The Impact of COVID-19 Control Measures on Air Quality in Guangdong Province
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Data
2.3. Methods
2.3.1. The Potential Source Contribution Factor Analysis
2.3.2. Long Short-Erm Memory Neural Network
3. Results and Discussion
3.1. Variation Trend of Air Quality in Guangdong
3.2. Spatial Characteristics of Air Quality
3.3. Meteorological Characteristics
3.4. Analysis of Potential Sources of Pollutants
3.5. The Impact of COVID-19 Control Measures on Air Quality
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adeyemi, A.J.; Kanee, R.B.; Edokpa, D.O.; Ede, P.N. Short-Term Air Quality Gains of COVID-19 Pandemic Lockdown of Port Harcourt, Nigeria. GEP 2021, 9, 110–123. [Google Scholar] [CrossRef]
- Guo, H.; Kota, S.H.; Chen, K.; Sahu, S.K.; Hu, J.; Ying, Q.; Wang, Y.; Zhang, H. Source Contributions and Potential Reductions to Health Effects of Particulate Matter in India. Atmos. Chem. Phys. 2018, 18, 15219–15229. [Google Scholar] [CrossRef] [Green Version]
- Zangari, S.; Hill, D.T.; Charette, A.T.; Mirowsky, J.E. Air Quality Changes in New York City during the COVID-19 Pandemic. Sci. Total Environ. 2020, 742, 140496. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Fu, S.; Wang, X.; Fu, Q.; Jia, H.; Xu, H.; Qin, G.; Hu, X.; Cheng, J. Spatiotemporal Variations of Ambient Air Pollutants and Meteorological Influences over Typical Urban Agglomerations in China during the COVID-19 Lockdown. J. Environ. Sci. 2021, 106, 26–38. [Google Scholar] [CrossRef]
- Zhang, H.; Lin, Y.; Wei, S.; Loo, B.P.Y.; Lai, P.C.; Lam, Y.F.; Wan, L.; Li, Y. Global Association between Satellite-Derived Nitrogen Dioxide (NO2) and Lockdown Policies under the COVID-19 Pandemic. Sci. Total Environ. 2021, 761, 144148. [Google Scholar] [CrossRef]
- Hashim, B.M.; Al-Naseri, S.K.; Al-Maliki, A.; Al-Ansari, N. Impact of COVID-19 Lockdown on NO2, O3, PM2.5 and PM10 Concentrations and Assessing Air Quality Changes in Baghdad, Iraq. Sci. Total Environ. 2021, 754, 141978. [Google Scholar] [CrossRef]
- Brancher, M. Increased Ozone Pollution alongside Reduced Nitrogen Dioxide Concentrations during Vienna’s First COVID-19 Lockdown: Significance for Air Quality Management. Environ. Pollut. 2021, 284, 117153. [Google Scholar] [CrossRef]
- Donzelli, G.; Cioni, L.; Cancellieri, M.; Morales, A.L.; Suárez-Varela, M.M. The Effect of the COVID-19 Lockdown on Air Quality in Three Italian Medium-Sized Cities. Atmosphere 2020, 11, 1118. [Google Scholar] [CrossRef]
- Dursun, S.; Sagdic, M.; Toros, H. The Impact of COVID-19 Measures on Air Quality in Turkey. Environ. Forensics 2021, 23, 47–59. [Google Scholar] [CrossRef]
- Liu, S.; Hua, S.; Wang, K.; Qiu, P.; Liu, H.; Wu, B.; Shao, P.; Liu, X.; Wu, Y.; Xue, Y.; et al. Spatial-Temporal Variation Characteristics of Air Pollution in Henan of China: Localized Emission Inventory, WRF/Chem Simulations and Potential Source Contribution Analysis. Sci. Total Environ. 2018, 624, 396–406. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Y.; Feng, X.; Zhao, M.; Du, X.; Wang, Y.; Wang, P.; Wu, L. The Effects of Intensive Supervision Mechanism on Air Quality Improvement in China. J. Air Waste Manag. Assoc. 2021, 71, 1102–1113. [Google Scholar] [CrossRef]
- Xiong, Y.; Wang, Y.; Chen, F.; Zhu, M. Spatial Statistics and Influencing Factors of the COVID-19 Epidemic at Both Prefecture and County Levels in Hubei Province, China. Int. J. Environ. Res. Public Health 2020, 17, 3903. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Zhou, Y.; Alatalo, J.M.; Hughes, A.C. Changes in Air Quality during the First-Level Response to the COVID-19 Pandemic in Shanghai Municipality, China. Sustainability 2020, 12, 8887. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, G.; Wang, S.; Zhao, N.; Zhang, M.; Yue, W. Impacts of COVID-19 on Air Quality in Mid-Eastern China: An Insight into Meteorology and Emissions. Atmos. Environ. 2021, 266, 118750. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.A.; Caffrey, J.M. The Effects of Human Activities and Extreme Meteorological Events on Sediment Nitrogen Dynamics in an Urban Estuary, Escambia Bay, Florida, USA. Hydrobiologia 2009, 627, 67–85. [Google Scholar] [CrossRef]
- Xu, X.; Huang, G.; Liu, L.; Guan, Y.; Zhai, M.; Li, Y. Revealing Dynamic Impacts of Socioeconomic Factors on Air Pollution Changes in Guangdong Province, China. Sci. Total Environ. 2020, 699, 134178. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.Y.T.; Xu, Y.; Chang, Y. Cross-Boundary Air Pollution Control Under “One Country, Two Systems”: Perspectives From Hong Kong–Guangdong Collaboration. Singap. Econ. Rev. 2020, 65, 601–625. [Google Scholar] [CrossRef]
- Luo, H.; Guan, Q.; Pan, N.; Wang, Q.; Li, H.; Lin, J.; Tan, Z.; Shao, W. Using Composite Fingerprints to Quantify the Potential Dust Source Contributions in Northwest China. Sci. Total Environ. 2020, 742, 140560. [Google Scholar] [CrossRef] [PubMed]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Farhi, N.; Kohen, E.; Mamane, H.; Shavitt, Y. Prediction of Wastewater Treatment Quality Using LSTM Neural Network. Environ. Technol. Innov. 2021, 23, 101632. [Google Scholar] [CrossRef]
- Pan, Y.; Wang, Y.; Lai, M. Research of Air Pollutant Concentration Forecasting Based on Deep Learning Algorithms. IOP Conf. Ser. Earth Environ. Sci. 2019, 300, 032090. [Google Scholar] [CrossRef]
- Bekesiene, S.; Meidute-Kavaliauskiene, I.; Vasiliauskiene, V. Accurate Prediction of Concentration Changes in Ozone as an Air Pollutant by Multiple Linear Regression and Artificial Neural Networks. Mathematics 2021, 9, 356. [Google Scholar] [CrossRef]
- Jephcote, C.; Hansell, A.L.; Adams, K.; Gulliver, J. Changes in Air Quality during COVID-19 ‘Lockdown’ in the United Kingdom. Environ. Pollut. 2021, 272, 116011. [Google Scholar] [CrossRef]
- Potts, D.A.; Marais, E.A.; Boesch, H.; Pope, R.J.; Lee, J.; Drysdale, W.; Chipperfield, M.P.; Kerridge, B.; Siddans, R.; Moore, D.P.; et al. Diagnosing Air Quality Changes in the UK during the COVID-19 Lockdown Using TROPOMI and GEOS-Chem. Environ. Res. Lett. 2021, 16, 054031. [Google Scholar] [CrossRef]
- Speranza, A.; Caggiano, R.; Summa, V. A Systematic Approach for the Comparison of PM10, PM2.5, and PM1 Mass Concentrations of Characteristic Environmental Sites. Environ. Monit. Assess. 2019, 191, 738. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, Y.; Liu, X.; Tang, A.; Qiu, H.; Zhang, F. Concentrations and Isotopic Characteristics of Atmospheric Reactive Nitrogen around Typical Sources in Beijing, China. J. Arid Land 2016, 8, 910–920. [Google Scholar] [CrossRef] [Green Version]
- Fan, S.; Wang, B.; Tesche, M.; Engelmann, R.; Althausen, A.; Liu, J.; Zhu, W.; Fan, Q.; Li, M.; Ta, N. Meteorological Conditions and Structures of Atmospheric Boundary Layer in October 2004 over Pearl River Delta Area. Atmos. Environ. 2008, 42, 6174–6186. [Google Scholar] [CrossRef]
- Bergmann, M.L.; Andersen, Z.J.; Amini, H.; Ellermann, T.; Hertel, O.; Lim, Y.H.; Loft, S.; Mehta, A.; Westendorp, R.G.; Cole-Hunter, T. Exposure to Ultrafine Particles While Walking or Bicycling during COVID-19 Closures: A Repeated Measures Study in Copenhagen, Denmark. Sci. Total Environ. 2021, 791, 148301. [Google Scholar] [CrossRef]
- Lou, C.; Liu, H.; Li, Y.; Peng, Y.; Wang, J.; Dai, L. Relationships of Relative Humidity with PM2.5 and PM10 in the Yangtze River Delta, China. Environ. Monit. Assess. 2017, 189, 582. [Google Scholar] [CrossRef]
- Burgalossi, A.; Herfst, L.; von Heimendahl, M.; Förste, H.; Haskic, K.; Schmidt, M.; Brecht, M. Microcircuits of Functionally Identified Neurons in the Rat Medial Entorhinal Cortex. Neuron 2011, 70, 773–786. [Google Scholar] [CrossRef] [Green Version]
- Reiminger, N.; Jurado, X.; Vazquez, J.; Wemmert, C.; Blond, N.; Wertel, J.; Dufresne, M. Methodologies to Assess Mean Annual Air Pollution Concentration Combining Numerical Results and Wind Roses. Sustain. Cities Soc. 2020, 59, 102221. [Google Scholar] [CrossRef]
- Ren, B.; Xie, P.; Xu, J.; Li, A.; Tian, X.; Hu, Z.; Huang, Y.; Li, X.; Zhang, Q.; Ren, H.; et al. Use of the PSCF Method to Analyze the Variations of Potential Sources and Transports of NO2, SO2, and HCHO Observed by MAX-DOAS in Nanjing, China during 2019. Sci. Total Environ. 2021, 782, 146865. [Google Scholar] [CrossRef]
- Dhakal, S.; Gautam, Y.; Bhattarai, A. Exploring a Deep LSTM Neural Network to Forecast Daily PM2.5 Concentration Using Meteorological Parameters in Kathmandu Valley, Nepal. Air Qual. Atmos. Health 2021, 14, 83–96. [Google Scholar] [CrossRef]
- Liu, D.-R.; Hsu, Y.-K.; Chen, H.-Y.; Jau, H.-J. Air Pollution Prediction Based on Factory-Aware Attentional LSTM Neural Network. Computing 2021, 103, 75–98. [Google Scholar] [CrossRef]
Indicator (Unit: μg/m3) | PM2.5 | PM10 | NO2 | O3 |
---|---|---|---|---|
Pre-Lockdown | 37 | 64 | 34 | 75 |
Lockdown | 23 | 31 | 14 | 57 |
Percentage change | −37.84% | −51.56% | −58.82% | −24.00% |
Post-Lockdown | 24 | 41 | 26 | 58 |
Percentage change | 4.35% | 32.26% | 85.71% | 1.75% |
Pollutants | The Contribution of Meteorological Factors | The Contribution of Epidemic Control | |||
---|---|---|---|---|---|
PM2.5 | −14.37 | 2.83 | −17.20 | 7.62% | −46.34% |
PM10 | −32.50 | 2.29 | −34.79 | 3.59% | −54.56% |
NO2 | −19.31 | 4.50 | −23.81 | 13.35% | −70.63% |
O3 | −18.15 | 2.00 | −20.15 | 2.66% | −26.76% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Mao, Z.; Du, J.; Chen, T.; Cheng, L.; Wen, X. The Impact of COVID-19 Control Measures on Air Quality in Guangdong Province. Sustainability 2022, 14, 7853. https://doi.org/10.3390/su14137853
Li L, Mao Z, Du J, Chen T, Cheng L, Wen X. The Impact of COVID-19 Control Measures on Air Quality in Guangdong Province. Sustainability. 2022; 14(13):7853. https://doi.org/10.3390/su14137853
Chicago/Turabian StyleLi, Lili, Zhihui Mao, Jianjun Du, Tao Chen, Lu Cheng, and Xiaocui Wen. 2022. "The Impact of COVID-19 Control Measures on Air Quality in Guangdong Province" Sustainability 14, no. 13: 7853. https://doi.org/10.3390/su14137853