The Generation and Effects for Recyclable Waste from Households in a Megapolis: A Case Study in Shanghai
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Area and Investigation Methods
2.1.1. Study Area
2.1.2. Investigation Method
2.1.3. Questionnaire Design
2.2. Mathematical Modeling
2.3. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Recyclable Waste from Households
3.1.1. Generation Rate
3.1.2. Physical Categories
3.2. Factors Influencing RWH Generation
- (1)
- Per capita disposable income
- (2)
- GDP per unit area
- (3)
- College-educated population
- (4)
- Permanent residents
3.3. Model Popularization for RWH Generation
3.4. Management of Recyclable Waste from Households
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rozwoju, C.Z. Available online: https://www.gov.pl/web/polskapomoc/cele-zrownowazonego-rozwoju (accessed on 18 November 2021).
- Ober, J.; Karwot, J. Pro-ecological behavior: Empirical analysis on the example of polish consumers. Energies 2022, 15, 1690. [Google Scholar] [CrossRef]
- Song, Y.; Zhao, C.N.; Zhang, M. Does haze pollution promote the consumption of energy-saving appliances in China? An empirical study based on norm activation model. Resour. Conserv. Recycl. 2019, 145, 220–229. [Google Scholar] [CrossRef]
- Tutak, M.; Brodny, J.; Bindzar, P. Assessing the level of energy and climate sustainability in the European union countries in the context of the european green deal strategy and agenda 2030. Energies 2021, 14, 1767. [Google Scholar] [CrossRef]
- Arnold, O.; Kibbe, A.; Hartig, T.; Kaiser, F.G. Capturing the environmental impact of individual lifestyles: Evidence of the criterion validity of the general ecological behavior scale. Environ. Behav. 2018, 50, 350–372. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Paik, H.S. Korean household waste management and recycling behavior. Build Environ. 2011, 46, 1159–1166. [Google Scholar] [CrossRef]
- Si, R.; Wang, M.; Lu, Q.; Zhang, S. Assessing impact of risk perception and environmental regulation on household carcass waste recycling behaviour in China. Waste Manag. Res. 2020, 38, 528–536. [Google Scholar] [CrossRef]
- Gu, B.X.; Fujiwara, T. Estimation household wastes generation based on household con-sumption expenditure: A case study of Okayama. In Proceedings of the 20th Annual Conference of Japan Society of Material Cycles and Waste Management, Sapporo, Japan, 25 May 2009. [Google Scholar]
- Weng, Y.C.; Fujiwara, T. Examining the effectiveness of municipal solid waste management systems: An integrated cost-benefit analysis perspective with a financial cost modeling in Taiwan. Waste Manag. 2011, 31, 1393–1406. [Google Scholar] [CrossRef]
- Lu, H.M.; Sidortsov, R. Sorting out a problem: A co-production approach to household waste management in shanghai, China. Waste Manag. 2019, 95, 271–277. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, W.Q.; Xu, J.X.; Che, Y. A quantitative analysis of municipal solid waste disposal charges in China. Environ. Monit. Assess. 2015, 187, 10. [Google Scholar] [CrossRef]
- Xiao, L.S.; Zhang, G.Q.; Zhu, Y.; Lin, T. Promoting public participation in household waste management: A survey based method and case study in Xiamen city, China. J. Clean Prod. 2017, 144, 313–322. [Google Scholar] [CrossRef]
- Cremiato, R.; Mastellone, M.L.; Tagliaferri, C.; Zaccariello, L.; Lettieri, P. Environmental impact of municipal solid waste management using life cycle assessment: The effect of anaerobic digestion, materials recovery and secondary fuels production. Renew. Energy 2018, 124, 180–188. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, V.; Vaish, B.; Singh, R.P.; Singh, P. An insight to municipal solid waste management of varanasi city, india, and appraisal of vermicomposting as its efficient management approach. Environ. Monit. Assess. 2020, 192, 191. [Google Scholar] [CrossRef]
- Rafey, A.; Prabhat, K.; Samar, M. Comparison of technologies to serve waste to energy conversion. Int. J. Waste Resour. 2020, 10, 372. [Google Scholar]
- Linzner, R.; Salhofer, S. Municipal solid waste recycling and the significance of informal sector in urban China. Waste Manag. Res. 2014, 32, 896–907. [Google Scholar] [CrossRef]
- Liu, Y.; Tian, T.; Hao, X.; Zhang, Q.; Yao, C.; Liu, G. Promotion of household waste utilization in China: Lessons learnt from three case studies. Sustainability 2021, 13, 11598. [Google Scholar] [CrossRef]
- Xiao, S.J.; Dong, H.J.; Geng, Y.; Brander, M. An overview of China’s recyclable waste recycling and recommendations for integrated solutions. Resour. Conserv. Recycl. 2018, 134, 112–120. [Google Scholar] [CrossRef] [Green Version]
- Feng, L.P.; Govindan, K.; Li, C.F. Strategic planning: Design and coordination for dual-recycling channel reverse supply chain considering consumer behavior. Eur. J. Oper. Res 2017, 260, 601–612. [Google Scholar] [CrossRef]
- Thanh, N.P.; Matsui, Y.; Fujiwara, T. Household solid waste generation and characteristic in a Mekong delta city, Vietnam. J. Environ. Manag. 2010, 91, 2307–2321. [Google Scholar] [CrossRef]
- Bernstad, A.; Jansen, J.L.; Aspegren, H. Life cycle assessment of a household solid waste source separation programme: A Swedish case study. Waste Manag. Res. 2011, 29, 1027–1042. [Google Scholar] [CrossRef]
- Ojeda-Benitez, S.; de Vega, C.A.; Ramirez-Barreto, M.E. The potential for recycling household waste: A case study from Mexicali, Mexico. Environ. Urban. 2000, 12, 163–173. [Google Scholar] [CrossRef]
- Wang, J.; Han, L.; Li, S.S. The collection system for residential recyclables in communities in haidian district, beijing: A possible approach for China recycling. Waste Manag. 2008, 28, 1672–1680. [Google Scholar] [CrossRef]
- Mo, H.P.; Wen, Z.G.; Chen, J.N. China’s recyclable resources recycling system and policy: A case study in Suzhou. Resour. Conserv. Recycl. 2009, 53, 409–419. [Google Scholar] [CrossRef]
- Nie, Y.Y.; Wu, Y.J.; Zhao, J.B.; Zhao, J.; Chen, X.J.; Maraseni, T.; Qian, G.R. Is the finer the better for municipal solid waste (msw) classification in view of recyclable onstituents? A comprehensive social, economic and environmental analysis. Waste Manag. 2018, 79, 472–480. [Google Scholar] [CrossRef]
- Guidance on Accelerating the Construction of the Recycling System of Waste Materials. Available online: http://www.gov.cn/zhengce/zhengceku/2022-01/22/content_5669857.htm (accessed on 22 January 2022).
- Xu, Q.Y.; Xiang, J.Y.; Ko, J.H. Municipal plastic recycling at two areas in China and heavy metal leachability of plastic in municipal solid waste. Environ. Pollut. 2020, 260, 114074. [Google Scholar] [CrossRef]
- Kurniawan, T.A.; Lo, W.H.; Singh, D.; Othman, M.H.D.; Avtar, R.; Hwang, G.H.; Albadarin, A.B.; Kern, A.O.; Shirazian, S. A societal transition of msw management in Xiamen (China) toward a circular economy through integrated waste recycling and technological digitization. Environ. Pollut. 2021, 277, 116741. [Google Scholar] [CrossRef]
- Gu, B.; Wang, H.; Chen, Z.; Jiang, S.; Zhu, W.; Liu, M.; Chen, Y.; Wu, Y.; He, S.; Cheng, R.; et al. Characterization, quantification and management of household solid waste: A case study in China. Resour. Conserv. Recycl. 2015, 98, 67–75. [Google Scholar] [CrossRef]
- Lo, A.Y.; Liu, S. Towards sustainable consumption: A socio-economic analysis of household waste recycling outcomes in Hong Kong. J. Environ. Manag. 2018, 214, 416–425. [Google Scholar] [CrossRef]
- Parizeau, K.; Maclaren, V.; Chanthy, L. Waste characterization as an element of waste management planning: Lessons learned from a study in Siem Reap, Cambodia. Resour. Conserv. Recycl. 2006, 49, 110–128. [Google Scholar] [CrossRef]
- Wang, M.X.; Li, Z.; Chen, L.; Liu, P.; Zhang, R.; Liu, W.; Ma, Y.; Wang, Y.J.; Li, X. Energy conservation and carbon reduction potential for solid waste in China. Environ. Sci. Pollut. Res. 2020, 27, 42158–42167. [Google Scholar] [CrossRef]
- Kurniawan, T.A.; Liang, X.; O’Callaghan, E.; Goh, H.; Othman, M.H.; Avtar, R.; Kusworo, T.D. Transformation of solid waste management in China: Moving towards sustainability through digitalization-based circular economy. Sustainability 2022, 14, 2374. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, Y.; Zhou, J.Z.; Zhao, J.; Maraseni, T.; Qian, G.R. Implementation effect of municipal solid waste mandatory sorting policy in Shanghai. J. Environ. Manag. 2021, 298, 113512. [Google Scholar] [CrossRef] [PubMed]
- Burnley, S.J. A review of municipal solid waste composition in the united kingdom. Waste Manag. 2007, 27, 1274–1285. [Google Scholar] [CrossRef] [PubMed]
- Shanghai Bureau of Statistics of China (SBSC) Shanghai Statistical Yearbook. Shanghai, China. Available online: http://tjj.sh.gov.cn/tjnj/20210303/2abf188275224739bd5bce9bf128aca8.html (accessed on 1 March 2021).
- Barnaby, F. Our common future—the brundtland-commission report. Ambio 1987, 16, 217–218. [Google Scholar]
- Schwing, R. A mental model proposed to address sustainability and terrorism issues. Risk Anal. 2002, 22, 415–420. [Google Scholar] [CrossRef]
- Zhang, W.; Che, Y.; Yang, K.; Ren, X.; Tai, J. Public opinion about the source separation of municipal solid waste in Shanghai, China. Waste Manag. Res. 2012, 30, 1261–1271. [Google Scholar] [CrossRef]
- 95% of Shanghai Residents’ Garbage Classification Reached the Standard. Available online: https://www.thepaper.cn/newsDetail_forward_15530447 (accessed on 24 November 2021).
- Sanchez-Bruno, A.; del Rosal, A.B. Fisher’s transformation to determine confidence intervals for Pearson’s product-moment correlation coefficient. Psicothema 2005, 17, 148–153. [Google Scholar]
- IBM Corp. IBM SPSS Statistics for Windows. Version 25.0. Armonk, New York. Available online: https://www.ibm.com/support/pages/downloading-ibm-spss-statistics-25 (accessed on 1 May 2017).
- Kahlert, S.; Bening, C.R. Plastics recycling after the global pandemic: Resurgence or regression? Resour. Conserv. Recycl. 2020, 160, 104948. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Liu, S.C.; Liu, Y.; Li, R. Smart box-enabled product-service system for cloud logistics. Int. J. Prod. Res. 2016, 54, 6693–6706. [Google Scholar] [CrossRef]
- Chen, C.C. Spatial inequality in municipal solid waste disposal across regions in developing countries. Int. J. Environ. Sci. Technol. 2010, 7, 447–456. [Google Scholar] [CrossRef] [Green Version]
- Alcay, A.; Montanes, A.; Simon-Fernandez, M.B. Waste generation in Spain. Do Spanish regions exhibit a similar behavior? Waste Manag. 2020, 112, 66–73. [Google Scholar] [CrossRef]
- Magazzino, C.; Mele, M.; Schneider, N.; Sarkodie, S.A. Waste generation, wealth and GHG emissions from the waste sector: Is Denmark on the path towards circular economy? Sci. Total Environ. 2021, 755, 142510. [Google Scholar] [CrossRef] [PubMed]
- Pearson, H.C.; Dawson, L.N.; Breitkopf, C.R. Recycling attitudes and behavior among a clinic-based sample of low-income hispanic women in southeast texas. PLoS ONE 2012, 7, e34469. [Google Scholar] [CrossRef] [PubMed]
- Maalouf, A.; Mavropoulos, A.; El-Fadel, M. Global municipal solid waste infrastructure: Delivery and forecast of uncontrolled disposal. Waste Manag. Res. 2020, 38, 1028–1036. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.T.; Wu, Y.F.; Tian, X.; Gong, Y. Urban household solid waste generation and collection in Beijing, China. Resour. Conserv. Recycl. 2015, 104, 31–37. [Google Scholar] [CrossRef]
- Hong, S. The effects of unit pricing system upon household solid waste management: The Korean experience. J. Environ. Manag. 1999, 57, 1–10. [Google Scholar] [CrossRef]
- Beylot, A.; Boitier, B.; Lancesseur, N.; Villeneuve, J. The waste footprint of french households in 2020 a comparison of scenarios of consumption growth using input-output analysis. J. Ind. Ecol. 2018, 22, 356–368. [Google Scholar] [CrossRef]
- Sun, D.S.; Xie, D.L.; Jiang, P.; Xie, J.C.; Xu, Y.; Ren, Y.N. Simulating the effect of mixed subsidy policies on urban low-value recyclable waste in China: A system dynamics approach. Int. J. Environ. Res. Public. Health 2021, 18, 10636. [Google Scholar] [CrossRef]
- Levi, S. Why hate carbon taxes? Machine learning evidence on the roles of personal responsibility, trust, revenue recycling, and other factors across 23 European countries. Energy Res. Soc. Sci. 2021, 73, 101883. [Google Scholar] [CrossRef]
- Lv, J.Y.; Dong, H.J.; Geng, Y.; Li, H.F. Optimization of recyclable MSW recycling network: A Chinese case of shanghai. Waste Manag. 2020, 102, 763–772. [Google Scholar] [CrossRef]
- Dahlen, L.; Lagerkvist, A. Evaluation of recycling programmes in household waste collection systems. Waste Manag. Res. 2010, 28, 577–586. [Google Scholar] [CrossRef]
- Zhou, J.Y.; Jiang, P.; Yang, J.; Liu, X. Designing a smart incentive-based recycling system for household recyclable waste. Waste Manag. 2021, 123, 142–153. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.S.; Poon, C.S. Characterisation of municipal solid waste and its recyclable contents of Guangzhou. Waste Manag. Res. 2001, 19, 473–485. [Google Scholar] [CrossRef] [PubMed]
District | Area of Region (km2) | Permanent Residents (10,000) | Number of Recycling Sites | Site Area Coverage (per/km2) | Site Population Coverage (per 10,000 People) |
---|---|---|---|---|---|
1. Urban | |||||
Hongkou district | 23.45 | 75.75 | 1218 | 33.09 | 10.24 |
Jing’an district | 37.37 | 97.57 | 1183 | 27.40 | 10.49 |
Changning district | 38.3 | 69.31 | 836 | 24.54 | 13.56 |
Yangpu district | 60.61 | 124.25 | 659 | 19.30 | 9.42 |
Putuo district | 55.53 | 123.98 | 452 | 15.65 | 7.01 |
2. Suburban | |||||
Baoshan district | 270.99 | 223.52 | 776 | 4.49 | 5.45 |
Minhang district | 370.75 | 265.35 | 1024 | 3.19 | 4.46 |
Songjiang district | 605.64 | 190.97 | 940 | 1.38 | 4.38 |
Fengxian district | 687.39 | 114.09 | 1170 | 0.96 | 5.78 |
Jinshan district | 586.05 | 82.28 | 869 | 0.77 | 5.49 |
Chongming district | 1413.00 | 63.79 | 776 | 0.27 | 5.99 |
District | Per Capita Disposable Income | GDP Per Unit Area | College Education Population | Permanent Residents (10,000) |
---|---|---|---|---|
Hongkou district | 83,256.00 | 44.66 | 0.41 | 75.75 |
Jing’an district | 85,625.00 | 62.79 | 0.41 | 97.57 |
Putuo district | 81,386.00 | 20.34 | 0.41 | 123.98 |
Baoshan district | 71,456.00 | 5.37 | 0.32 | 223.52 |
Minhang district | 74,764.00 | 6.88 | 0.38 | 265.35 |
Songjiang district | 59,515.00 | 2.70 | 0.16 | 190.97 |
Fengxian district | 49,439.00 | 1.65 | 0.21 | 114.09 |
Jinshan district | 48,010.00 | 1.76 | 0.20 | 82.28 |
Chongming district | 41,990.00 | 0.27 | 0.13 | 63.79 |
Variable | Coefficients (Unstandardized) | t-Stat | Sig | R2 | Durbin–Watson | |
---|---|---|---|---|---|---|
Coefficients | Standard Error | |||||
Constant | 179,949.366 | 44,141.729 | 4.077 | 0.027 | 0.918 | 2.007 |
Per capita disposable income | −7.245 | 3.032 | −2.389 | 0.097 | ||
GDP per unit area | 2458.341 | 723.796 | 3.396 | 0.043 | ||
College-educated population | 625,235.114 | 151,094.127 | 4.138 | 0.026 | ||
Permanent residents | 1002.043 | 379.660 | 2.639 | 0.078 |
Data Source | Multiple Linear Regression Prediction Model for RWH Generation of Leading Enterprises | Multiple Linear Regression Prediction Model for RWH Generation of Shanghai |
---|---|---|
Area | Forecasted daily average value of leading enterprises | Forecasted daily average value of Shanghai |
(t/d) | (t/d) | |
Hongkou district | 39.69 | 59.10 |
Qingpu district | 169.72 | 252.72 |
Minhang district | 430.97 | 641.71 |
Baoshan district | 274.92 | 409.35 |
Jiading district | 299.94 | 446.61 |
Jinshan district | 113.29 | 168.69 |
Songjiang district | 122.89 | 182.99 |
Fengxian district | 194.16 | 289.11 |
Chongming district | 51.92 | 77.31 |
Huangpu district | 668.43 | 995.29 |
Xuhui district | 194.92 | 290.24 |
Changning district | 41.78 | 62.21 |
Jing’an district | 166.40 | 247.76 |
Putuo district | 43.11 | 64.19 |
Yangpu district | 130.84 | 194.82 |
Pudong district | 1256.88 | 1871.50 |
Total | 4199.87 | 6253.60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, C.; Xu, J.; Zhao, A.; Xiao, P.; Tai, J.; Bi, Z.; Li, G. The Generation and Effects for Recyclable Waste from Households in a Megapolis: A Case Study in Shanghai. Sustainability 2022, 14, 7854. https://doi.org/10.3390/su14137854
Yu C, Xu J, Zhao A, Xiao P, Tai J, Bi Z, Li G. The Generation and Effects for Recyclable Waste from Households in a Megapolis: A Case Study in Shanghai. Sustainability. 2022; 14(13):7854. https://doi.org/10.3390/su14137854
Chicago/Turabian StyleYu, Chaojie, Junqing Xu, Aihua Zhao, Peiyuan Xiao, Jun Tai, Zhujie Bi, and Guangming Li. 2022. "The Generation and Effects for Recyclable Waste from Households in a Megapolis: A Case Study in Shanghai" Sustainability 14, no. 13: 7854. https://doi.org/10.3390/su14137854
APA StyleYu, C., Xu, J., Zhao, A., Xiao, P., Tai, J., Bi, Z., & Li, G. (2022). The Generation and Effects for Recyclable Waste from Households in a Megapolis: A Case Study in Shanghai. Sustainability, 14(13), 7854. https://doi.org/10.3390/su14137854