Deep Placement of Compost into Vineyard Soil Affecting Physical Properties of Soils, Yield and Quality of Grapes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of Experimental Sites
2.1.1. Lednice Experimental Site
2.1.2. Velké Bílovice Experimental Site
2.2. Experimental Methodology
2.3. Soil Analysis Methodology
2.4. Grape Yield Evaluation
2.5. Evaluation of the Main Quality Parameters of the Must
2.6. Methods of Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Costantini, E.A.C.; Dazzi, C. The Soils of Italy; Springer: New York, NY, USA, 2013; p. 354. [Google Scholar]
- Krauss, M.; Berner, A.; Perrochet, F.; Frei, R.; Niggli, U.; Mäder, P. Enhanced soil quality with reduced tillage and solid manures in organic farming—A synthesis of 15 years. Sci. Rep. 2020, 10, 4403. [Google Scholar] [CrossRef] [Green Version]
- Pinamonti, F.; Sicher, L. Compost Utilization in Fruit Production Systems. In Compost Utilization in Horticultural Cropping Systems; Stoffella, P.J., Kahn, B.A., Eds.; Lewis Publishers: New York, NY, USA, 2001; pp. 177–200. [Google Scholar]
- Borselli, L.; Pellegrini, S.; Torri, D.; Bazzoffi, P. Tillage erosion and land levelling: Evidences in Tuscany (Italy). In Man and Soil at the Third Millennium, Proceedings of the International Congress of the European Society for Soil Conservation, Valencia, Spain, 28 March–1 April 2000; CSIC, University of Valencia: Valencia, Spain, 2000. [Google Scholar]
- Diacono, M.; Montemurro, F. Compost da residui organici per l’agricoltura biologica. Agrifoglio 2006, 16, 18–19. [Google Scholar]
- Tippl, M.; Janeček, M.; Bohuslávek, J.; Kadlec, V. Organic soil fertilization and its influence on surface runoff and erosion. Agritech Sci. 2009, 2, 1–5. Available online: http://www.agritech.cz/clanky/2009-2-8.pdf (accessed on 1 April 2022). (In Czech).
- White, R.L.; Balachandra, L.; Edis, R.; Chen, D. The soil component of terroir. J. Int. Sci. Vigne 2007, 41, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Tangolar, S.; Alkan Torun, A.; Ada, M.; Göçmez, S. Influence of supplementation of vineyard soil with organic substances on nutritional status, yield and quality of ‘Black Magic’ grape (Vitis vinifera L.) and soil microbiological and characteristics. OENO One 2020, 54, 1143–1157. [Google Scholar] [CrossRef]
- Partanen, P.; Hultman, J.; Paulin, L.; Auvinen, P.; Romantschuk, M. Bacterial diversity at different stages of the composting-process. BMC Microbiol. 2010, 10, 94. [Google Scholar] [CrossRef] [Green Version]
- Manios, T. The Composting Potential of Different Organic Solid Wastes: Experience from the Island of Crete. Environ. Int. 2004, 29, 1079–1089. [Google Scholar] [CrossRef]
- Goulding, K.W.L.; Jarvis, S.; Whitmore, A. Optimizing nutrient management for farm systems. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 667–680. [Google Scholar] [CrossRef] [Green Version]
- Pinamonti, F. Compost mulch effects on soil fertility, nutritional status and performance of grapevine. Nutr. Cycl. Agroecosyst. 1998, 51, 239–248. [Google Scholar] [CrossRef]
- Mugnai, S.; Masi, E.; Azzarello, E.; Mancuso, S. Influence of long-term application of green waste compost on soil characteristics and growth, yield and quality of grape (Vitis vinifera L.). Compost Sci. Util. 2012, 20, 29–33. [Google Scholar] [CrossRef]
- Korboulewsky, N.; Robles, C.; Garzino, S. Effects of Sewage Sludge Compost on Volatile Organic Compounds of Wine from Vitis vinifera cv. Red Grenache. Am. J. Enol. Vitic. 2004, 55, 412–416. [Google Scholar]
- Gaiotti, F.; Marcuzzo, P.; Belfiore, N.; Lovat, L.; Fornasier, F.; Tomasi, D. Influence of compost addition on soilproperties, root growth and vine performances of Vitis vinifera cv Cabernet sauvignon. Sci. Hortic. 2017, 225, 88–95. [Google Scholar] [CrossRef]
- Laliberté, E. Below-ground frontiers in trait-based plant ecology. New Phytol. 2017, 213, 1597–1603. [Google Scholar] [CrossRef]
- Amendola, C.; Montagnoli, A.; Terzaghi, M.; Trupiano, D.; Oliva, F.; Baronti, S.; Miglietta, F.; Chiatante, D.; Scippa, G.S. Short-term effects of biochar on grapevine fine root dynamics and arbuscular mycorrhizae production. Agric. Ecosyst. Environ. 2017, 239, 236–245. [Google Scholar] [CrossRef]
- Nardi, S.; Pizzeghello, D.; Muscolo, A.; Vianello, A. Physiological effects of humic substances on higher plants. Soil Biol. Biochem. 2002, 34, 1527–1536. [Google Scholar] [CrossRef]
- Dougherty, W.J.; Chan, K.Y. Soil properties and nutrient export of a duplex hard-setting soil amended with compost. Compost Sci. Util. 2014, 22, 11–22. [Google Scholar] [CrossRef]
- Cataldo, E.; Fucile, M.; Mattii, G.B. A Review: Soil Management, Sustainable Strategies and Approaches to Improve the Quality of Modern Viticulture. Agronomy 2021, 11, 2359. [Google Scholar] [CrossRef]
- Burg, P.; Zemánek, P.; Badalíková, B.; Mašán, V.; Novotná, J. Soil Compaction in Vineyards and Possibilities of Their Remedy; Folia Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University in Brno: Brno, Czech Republic, 2016. (In Czech) [Google Scholar]
- Hassanein, M.K.; Abul-Soud, M. Effect of Different Compost Types and Application Methods on Growth and Yield of Three Maize Hybrids. J. Appl. Sci. Res. 2010, 6, 1387–1399. [Google Scholar]
- Navel, A.; Martins, J.M. Effect of long term organic amendments and vegetation of vineyard soils on the microscale distribution and biogeochemistry of copper. Sci. Total Environ. 2014, 466–467, 681–689. [Google Scholar] [CrossRef]
- Walg, O. Viticulture Machinery Book, 2nd ed.; Rohr–Druck: Kaiserslautern, Germany, 2007; p. 620. (In German) [Google Scholar]
- Plíva, J.; Hejátková, K.; Křížová, O.; Humplík, M.; Jalovecký, J.; Krčálová, E.; Matějů, L.; Řebíčková, K. CSN 46 5735; Composting. Czech Agency for Standardization: Prague, Czech Republic, 2020; p. 24. (In Czech) [Google Scholar]
- Agrostim Biotechnologieprodukte GmbH, Germany. Available online: https://www.agrostim.de/en/products/plant-additives-and-soil-conditioners/lignohumax-application-e (accessed on 14 July 2015).
- Kopecký, J. Soil Science. Agrophysical Part, 1st ed.; Ministry of Agriculture: Prague, Czech Republic, 1928; p. 278. (In Czech) [Google Scholar]
- CSN 46 5331; General Requirements for Sampling. Publishing House of the Office for Standardization and Measurement: Prague, Czech Republic, 1983. (In Czech)
- Pospíšilová, L.; Vlček, V.; Hybler, V.; Hábová, M.; Jandák, J. Standard Analytical Methods and Criteria for Evaluation of Physical, Agrochemical, Biological and Hygienic Parameters of Soils, 1st ed.; Folia Universitatis Agriculturae at Silviculturae Mendelianae Brunensis, Mendel University in Brno: Brno, Czech Republic, 2016. (In Czech) [Google Scholar]
- Pavloušek, P. Vine Growing: Modern Viticulture; Grada: Prague, Czech Republic, 2011. [Google Scholar]
- Sáňka, M.; Vácha, R.; Poláková, Š.; Fiala, P. Evaluation Criteria Production and Organic Soil Properties, 1st ed.; Ministry of the Environment of the Czech Republic: Prague, Czech Republic, 2018; p. 98. (In Czech) [Google Scholar]
- Jha, C.K.; Sinha, S.K.; Alam, M.; Pandey, S.S. Effect of bio-compost and zinc application on sugarcane (Saccharum species hybrid complex) productivity, quality and soil health. Indian J. Agron. 2015, 60, 450–456. [Google Scholar]
- Logsdon, S.D.; Malone, R.W. Surface compost effect on hydrology: In-situ and soil cores. Compost. Sci. Util. 2015, 23, 30–36. [Google Scholar] [CrossRef]
- Yazdanpanah, N.; Mahmoodabadi, M.; Cerdà, A. The impact of organic amendments on soil hydrology, structure and microbial respiration in semiarid lands. Geoderma 2016, 266, 58–65. [Google Scholar] [CrossRef]
- Aranyos, J.T.; Tomócsik, A.; Makádi, M.; Mészáros, J.; Blaskó, L. Changes in physical properties of sandy soil after long-term compost treatment. Int. Agrophys. 2016, 30, 269–274. [Google Scholar] [CrossRef] [Green Version]
- Morlat, R. Long-term additions of organic amendments in a Loire valley vineyard on a calcareous sandy soil. II. Effects on root system, growth, grape yield, and foliar nutrient status of a Cabernet franc vine. Am. J. Enol. Vitic. 2008, 59, 364–374. [Google Scholar]
- Mylavarapu, R.S.; Zinati, G.M. Improvement of soil properties using compost for optimum parsley production in sandy soils. Sci. Hortic. 2009, 120, 426–430. [Google Scholar] [CrossRef]
- Lorenz, D.; Eichhorn, K.W.; Blei-Holder, H.; Klose, R.; Meier, U.; Weber, R. Phänologische Entwicklungsstadien der Weinrebe (Vitis vinifera L. ssp. vinifera). Codierung und Beschreibung nach der erweiterten BBCH-Skala. Vitic. Enol. Sci. 1994, 49, 66–70. (In Germany) [Google Scholar]
- Bravdo, B.; Hepner, Y.; Loinger, C.; Cohen, S.; Tabacman, H. Effect of Crop Level and Crop Load on Growth, Yield, Must and Wine Composition, and Quality of Cabernet Sauvignon. Am. J. Enol. Vitic. 1985, 36, 125–131. [Google Scholar]
- Morlat, R.; Symoneaux, R. Long-term additions of organic amendments in a Loire valley vineyard on a calcareous sandy soil. III. Effects on fruit composition and chemical and sensory characteristics of a Cabernet franc wine. Am. J. Enol. Vitic. 2008, 59, 375–386. [Google Scholar]
- Balík, J.; Stávek, J. Wine Technology; National Wine Center: Valtice, Czech Republic, 2017; p. 463. (In Czech) [Google Scholar]
- Ruffner, H.P. Metabolism of tartaric and malic acids in Vitis: A review—Part A. Vitis 1982, 21, 247–259. [Google Scholar]
- Arias-Gil, M.; Garde-Cerdán, T.; Ancín-Azpilicueta, C. Influence of addition of ammonium and different amino acid concentrations on nitrogen metabolism in spontaneous must fermentation. Food Chem. 2007, 103, 1312–1318. [Google Scholar] [CrossRef]
- Bell, S.J.; Henschke, P.A. Implications of nitrogen nutrition for grapes, fermentation and wine. Aust. J. Grape Wine Res. 2005, 11, 242–295. [Google Scholar] [CrossRef]
- Verdenal, T.; Dienes-Nagy, Á.; Spangenberg, J.; Zufferey, V.; Spring, J.; Viret, O.; Marin-Carbonne, J.; van Leeuwen, C. Understanding and managing nitrogen nutrition in grapevine: A review. OENO One 2021, 55, 1–43. [Google Scholar] [CrossRef]
Composition | K (mg∙kg−1) | Mg (mg∙kg−1) | P (mg∙kg−1) | Ca (mg∙kg−1) | Dry Matter (%) | NC (%) | Cox (%) | pHKCL |
---|---|---|---|---|---|---|---|---|
Compost | 4256 ± 240 | 1190 ± 57 | 608 ± 64 | 7605 ± 282 | 67.85 ± 1.63 | 0.87 ± 0.08 | 4.01 ± 1.13 | 7.05 ± 0.07 |
Experimental Site | Harvest Date | ||
---|---|---|---|
Lednice (Sauvignon Blanc) | 29 September 2018 | 26 September 2019 | 5 October 2020 |
Velké Bílovice (Pinot Gris) | 1 October 2018 | 20 September 2019 | 28 September 2020 |
Experimental Year | Variant | Bulk Density (g·cm−1) | Total Porosity (%) | Current Content | Max. Capillary Capacity (% vol.) | Min. Air Capacity (% vol.) | |
---|---|---|---|---|---|---|---|
Water (% vol.) | Air (% vol.) | ||||||
2018 | I | 1.43 ± 0.07 a | 45.05 ± 2.66 a | 16.05 ± 9.35 a | 29.01 ± 8.80 a | 35.07 ± 2.00 a,b | 9.98 ± 1.58 a |
II | 1.42 ± 0.09 a | 45.36 ± 3.39 a | 18.39 ± 1.10 a | 26.97 ± 3.36 a | 38.35 ± 2.81 b | 7.01 ± 0.87 b | |
III | 1.42 ± 0.12 a | 45.30 ± 4.43 a | 14.22 ± 0.72 a | 31.08 ± 4.22 a | 32.94 ± 3.15 a | 12.36 ± 1.72 a | |
2019 | I | 1.37 ± 0.07 b | 47.38 ± 2.59 b | 20.51 ± 2.25 a | 25.51 ± 4.13 a | 36.88 ± 1.03 a | 10.50 ± 2.33 a |
II | 1.30 ± 0.13 a | 50.03 ± 4.93 a | 23.37 ± 3.24 a | 26.66 ± 8.13 a | 36.08 ± 2.77 a | 13.96 ± 2.81 a | |
III | 1.24 ± 0.07 a | 52.67 ± 2.02 a | 22.76 ± 2.44 a | 29.36 ± 4.94 a | 37.11 ± 4.07 a | 15.00 ± 2.16 a | |
2020 | I | 1.47 ± 0.08 b | 43.31 ± 3.24 b | 28.30 ± 3.61 a | 16.07 ± 3.29 a | 35.74 ± 2.04 a | 7.57 ± 1.99 a |
II | 1.37 ± 0.08 a | 47.49 ± 3.05 a | 25.39 ± 1.48 a | 22.10 ± 4.27 a | 38.79 ± 1.59 b | 8.70 ± 2.20 a,b | |
III | 1.37 ± 0.02 a | 47.37 ± 0.82 a | 28.30 ± 3.61 a | 19.07 ± 3.86 a | 36.60 ± 1.65 a,b | 10.77 ± 2.43 b |
Experimental Year | Variant | Bulk Density (g·cm−3) | Total Porosity (%) | Current Content | Max. Capillary Capacity (% vol.) | Min.Air Capacity (% vol.) | |
---|---|---|---|---|---|---|---|
Water (% vol.) | Air (% vol.) | ||||||
2018 | I | 1.25 ± 0.11 a | 51.77 ± 4.39 a | 23.10 ± 3.90 a | 28.67 ± 8.21 a | 40.81 ± 5.20 b | 10.96 ± 1.46 a |
II | 1.32 ± 0.08 a | 49.40 ± 3.12 a | 22.56 ± 1.78 a | 26.84 ± 4.89 a | 34.98 ± 0.74 a | 14.42 ± 3.41 a | |
III | 1.28 ± 0.06 a | 50.77 ± 2.29 a | 22.09 ± 1.18 a | 28.68 ± 3.42 a | 36.05 ± 1.03 a,b | 14.72 ± 2.32 a | |
2019 | I | 1.44 ± 0.03 b | 44.51 ± 1.04 a | 14.47 ± 1.26 b | 31.37 ± 3.72 a | 30.88 ± 1.30 a | 14.96 ± 3.17 a |
II | 1.29 ± 0.05 a,b | 50.52 ± 2.08 a,b | 23.37 ± 1.32 a | 26.65 ± 5.04 a | 36.07 ± 1.47 a | 13.96 ± 3.61 a | |
III | 1.37 ± 0.15 a | 47.14 ± 5.61 b | 22.75 ± 3.01 a | 29.36 ± 8.41 a | 37.11 ± 1.44 a | 15.00 ± 4.58 a | |
2020 | I | 1.49 ± 0.06 b | 42.62 ± 2.20 a | 26.55 ± 0.90 a,b | 16.07 ± 2.42 a | 35.74 ± 2.04 a | 6.88 ± 1.16 b |
II | 1.44 ± 0.04 a,b | 44.75 ± 1.38 a,b | 23.79 ± 1.38 a | 20.96 ± 2.40 b | 34.86 ± 0.41 a | 9.89 ± 1.14 a | |
III | 1.38 ± 0.06 a | 47.04 ± 2.13 b | 27.39 ± 2.46 b | 19.65 ± 2.02 a,b | 36.64 ± 2.46 a | 10.41 ± 0.64 a |
Experimental Year | Variant | Average Yield (kg·shrub−1) |
---|---|---|
2018 | I | 2.66 ± 0.93 a,b |
II | 2.21 ± 0.55 a | |
III | 2.07 ± 0.40 a | |
2019 | I | 2.48 ± 0.45 a |
II | 3.08 ± 0.45 a,b | |
III | 3.33 ± 0.35 b | |
2020 | I | 2.39 ± 0.15 a |
II | 2.75 ± 0.05 c | |
III | 2.68 ± 0.09 b |
Experimental Year | Variant | Average Yield (kg·shrub−1) |
---|---|---|
2018 | I | 4.19 ± 1.21 a |
II | 4.21 ± 0.08 a | |
III | 5.19 ± 1.46 b | |
2019 | I | 1.54 ± 0.69 a |
II | 2.17 ± 0.45 a,b | |
III | 3.00 ± 0.27 b | |
2020 | I | 1.58 ± 0.19 a |
II | 2.00 ± 0.15 ab | |
III | 2.11 ± 0.07 b |
Experimental Year | Variant | Sugar Content (°NM) | pH (-) | Titratable Acids (g·L−1) | YAN (mg·L−1) |
---|---|---|---|---|---|
2018 | I | 17.32 ± 0.01 a | 3.31 ± 0.01 a | 6.22 ± 0.01 b | 256.50 ± 3.54 a |
II | 16.75 ± 0.07 b | 3.31 ± 0.01 a | 6.81 ± 0.01 c | 454.50 ± 3.54 c | |
III | 17.32 ± 0.01 a | 3.41 ± 0.01 b | 6.12 ± 0.01 a | 330.10 ± 0.02 b | |
2019 | I | 23.91 ± 0.01 c | 3.21 ± 0.01 b | 8.90 ± 0.01 b | 285.00 ± 2.83 a |
II | 22.01 ± 0.01 a | 3.31 ± 0.01 a | 9.31 ± 0.02 c | 285.50 ± 2.12 a | |
III | 22.31 ± 0.01 b | 3.30 ± 0.00 a | 8.69 ± 0.03 a | 250.00 ± 1.41 b | |
2020 | I | 23.81 ± 0.01 b | 3.10 ± 0.01 a | 11.21 ± 0.02 b | 261.50 ± 2.12 b |
II | 23.91 ± 0.01 c | 3.11 ± 0.00 a | 10.51 ± 0.02 a | 291.5 ± 0.71 a | |
III | 23.32 ± 0.01 a | 3.21 ± 0.01 b | 10.51 ± 0.01 a | 288.5 ± 4.95 a |
Experimental Year | Variant | Sugar Content (°NM) | pH (-) | Titratable Acids (g·L−1) | YAN (mg·L−1) |
---|---|---|---|---|---|
2018 | I | 21.31 ± 0.01 a | 3.91 ± 0.01 b | 5.30 ± 0.03 a | 167.50 ± 3.54 a |
II | 23.92 ± 0.01 b | 3.61 ± 0.01 a | 6.61 ± 0.02 c | 291.00 ± 1.41 c | |
III | 24.21 ± 0.01 c | 3.60 ± 0.00 a | 6.51 ± 0.01 b | 272.50 ± 3.54 b | |
2019 | I | 22.41 ± 0.01 a | 3.21 ± 0.01 a | 7.71 ± 0.02 b | 301.50 ± 2.12 c |
II | 22.31 ± 0.01 b | 3.21 ± 0.01 a | 8.01 ± 0.02 c | 276.00 ± 1.41 b | |
III | 22.41 ± 0.01 a | 3.31 ± 0.01 b | 7.51 ± 0.02 a | 229.5 ± 2.12 a | |
2020 | I | 18.61 ± 0.01 a | 3.31 ± 0.01 a | 11.30 ± 0.02 a | 214.50 ± 2.12 a |
II | 19.21 ± 0.01 b | 3.20 ± 0.00 b | 11.11 ± 0.02 b | 413.00 ± 2.83 b | |
III | 19.41 ± 0.01 c | 3.31 ± 0.01 a | 11.39 ± 0.04 a | 426.00 ± 1.41 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badalíková, B.; Burg, P.; Mašán, V.; Prudil, J.; Jobbágy, J.; Čížková, A.; Krištof, K.; Vašinka, M. Deep Placement of Compost into Vineyard Soil Affecting Physical Properties of Soils, Yield and Quality of Grapes. Sustainability 2022, 14, 7823. https://doi.org/10.3390/su14137823
Badalíková B, Burg P, Mašán V, Prudil J, Jobbágy J, Čížková A, Krištof K, Vašinka M. Deep Placement of Compost into Vineyard Soil Affecting Physical Properties of Soils, Yield and Quality of Grapes. Sustainability. 2022; 14(13):7823. https://doi.org/10.3390/su14137823
Chicago/Turabian StyleBadalíková, Barbora, Patrik Burg, Vladimír Mašán, Jakub Prudil, Ján Jobbágy, Alice Čížková, Koloman Krištof, and Martin Vašinka. 2022. "Deep Placement of Compost into Vineyard Soil Affecting Physical Properties of Soils, Yield and Quality of Grapes" Sustainability 14, no. 13: 7823. https://doi.org/10.3390/su14137823
APA StyleBadalíková, B., Burg, P., Mašán, V., Prudil, J., Jobbágy, J., Čížková, A., Krištof, K., & Vašinka, M. (2022). Deep Placement of Compost into Vineyard Soil Affecting Physical Properties of Soils, Yield and Quality of Grapes. Sustainability, 14(13), 7823. https://doi.org/10.3390/su14137823