Scholar]
- Carrión-Mero, P.; Turner-Carrión, M.; Herrera-Franco, G.; Bravo-Murillo, G.; Aguilar-Aguilar, M.; Paz-Salas, N.; Berrezueta, E. Geotouristic route proposal for touristic development in a mining area. Case study. Resources 2022, 11, 25. [Google Scholar] [CrossRef]
- Carrión-Mero, P.; Herrera-Narváez, G.; Herrera-Franco, G.; Sánchez-Zambrano, E.; Mata-Perelló, J.; Berrezueta, E. Assessment and promotion of geotouristic and geomining routes as a basis for Local development: A case study. Minerals 2021, 11, 351. [Google Scholar] [CrossRef]
- Herrera-Franco, G.; Mora-Frank, C.; Kovács, T.; Berrezueta, E. Georoutes as a basis for territorial development of the Pacific Coast of South America: A case study. Geoheritage 2022, 14, 78. [Google Scholar] [CrossRef]
- Carrión-Mero, P.; Morante-Carballo, F.; Toalombo, M.; Mora, D.; Briones, J.; Berrezueta, E. Exploración de aguas subterráneas para un plan de abastecimiento sostenible en una comunidad rural: Caso Cadeate, Santa Elena, Ecuador. In Proceedings of the 18th LACCEI International Multi-Conference for Engineering, Education, and Technology: Engineering, Integration, And Alliances for A Sustainable Development” “Hemispheric Cooperation for Competitiveness and Prosperity on A Knowledge-Based Economy”, Virtual, 27–31 July 2020; Latin American and Caribbean Consortium of Engineering Institutions: Buenos Aires, Argentina, 2020; pp. 1–10. [Google Scholar]
- SNGRE. Manual Técnico para Elaboración del Plan de Evacuación ante Tsunami; SNGRE: Guayaquil, Ecuador, 2020; Volume 1. [Google Scholar]
- Cifuentes, M. Determinación de Capacidad de Carga Turística en Áreas Protegidas; Centro Agronomico Tropical de Investigacion y Ensenanza Catie: Turrialba, Costa Rica, 1992. [Google Scholar]
- Rodríguez, S. Propuesta Metodológica para la Medición de la Capacidad de carga Turística del Haynes Cay en San Andrés Isla; Universidad Externado de Colombia: Bogotá, Colombia, 2018. [Google Scholar]
- Jaramillo, J. Guía para el Diseño, Construcción y Operación de Rellenos Sanitarios Manuals; Centro Panamericano de Ingeniería Sanitaria y Ciencias del Ambiente: Lima, Perú, 2002. [Google Scholar]
- Marco Arévalo Ulloa; Arévalo, M. Propuesta de Diseño de Construcción, Acondicionamiento de un pozo de Agua y su Incidencia en la Vulnerabilidad del Acuífero Costero en MANGLARALTO; ESPOL University: Guayaquil, Ecuador, 2017. [Google Scholar]
- Gran Castro, J.A.; Bernache Pérez, G. Gestión de residuos sólidos urbanos, capacidades del gobierno municipal y derechos ambientales. Soc. Ambient. 2016, 1, 73–101. [Google Scholar] [CrossRef]
- Liu, Y.; Bailey, J.L.; Davidsen, J.G. Social-cultural Ecosystem Services of Sea Trout Recreational Fishing in Norway. Front. Mar. Sci. 2019, 6, 1–13. [Google Scholar] [CrossRef] [Green Version]
- The National Wildlife Federation Ecosystem Services. Available online: https://www.nwf.org/Educational-Resources/Wildlife-Guide/Understanding-Conservation/Ecosystem-Services#:~:text=Regulating Services,in place to prevent erosion (accessed on 2 February 2022).
- Herrera-Franco, G.; Alvarado-Macancela, N.; Gavín-Quinchuela, T.; Carrión-Mero, P. Participatory socio-ecological system: Manglaralto-Santa Elena, Ecuador. Geol. Ecol. Landsc. 2018, 2, 303–310. [Google Scholar] [CrossRef] [Green Version]
- Herrera-Franco, G.; Carrion-Mero, P.; Morante-Carballo, F.; Herrera-Narváez, G.; Briones-Bitar, J.; Blanco-Torrens, R. Strategies for the development of the value of the mining-industrial heritage of the Zaruma-Portovelo, Ecuador, in the context of a geopark project. Int. J. Energy Prod. Manag. 2020, 5, 48–59. [Google Scholar] [CrossRef]
- Carrión-Mero, P.; Morante-Carballo, F. The Context of Ecuador’s World Heritage, for Sustainable Development Strategies. Int. J. Des. Nat. Ecodynamics 2020, 15, 39–46. [Google Scholar] [CrossRef]
- Telbisz, T.; Ćalić, J.; Kovačević-Majkić, J.; Milanović, R.; Brankov, J.; Micić, J. Karst Geoheritage of Tara National Park (Serbia) and Its Geotouristic Potential. Geoheritage 2021, 13, 88. [Google Scholar] [CrossRef]
- Afrasiabian, A.; Sivand, S.M.; Dogančić, D.; Plantak, L.; Ðurin, B. Geological features for geotourism in the Zanjan and Hamadan area, northern iran. Sustainability 2021, 13, 6587. [Google Scholar] [CrossRef]
- Herrera-Franco, G.; Alvarado, J.; Gordillo, P.; Veintimilla, L.; Merchan, B.; Carrión-Mero, P.; Berrezueta, E. Communication methods on water care during the COVID-19 pandemic and its impact on the resilience of the rural community of “Libertador Bolívar”, Ecuador. In Proceedings of the Sustainable Water Resources Management XI, Online, 18–20 May 2021; WIT Press: Bristol, UK, 2021; pp. 109–118. [Google Scholar]
- Maghsoudi, M.; Moradi, A.; Moradipour, F.; Nezammahalleh, M.A. Geotourism development in world heritage of the Lut desert. Geoheritage 2019, 11, 501–516. [Google Scholar] [CrossRef]
- Tavares, G.N.D.; Boggiani, P.C.; de Moraes Leme, J.; Trindade, R.I. The inventory of the geological and paleontological sites in the area of the aspirant geopark Bodoquena-Pantanal in Brazil. Geoheritage 2020, 12, 22. [Google Scholar] [CrossRef]
- Zafeiropoulos, G.; Drinia, H. Comparative analysis of two assessment methods for the geoeducational values of geosites. A case study from the Volcanic Island of Nisyros, SE Aegean Sea, Greece. Geosciences 2022, 12, 82. [Google Scholar] [CrossRef]
- Németh, B.; Németh, K.; Procter, J.N.; Farrelly, T. Geoheritage conservation: Systematic mapping study for conceptual synthesis. Geoheritage 2021, 13, 45. [Google Scholar] [CrossRef]
- Herrera-Franco, G.; Carrión-Mero, P.; Alvarado, N.; Morante-Carballo, F.; Maldonado, A.; Caldevilla, P.; Briones-Bitar, J.; Berrezueta, E. Geosites and georesources to foster geotourism in vommunities: Case study of the Santa Elena Peninsula geopark project in Ecuador. Sustainability 2020, 12, 4484. [Google Scholar] [CrossRef]
- Herrera-Franco, G.; Alvarado-Macancela, N. Ancón-Santa Elena geopark in the context of regional planning. In Libro de Actas del Cuarto Congreso Internacional sobre Geología y Minería Ambiental para el Ordenamiento del Territorio y ell Desarrollo; Mata-Perelló, J.M., Monasterio, M., Eds.; Sociedad Española para la Defensa del Patrimonio Geológico y Minero: Molina de Aragón, Spain, 2016; pp. 185–198. ISBN 9788469316719. [Google Scholar]
- Herrera-Franco, G.; Carrión-Mero, P.; Aguilar-Aguilar, M.; Morante-Carballo, F.; Jaya-Montalvo, M.; Morillo-Balsera, M.C.C. Groundwater resilience assessment in a communal coastal aquifer system. The case of Manglaralto in Santa Elena, Ecuador. Sustainability 2020, 12, 8290. [Google Scholar] [CrossRef]
- Meradi, H.; Atoui, L.; Bahloul, L.; Boubendira, K.; Bouazdia, A.; Ismail, F. Characterization by thermal analysis of natural Kieselguhr and sand for industrial application. Energy Procedia 2015, 74, 1282–1288. [Google Scholar] [CrossRef] [Green Version]
- Earle, S. Physical Geology, 2nd ed.; BCcampus: Victoria, BC, Canadá, 2019; Volume 1986, ISBN 978-0-387-35416-3. [Google Scholar]
- Joyce, R.A.; Hendon, J.A.; Lopiparo, J. Working with clay. Anc. Mesoamerica 2015, 25, 411–420. [Google Scholar] [CrossRef]
- Trindade, A.; Teves-Costa, P.; Catita, C. A GIS-based analysis of constraints on pedestrian tsunami evacuation routes: Cascais case study (Portugal). Nat. Hazards 2018, 93, 169–185. [Google Scholar] [CrossRef]
- Mudhawo, A.I.; Subramani, S.E. Tsunami impact assessment and evacuation strategy for grand sable village, mauritius, using remote sensing and geographical information system (GIS). Int. J. Eng. Trends Technol. 2020, 68, 43–49. [Google Scholar] [CrossRef]
- Sambuaga, R.D.; Lee, H.S. Optimized evacuation plan and decision support system development with Agent-Based modelling and GIS analysis for Tsunami events in Pandeglang, Banten, Indonesia. J. Coast. Res. 2021, 114, 509–513. [Google Scholar] [CrossRef]
- Nakai, H.; Itatani, T.; Horiike, R.; Kyota, K.; Tsukasaki, K. Tsunami evacuation simulation using geographic information systems for homecare recipients depending on electric devices. PLoS ONE 2018, 13, e0199252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castro, R.; Perez, R. Saneamiento Rural y Salud: Guía para Acciones a Nivel Local; OPS: Ciudad de Guatemala, Guatemala, 2009. [Google Scholar]
- Sáez, A.; Urdaneta G., J.A. Manejo de residuos sólidos en América Latina y el Caribe. Omnia 2014, 20, 121–135. [Google Scholar] [CrossRef]
- Layke, C. Measuring Nature’s Benefits: A Preliminary Roadmap for Improving Ecosystem Service Indicators; World Resources Institute: Washington, DC, USA, 2009. [Google Scholar]
- UNESCO Geología, Ecosistemas y Biodiversidad. Available online: https://es.unesco.org/themes/geologia-ecosistemas-y-biodiversidad#:~:text=Los ecosistemas y la biodiversidad,ambientales%2C sociales y de desarrollo (accessed on 2 January 2022).
- UNESCO Indigenous Knowledge and Biodiversity. Available online: https://en.unesco.org/links/biodiversity (accessed on 5 January 2022).
- Daily, G.C.; Polasky, S.; Goldstein, J.; Kareiva, P.M.; Mooney, H.A.; Pejchar, L.; Ricketts, T.H.; Salzman, J.; Shallenberger, R. Ecosystem services in decision making: Time to deliver. Front. Ecol. Environ. 2009, 7, 21–28. [Google Scholar] [CrossRef] [Green Version]
- De Groot, R.S.; Wilson, M.A.; Boumans, R.M.J. A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecol. Econ. 2002, 41, 393–408. [Google Scholar] [CrossRef] [Green Version]
- UNESCO. What are Biosphere Reserves? Available online: https://en.unesco.org/biosphere/about (accessed on 9 January 2022).
- Brundtland, G.H. Informe de la Comisión Mundial Sobre el Medio Ambiente y el Desarrollo: Nuestro futuro común; NACIONES UNIDAS: Oxfordshire, UK, 1987. [Google Scholar]
- Rais, J.; Barakat, A.; Louz, E.; Ait Barka, A. Geological heritage in the M’Goun geopark: A proposal of geo-itineraries around the Bine El Ouidane dam (Central High Atlas, Morocco). Int. J. Geoheritage Park. 2021, 9, 242–263. [Google Scholar] [CrossRef]
- Santangelo, N.; Amato, V.; Ascione, A.; Russo Ermolli, E.; Valente, E. GEOTOURISM as a Tool for Learning: A Geoitinerary in the Cilento, Vallo di Diano and Alburni Geopark (Southern Italy). Resources 2020, 9, 67. [Google Scholar] [CrossRef]
- Filocamo, F.; Rosskopf, C.M. The geological heritage for the promotion and enhancement of a territory. A proposal of geological itineraries in the Matese area (Molise, Southern Italy). Rend. Online Soc. Geol. Ital. 2019, 49, 142–148. [Google Scholar] [CrossRef]
- Rapidah, M.S.; Mohamed, K.R.; Ali, C.A.; Leman, M.S.; Saidin, M. A geotouristic itinerary: A proposal for geotourism and archaeotourism development of Lenggong valley, Perak, Malaysia. Geoj. Tour. Geosites 2018, 22, 597–624. [Google Scholar] [CrossRef]
- Solorzano, V.; García, L.; Ramos, M.; Vargas, O. Economic value added (EVA) as an indicator for financial decisions An Application to the Province of Santa Elena, Ecuador. Ecorfan J. 2013, 4, 1077–1086. [Google Scholar]
- Stothert, K.E. Coastal resources and the early Holocene Las Vegas adaptation of Ecuador. In Trekking the Shore Changing Coastlines and the Antiquity of Coastal Settlement; Bicho, N.F., Ed.; Springer: New York, NY, USA, 2011; pp. 355–382. ISBN 978-1-4419-8218-6. [Google Scholar]
- Padilla Pérez, R.; Oddone, N. Manual para el Fortalecimiento de la Cadena de Valor; FIDA, CEPAL: México, México, 2016. [Google Scholar]
- Barragán, E.A.; Arias, P.D.; Terrados, J. Fomento del Metabolismo Energético Circular Mediante Generación Eléctrica Proveniente de Rellenos Sanitarios. Ingenius 2016, 16, 36–42. [Google Scholar] [CrossRef] [Green Version]
- Toro, E.R.; Narea, M.S.; Pacheco, J.F.; Contreras, E.; Gálvez, A. Guía General para la Gestión de Residuos Sólidos Domiciliarios; CEPAL: Santiago, Chile, 2016. [Google Scholar]
- United States Environmental Protection Agency. Municipal Solid Waste Landfills: New Source Performance Standards (NSPS), Emission Guidelines (EG) and Compliance Times; EPA: New York, NY, USA, 2014. [Google Scholar]
- Carrión-Mero, P.; Morante-Carballo, F.; Briones-Bitar, J.; Herrera-Borja, P.; Chávez-Moncayo, M.; Arévalo-Ochoa, J. Design of a technical-artisanal dike for surface water storage and artificial recharge of the Manglaralto coastal aquifer. Santa Elena parish, Ecuador. Int. J. Sustain. Dev. Plan. 2021, 16, 515–523. [Google Scholar] [CrossRef]
- Cumbe-Vásquez, J.F. Gurumendi-Noriega, M.A. Evaluación de Prefactibilidadde los Georecursos para el Desarrollo Sostenible en Manglaralto, Santa Elena–Ecuador; ESPOL Polytechnic University: Guayaquil, Ecuador, 2021. [Google Scholar]
Qualitative Parameters | Value Range | Category |
---|---|---|
Accessibility | 1–5 | 1–1.9 (low) 2–2.9 (medium) 3–3.9 (high) 4–5 (very high) |
Preparation and logistics | ||
Registration with the Ministry of Tourism | ||
Regarding heritage | ||
Contribution to scientific knowledge | ||
Ecotourism |
N | Sites | Main Features | Secondary Features | Site Classification |
---|---|---|---|---|
1 | Dos Mangas natural pools | river | ecological and hydrological | SGI |
2 | Manglaralto dykes (tapes) | hydrological | river | Potential Geosite |
3 | San Antonio beach | erosive and cumulative | geomorphological | SGI |
4 | Manglaralto viewpoint | landscaped | - | SGI |
5 | Cadeate River aquifer | hydrological | ecological, fluvial and landscaped | Potential Geosite |
6 | Simón Bolívar River aquifer | hydrological | ecological, fluvial and landscaped | Potential Geosite |
7 | Libertador Bolívar beach | erosive and cumulative | geomorphological | SGI |
8 | Cadeate beach | erosive and cumulative | geomorphological | SGI |
9 | Manglaralto beach | erosive and cumulative | geomorphological | SGI |
10 | Montañita beach | erosive and cumulative | geomorphological | SGI |
11 | Dos Mangas ecological reserve | ecological | edaphological, fluvial and landscaped | Potential Geosite |
12 | Montañita cape | geomorphological | erosive and landscaped | SGI |
13 | Manglaralto River aquifer | hydrological | ecological, fluvial and landscaped | Geosite (prior evaluation) |
14 | Dos Mangas waterfalls | landscaped | ecological, hydrological and fluvial | Geosite (prior evaluation) |
15 | Dos Mangas trails | ecological | edaphological and landscaped | Geosite (prior evaluation) |
16 | Montañita viewpoint | landscaped | - | Geosite (prior evaluation) |
Aquifer Name | Volume (Hm3) | Area (×106 m2) | Average Thickness (m) | Porosity (%) |
---|---|---|---|---|
Manglaralto | 9.88 | 8.87 | 17.6 | 0.2 |
Cadeate | 7.1 | 3.76 | 9.03 | 0.2 |
Simón Bolívar | 3.76 | 3.92 | 7.83 | 0.2 |
Materials Type | Thickness (m) | Volume (m3) | Interest |
---|---|---|---|
Sands | 10 | 37,519 | Industrial |
Clays | 5 | 2499 | Artisanal |
Refuge | Height (m) | Distance to the Coast (m) | Effective Load Capacity (People) |
---|---|---|---|
A | 81 | 385 | 2233 |
B | 45 | 640 | 3477 |
C | 45 | 600 | 4574 |
Site 1: MA-26 | ||||||||||
Tp | Gw | SW | W | SR | T | P | Po | K | ST | DC |
3 | 1 | 1 | 3 | 2 | 2 | 3 | 3 | 1 | 3 | 2 |
TV | Interpretation | |||||||||
40 | Constructible under essential considerations | |||||||||
Site 2: MA-27 | ||||||||||
Tp | Gw | SW | W | SR | T | P | Po | K | ST | DC |
3 | 1 | 2 | 3 | 2 | 2 | 3 | 3 | 1 | 3 | 2 |
TV | Interpretation | |||||||||
43 | Constructible under essential considerations |
Category | Activities and Processes |
Provisioning | Fishing Agriculture Cattle raising |
Regulation | Air purification Species habitat Water monitoring Erosion control Coastline defense |
Cultural | Ecotourism Recreation Sun and beach tourism Environmental education Cultural identity Spiritual experiences |
Strengths (S) | Weaknesses (W) | |
---|---|---|
Internal Panorama vs. External Panorama | 1. Presence of geosites. 2. Scientific research in the study area (hydrogeology, tourism, ecology, chemistry). 3. Proximity to recreational places (beaches). 4. First order pathway (Spondylus route). 5. Geomorphological processes of educational and scientific relevance (Montañita cape). 6. Cultural heritage. 7. Tropical climate. | 1. Lack in the evaluation of geosites. 2. Some sites are exposed to human activity. 3. Ignorance of the geological resources of the sector. 4. Absence of geotourism promotion. 5. Difficult accessibility to certain geosites. |
Opportunities (O) | Strategies: S + O | Strategies: W + O |
a. Economic development alternatives. b. Incorporation into projects of international significance (Santa Elena Geopark Project). c. Creation of scientific dissemination centers. d. Cultural enhancement of communities. e. Exploitation of certain georesources. | 1-a. Promote the relevant characteristics of geosites through tourist centers. 6-d. Disseminate cultural particularities through documentaries in educational institutions. 2-b. Cooperation between scientific organizations for the dissemination of geosites. 4-e. Scientific research provides tools for the use of georesources in the sector. 5-e Use the geological knowledge of georesources as a new offer within the popular and solidarity economy. | 1-b. Additional evaluations of scientific, educational and tourism criteria. 3-d. Use of geological resources for the preservation of local cultural practices. |
Threats (T) | Strategies: S–T | Strategies: W–T |
a. Decrease in the national economy due to restrictions in the face of the pandemic. b. Reduced funding for scientific research. c. Little culture of geosites. | 1-c. Training (workshops) for communities on the importance of geosites for their sustainable management. 2-b. Technical reports show the favorable profitability of managing geosites. | 4-b. Creation of a website with images, videos and virtual tours through geosites to encourage visits to such places. 5-b. Obtaining investment credits with the lowest interest rates and extended payment terms for the infrastructure and signage of the geosites. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morante-Carballo, F.; Gurumendi-Noriega, M.; Cumbe-Vásquez, J.; Bravo-Montero, L.; Carrión-Mero, P. Georesources as an Alternative for Sustainable Development in COVID-19 Times—A Study Case in Ecuador. Sustainability 2022, 14, 7856. https://doi.org/10.3390/su14137856
Morante-Carballo F, Gurumendi-Noriega M, Cumbe-Vásquez J, Bravo-Montero L, Carrión-Mero P. Georesources as an Alternative for Sustainable Development in COVID-19 Times—A Study Case in Ecuador. Sustainability. 2022; 14(13):7856. https://doi.org/10.3390/su14137856
Chicago/Turabian StyleMorante-Carballo, Fernando, Miguel Gurumendi-Noriega, Juan Cumbe-Vásquez, Lady Bravo-Montero, and Paúl Carrión-Mero. 2022. "Georesources as an Alternative for Sustainable Development in COVID-19 Times—A Study Case in Ecuador" Sustainability 14, no. 13: 7856. https://doi.org/10.3390/su14137856
APA StyleMorante-Carballo, F., Gurumendi-Noriega, M., Cumbe-Vásquez, J., Bravo-Montero, L., & Carrión-Mero, P. (2022). Georesources as an Alternative for Sustainable Development in COVID-19 Times—A Study Case in Ecuador. Sustainability, 14(13), 7856. https://doi.org/10.3390/su14137856