Evaluation of the Thermal Environmental Effects of Urban Ecological Networks—A Case Study of Xuzhou City, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Data Sources and Processing
2.3. Methods
2.3.1. Land Surface Temperature (LST)
2.3.2. UHI Classification
2.3.3. Construction of the Ecological Network
- Landscape connectivity analysis: Probability of connectivity index (PC)
- 2.
- Landscape connectivity analysis: Importance value of the patch (dPC)
- 3.
- Analysis of the ecological resistance surface
3. Results
3.1. Characteristics of the Surface Thermal Environment
3.1.1. Spatial Distribution Characteristics of the Thermal Environment
3.1.2. LST in Candidate Ecological Land
3.2. Ecological Network
3.2.1. Ecological Sources
3.2.2. Ecological Corridors
3.3. Thermal Environmental Effect of the Ecological Network
3.3.1. Thermal Environmental Effect of the Ecological Sources
3.3.2. Thermal Environmental Effect of the Ecological Corridors
4. Discussion
4.1. Discussion on Heat and Cold Islands
4.2. Relationship between the Ecological Network and Thermal Environment
4.3. Relationship between Heat Islands and Ecological Networks
4.4. Mechanism of Thermal Environment Effect of Ecological Network
4.5. Guidance for Planning
4.6. Research Limitations and Future Research Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, D.L.; Shou, Y.X.; Dickerson, R.R. Upstream urbanization exacerbates urban heat island effects. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef] [Green Version]
- Kalnay, E.; Cai, M. Impact of urbanization and land-use change on climate. Nature 2003, 423, 528–531. [Google Scholar] [CrossRef]
- Lin, B.; Liu, H. China’s building energy efficiency and urbanization. Energy Build. 2015, 86, 356–365. [Google Scholar] [CrossRef]
- Azhdari, A.; Soltani, A.; Alidadi, M. Urban morphology and landscape structure effect on land surface temperature: Evidence from Shiraz, a semi-arid city. Sustain. Cities Soc. 2018, 41, 853–864. [Google Scholar] [CrossRef]
- Mallick, J.; Rahman, A.; Singh, C.K. Modeling urban heat islands in heterogeneous land surface and its correlation with impervious surface area by using night-time ASTER satellite data in highly urbanizing city, Delhi-India. Adv. Space Res. 2013, 52, 639–655. [Google Scholar] [CrossRef]
- Dou, Y.; Kuang, W. A comparative analysis of urban impervious surface and green space and their dynamics among 318 different size cities in China in the past 25 years. Sci. Total Environ. 2020, 706, 135828. [Google Scholar] [CrossRef]
- Gordon, A.; Simondson, D.; White, M.; Moilanen, A.; Bekessy, S.A. Integrating conservation planning and landuse planning in urban landscapes. Landsc. Urban Plan. 2009, 91, 183–194. [Google Scholar] [CrossRef]
- Ferrara, A.; Salvati, L.; Sateriano, A.; Carlucci, M.; Gitas, I.; Biasi, R. Unraveling the ‘stable’ landscape: A multi-factor analysis of unchanged agricultural and forest land (1987–2007) in a rapidly-expanding urban region. Urban Ecosyst. 2016, 19, 835–848. [Google Scholar] [CrossRef]
- Zhao, H.; Tan, J.; Ren, Z.; Wang, Z. Spatiotemporal Characteristics of Urban Surface Temperature and Its Relationship with Landscape Metrics and Vegetation Cover in Rapid Urbanization Region. Complexity 2020, 2020, 7892362. [Google Scholar] [CrossRef]
- Roth, M.; Lim, V.H. Evaluation of canopy-layer air and mean radiant temperature simulations by a microclimate model over a tropical residential neighbourhood. Build. Environ. 2017, 112, 177–189. [Google Scholar] [CrossRef]
- Yang, X.; Li, Y. The impact of building density and building height heterogeneity on average urban albedo and street surface temperature. Build. Environ. 2015, 90, 146–156. [Google Scholar] [CrossRef]
- Wong, M.S.; Nichol, J.; Ng, E. A study of the “wall effect” caused by proliferation of high-rise buildings using GIS techniques. Landsc. Urban Plan. 2011, 102, 245–253. [Google Scholar] [CrossRef]
- Byomkesh, T.; Nakagoshi, N.; Dewan, A.M. Urbanization and green space dynamics in Greater Dhaka, Bangladesh. Landsc. Ecol. Eng. 2012, 8, 45–58. [Google Scholar] [CrossRef]
- Scolozzi, R.; Geneletti, D. A multi-scale qualitative approach to assess the impact of urbanization on natural habitats and their connectivity. Environ. Impact Assess. 2012, 36, 9–22. [Google Scholar] [CrossRef]
- Frondoni, R.; Mollo, B.; Capotorti, G. A landscape analysis of land cover change in the Municipality of Rome (Italy): Spatio-temporal characteristics and ecological implications of land cover transitions from 1954 to 2001. Landsc. Urban Plan. 2011, 100, 117–128. [Google Scholar] [CrossRef]
- Singh, P.; Kikon, N.; Verma, P. Impact of land use change and urbanization on urban heat island in Lucknow city, Central India. A remote sensing based estimate. Sustain. Cities Soc. 2017, 32, 100–114. [Google Scholar] [CrossRef]
- Arshad, M.; Khedher, K.M.; Eid, E.M.; Aina, Y.A. Evaluation of the urban heat island over Abha-Khamis Mushait tourist resort due to rapid urbanisation in Asir, Saudi Arabia. Urban Clim. 2021, 36, 100772. [Google Scholar] [CrossRef]
- Kedia, S.; Bhakare, S.P.; Dwivedi, A.K.; Islam, S.; Kaginalkar, A. Estimates of change in surface meteorology and urban heat island over northwest India: Impact of urbanization. Urban Clim. 2021, 36, 100782. [Google Scholar] [CrossRef]
- Zank, B.; Bagstad, K.J.; Voigt, B.; Villa, F. Modeling the effects of urban expansion on natural capital stocks and ecosystem service flows: A case study in the Puget Sound, Washington, USA. Landsc. Urban Plan. 2016, 149, 31–42. [Google Scholar] [CrossRef]
- Li, Z.; Cheng, X.; Han, H. Future Impacts of Land Use Change on Ecosystem Services under Different Scenarios in the Ecological Conservation Area, Beijing, China. Forests 2020, 11, 584. [Google Scholar] [CrossRef]
- Maheng, D.; Pathirana, A.; Zevenbergen, C. A Preliminary Study on the Impact of Landscape Pattern Changes Due to Urbanization: Case Study of Jakarta, Indonesia. Land 2021, 10, 218. [Google Scholar] [CrossRef]
- Chen, W.X.; Zeng, J.; Chu, Y.M.; Liang, J.L. Impacts of Landscape Patterns on Ecosystem Services Value: A Multiscale Buffer Gradient Analysis Approach. Remote Sens. 2021, 13, 2551. [Google Scholar] [CrossRef]
- Gago, E.J.; Berrizbeitia, S.E.; Torres, R.P.; Muneer, T. Effect of Land Use/Cover Changes on Urban Cool Island Phenomenon in Seville, Spain. Energies 2020, 13, 3040. [Google Scholar] [CrossRef]
- Du, H.Y.; Cai, Y.L.; Zhou, F.Q.; Jian, H.; Jiang, W.Y.; Xu, Y.Q. Urban blue-green space planning based on thermal environment simulation: A case study of Shanghai, China. Ecol. Indic. 2019, 106, 105501. [Google Scholar] [CrossRef]
- Nor, A.N.M.; Corstanje, R.; Harris, J.A.; Grafius, D.R.; Siriwardena, G.M. Ecological connectivity networks in rapidly expanding cities. Heliyon 2017, 3, e325. [Google Scholar] [CrossRef] [Green Version]
- Serret, H.; Raymond, R.; Foltête, J.; Clergeau, P.; Simon, L.; Machon, N. Potential contributions of green spaces at business sites to the ecological network in an urban agglomeration: The case of the Ile-de-France region, France. Landsc. Urban Plan. 2014, 131, 27–35. [Google Scholar] [CrossRef]
- Ersoy, E.; Jorgensen, A.; Warren, P.H. Green and ecological networks in Sheffield, UK. Landsc. Res. 2019, 44, 922–936. [Google Scholar] [CrossRef]
- Muderrisoglu, H.; Oguz, D.; Sensoy, N. An evaluation of green areas from the point of user satisfaction in Ankara, Turkey: Gap analyses method. Afr. J. Agric. Res. 2010, 5, 1036–1042. [Google Scholar]
- Liu, W.Y.; Lin, Y.Z.; Hsieh, C.M. Assessing the Ecological Value of an Urban Forest Park: A Case Study of Sinhua Forest Park in Taiwan. Forests 2021, 12, 806. [Google Scholar] [CrossRef]
- Hong, W.Y.; Guo, R.Z. Indicators for quantitative evaluation of the social services function of urban greenbelt systems: A case study of shenzhen, China. Ecol. Indic. 2017, 75, 259–267. [Google Scholar] [CrossRef]
- Kopecká, M.; Szatmári, D.; Rosina, K. Analysis of Urban Green Spaces Based on Sentinel-2A: Case Studies from Slovakia. Land 2017, 6, 25. [Google Scholar] [CrossRef] [Green Version]
- Egerer, M.; Anderson, E. Social-Ecological Connectivity to Understand Ecosystem Service Provision across Networks in Urban Landscapes. Land 2020, 9, 530. [Google Scholar] [CrossRef]
- Hu, T.; Peng, J.; Liu, Y.X.; Wu, J.S.; Li, W.F.; Zhou, B.B. Evidence of green space sparing to ecosystem service improvement in urban regions: A case study of China’s Ecological Red Line policy. J. Clean. Prod. 2020, 251, 119678. [Google Scholar] [CrossRef]
- Semeraro, T.; Scarano, A.; Buccolieri, R.; Santino, A.; Aarrevaara, E. Planning of Urban Green Spaces: An Ecological Perspective on Human Benefits. Land 2021, 10, 105. [Google Scholar] [CrossRef]
- Ramyar, R. Social ecological mapping of urban landscapes: Challenges and perspectives on ecosystem services in Mashhad, Iran. Habitat Int. 2019, 92, 102043. [Google Scholar] [CrossRef]
- Yang, J.; Sun, J.; Ge, Q.; Li, X. Assessing the impacts of urbanization-associated green space on urban land surface temperature: A case study of Dalian, China. Urban For. Urban Green. 2017, 22, 1–10. [Google Scholar] [CrossRef]
- Masoudi, M.; Tan, P.Y. Multi-year comparison of the effects of spatial pattern of urban green spaces on urban land surface temperature. Landsc. Urban Plan. 2019, 184, 44–58. [Google Scholar] [CrossRef]
- Maimaitiyiming, M.; Ghulam, A.; Tiyip, T.; Pla, F.; Latorre-Carmona, P.; Halik, Ü.; Sawut, M.; Caetano, M. Effects of green space spatial pattern on land surface temperature: Implications for sustainable urban planning and climate change adaptation. ISPRS J. Photogramm. Remote Sens. 2014, 89, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Chen, A.; Yao, X.A.; Sun, R.; Chen, L. Effect of urban green patterns on surface urban cool islands and its seasonal variations. Urban For. Urban Green. 2014, 13, 646–654. [Google Scholar] [CrossRef]
- Xiao, X.D.; Dong, L.; Yan, H.; Yang, N.; Xiong, Y. The influence of the spatial characteristics of urban green space on the urban heat island effect in Suzhou Industrial Park. Sustain. Cities Soc. 2018, 40, 428–439. [Google Scholar] [CrossRef]
- Yao, L.; Li, T.; Xu, M.; Xu, Y. How the landscape features of urban green space impact seasonal land surface temperatures at a city-block-scale: An urban heat island study in Beijing, China. Urban For. Urban Green. 2020, 52, 126704. [Google Scholar] [CrossRef]
- Wu, C.; Li, J.; Wang, C.; Song, C.; Haase, D.; Breuste, J.; Finka, M. Estimating the Cooling Effect of Pocket Green Space in High Density Urban Areas in Shanghai, China. Front. Environ. Sci. 2021, 9, 181. [Google Scholar] [CrossRef]
- Lin, W.; Yu, T.; Chang, X.; Wu, W.; Zhang, Y. Calculating cooling extents of green parks using remote sensing: Method and test. Landsc. Urban Plan. 2015, 134, 66–75. [Google Scholar] [CrossRef]
- Feyisa, G.L.; Dons, K.; Meilby, H. Efficiency of parks in mitigating urban heat island effect: An example from Addis Ababa. Landsc. Urban Plan. 2014, 123, 87–95. [Google Scholar] [CrossRef]
- Amani-Beni, M.; Zhang, B.; Xie, G.; Shi, Y. Impacts of Urban Green Landscape Patterns on Land Surface Temperature: Evidence from the Adjacent Area of Olympic Forest Park of Beijing, China. Sustainability 2019, 11, 513. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz, S.; Mutlu, E.; Yilmaz, H. Alternative scenarios for ecological urbanizations using ENVI-met model. Environ. Sci. Pollut. Res. 2018, 25, 26307–26321. [Google Scholar] [CrossRef]
- Yu, Z.; Fryd, O.; Sun, R.; Jrgensen, G.; Vejre, H. Where and how to cool? An idealized urban thermal security pattern model. Landsc. Ecol. 2021, 36, 2165–2174. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y.; Myint, S.W. Effects of landscape composition and pattern on land surface temperature: An urban heat island study in the megacities of Southeast Asia. Sci. Total Environ. 2016, 577, 349. [Google Scholar] [CrossRef]
- Li, X.; Zhou, W.; Ouyang, Z. Relationship between land surface temperature and spatial pattern of greenspace: What are the effects of spatial resolution? Landsc. Urban Plan. 2013, 114, 1–8. [Google Scholar] [CrossRef]
- Tong, H.; Shi, P.; Bao, S.; Zhang, X.; Nie, X. Optimization of Urban Land Development Spatial Allocation Based on Ecology-Economy Comparative Advantage Perspective. J. Urban Plan. Dev. 2018, 144, 5018006. [Google Scholar] [CrossRef]
- Sanches, P.M.; Mesquita Pellegrino, P.R. Greening potential of derelict and vacant lands in urban areas. Urban For. Urban Green. 2016, 19, 128–139. [Google Scholar] [CrossRef]
- Du, C.; Ren, H.; Qin, Q.; Meng, J.; Zhao, S. A Practical Split-Window Algorithm for Estimating Land Surface Temperature from Landsat 8 Data. Remote Sens. 2015, 7, 647–665. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Qin, Z.; Song, C.; Tu, L.; Karnieli, A.; Zhao, S. An Improved Mono-Window Algorithm for Land Surface Temperature Retrieval from Landsat 8 Thermal Infrared Sensor Data. Remote Sens. 2015, 7, 4268–4289. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Guo, X.; Wu, Z. Land Surface Temperature Retrieval from Landsat 8 TIRS—Comparison between Radiative Transfer Equation-Based Method, Split Window Algorithm and Single Channel Method. Remote Sens. 2014, 6, 9829–9852. [Google Scholar] [CrossRef] [Green Version]
- Vogt, P.; Riitters, K.H.; Iwanowski, M.; Estreguil, C.; Kozak, J.; Soille, P. Mapping landscape corridors. Ecol. Indic. 2007, 7, 481–488. [Google Scholar] [CrossRef]
- Wang, S.; Wu, M.; Hu, M.; Fan, C.; Wang, T.; Xia, B. Promoting landscape connectivity of highly urbanized area: An ecological network approach. Ecol. Indic. 2021, 125, 107487. [Google Scholar] [CrossRef]
- Foltête, J.; Girardet, X.; Clauzel, C. A methodological framework for the use of landscape graphs in land-use planning. Landsc. Urban Plan. 2014, 124, 140–150. [Google Scholar] [CrossRef]
- McRae, B.H.; Dickson, B.G.; Keitt, T.H.; Shah, V.B. Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 2008, 89, 2712–2724. [Google Scholar] [CrossRef]
- Leonard, P.B.; Duffy, E.B.; Baldwin, R.F.; McRae, B.H.; Shah, V.B.; Mohapatra, T.K. Gflow: Software for modelling circuit theory-based connectivity at any scale. Methods Ecol. Evol. 2017, 8, 519–526. [Google Scholar] [CrossRef] [Green Version]
- Heintzman, L.J.; McIntyre, N.E. Assessment of playa wetland network connectivity for amphibians of the south-central Great Plains (USA) using graph-theoretical, least-cost path, and landscape resistance modelling. Landsc. Ecol. 2021, 36, 1117–1135. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, Z.; Li, Y.; Yang, Z.; Wang, X.; Li, X. Construction and Optimization of an Urban Ecological Security Pattern Based on Habitat Quality Assessment and the Minimum Cumulative Resistance Model in Shenzhen City, China. Forests 2021, 12, 847. [Google Scholar] [CrossRef]
- Ye, H.; Yang, Z.; Xu, X. Ecological Corridors Analysis Based on MSPA and MCR Model—A Case Study of the Tomur World Natural Heritage Region. Sustainability 2020, 12, 959. [Google Scholar] [CrossRef] [Green Version]
- Li, J.X.; Song, C.H.; Cao, L.; Zhu, F.G.; Meng, X.L.; Wu, J.G. Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China. Remote Sens. Environ. 2011, 115, 3249–3263. [Google Scholar] [CrossRef]
- Kong, F.H.; Yin, H.W.; James, P.; Hutyra, L.R.; He, H.S. Effects of spatial pattern of greenspace on urban cooling in a large metropolitan area of eastern China. Landsc. Urban Plan. 2014, 128, 35–47. [Google Scholar] [CrossRef]
- Cai, Z.; Han, G.F.; Chen, M.C. Do water bodies play an important role in the relationship between urban form and land surface temperature? Sustain. Cities Soc. 2018, 39, 487–498. [Google Scholar] [CrossRef]
- Wu, C.Y.; Li, J.X.; Wang, C.F.; Song, C.H.; Chen, Y.; Finka, M.; La Rosa, D. Understanding the relationship between urban blue infrastructure and land surface temperature. Sci. Total Environ. 2019, 694, 133742. [Google Scholar] [CrossRef] [PubMed]
- Siu, L.W.; Hart, M.A. Quantifying urban heat island intensity in Hong Kong SAR, China. Environ. Monit. Assess. 2013, 185, 4383–4398. [Google Scholar] [CrossRef] [Green Version]
- Chow, W.; Brazel, A.J. Assessing xeriscaping as a sustainable heat island mitigation approach for a desert city. Build. Environ. 2012, 47, 170–181. [Google Scholar] [CrossRef]
- Miles, V.; Esau, I. Seasonal and Spatial Characteristics of Urban Heat Islands (UHIs) in Northern West Siberian Cities. Remote Sens. 2017, 9, 989. [Google Scholar] [CrossRef] [Green Version]
- Wu, D. A Quantitative Study on Land Use Change Trajectories and Urban Heat Island. Master’s Thesis, China University of Mining and Technology, Beijing, China, 2017. [Google Scholar]
- Meng, Y. Study on Spatiotemporal Expansion and Thermal Environment of Impervious Surface in Xuzhou City. Master’s Thesis, China University of Mining and Technology, Beijing, China, 2020. [Google Scholar]
- Liang, X.; Ji, X.; Guo, N.; Meng, L. Assessment of urban heat islands for land use based on urban planning: A case study in the main urban area of Xuzhou City, China. Environ. Earth Sci. 2021, 80, 1–22. [Google Scholar] [CrossRef]
- Xinbin, L.; Xiang, J.; Nana, G.; Lingran, M.; Fang, Q. Evolution Characteristics of the Ecological Space Network of Resource-Based Cities: A Case Study on Xuzhou. China City Plan. Rev. 2021, 30, 62–74. [Google Scholar]
- Wang, R.; Zhao, J. Examining the Coexistence of People’s Satisfaction and Ecological Quality in Urban Green Space. J. Urban Plan. Dev. 2021, 147, 5021002. [Google Scholar] [CrossRef]
- Tao, Y.; Wang, Q.; Zou, Y. Simulation and Analysis of Urban Production–Living–Ecological Space Evolution Based on a Macro–Micro Joint Decision Model. Int. J. Environ. Res. Public Health 2021, 18, 9832. [Google Scholar] [CrossRef] [PubMed]
- Shiyuan, Z.; Jiang, C.; Pingjia, L.; Yan, D. Research into planning guidance during the transformation of resource-based cities: A case study of Xuzhou city. China Min. Mag. 2016, 25, 88–92. [Google Scholar]
- Wang, Y.C.; Zhang, Y.; Ding, N.; Qin, K.; Yang, X.Y. Simulating the Impact of Urban Surface Evapotranspiration on the Urban Heat Island Effect Using the Modified RS-PM Model: A Case Study of Xuzhou, China. Remote Sens. 2020, 12, 578. [Google Scholar] [CrossRef] [Green Version]
- Liang, X. Study on Surface Thermal Environment of Xuzhou City Based on Spatial Planning. Ph.D. Thesis, China University of Mining and Technology, Beijing, China, 2021. [Google Scholar]
- Sobrino, J.A.; Jiménez-Muoz, J.C.; Paolini, L. Land surface temperature retrieval from LANDSAT TM 5. Remote Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
- Qin, Z.; Karnieli, A.; Berliner, P. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. Int. J. Remote Sens. 2001, 22, 3719–3746. [Google Scholar] [CrossRef]
- Xu, H. Analysis on urban heat island effect based on the dynamics of urban surface biophysical descriptors. Acta Ecol. Sin. 2011, 31, 3890–3901. [Google Scholar]
- Song, S.; Xu, D.W.; Hu, S.S.; Shi, M.X. Ecological Network Optimization in Urban Central District Based on Complex Network Theory: A Case Study with the Urban Central District of Harbin. Int. J. Environ. Res. Public Health 2021, 18, 1427. [Google Scholar] [CrossRef]
- Su, K.; Yu, Q.; Yue, D.; Zhang, Q.; Yang, L.; Liu, Z.; Niu, T.; Sun, X. Simulation of a forest-grass ecological network in a typical desert oasis based on multiple scenes. Ecol. Model. 2019, 413, 108834. [Google Scholar] [CrossRef]
- Ariken, M.; Zhang, F.; Liu, K.; Fang, C.L.; Kung, H.T. Coupling coordination analysis of urbanization and eco-environment in Yanqi Basin based on multi-source remote sensing data. Ecol. Indic. 2020, 114, 106331. [Google Scholar] [CrossRef]
- Marrotte, R.R.; Gonzalez, A.; Millien, V. Landscape resistance and habitat combine to provide an optimal model of genetic structure and connectivity at the range margin of a small mammal. Mol. Ecol. 2014, 23, 3983–3998. [Google Scholar] [CrossRef] [PubMed]
- Ma, J. Research on Optimization Strategy of Complex Network Information Capacity. Ph.D. Thesis, Harbin Institute of Technology, Harbin, China, 2016. [Google Scholar]
- Hu, C.; Wang, Z.; Wang, Y.; Sun, D.; Zhang, J. Combining MSPA-MCR Model to Evaluate the Ecological Network in Wuhan, China. Land 2022, 11, 213. [Google Scholar] [CrossRef]
- Taylor, P.D.; Fahrig, L.; Merriam, K.H.A.G. Connectivity Is a Vital Element of Landscape Structure. Oikos 1993, 68, 571–573. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y. Study on Landscape Pattern and Connectivity of Urban Green Space in Changsha City. Master’s Thesis, Central South University of Forestry and Technology, Changsha, China, 2009. [Google Scholar]
- Pascual-Hortal, L.; Saura, S. Comparison and development of new graph-based landscape connectivity indices: Towards the priorization of habitat patches and corridors for conservation. Landsc. Ecol. 2006, 21, 959–967. [Google Scholar] [CrossRef]
- Liu, C.; Zhou, B.; He, X.; Chen, W. Selection of distance thresholds of urban forest landscape connectivity in Shenyang City. Chin. J. Appl. Ecol. 2010, 21, 2508–2516. [Google Scholar]
- Meng, J.; Wang, Y.; Wang, X.; Zhou, Z.; Sun, N. Construction of landscape ecological security pattern in Guiyang based on Mcr model. Resour. Environ. Yangtze Basin 2016, 25, 1052–1061. [Google Scholar]
- Meng, L.; Wu, J.; Dong, J. Spatial differentiation and layout optimization of rural settlements in hill ecological protection area. Trans. Chin. Soc. Agric. Eng. 2017, 33, 278–286. [Google Scholar]
- Yu, K.; Wang, S.; Li, D.; Li, C. The function of ecological security patterns as an urban growth framework in Beijing. Acta Ecol. Sin. 2009, 29, 1189–1204. [Google Scholar]
- Huang, X.; Wu, C.; You, H.; Xiao, W.; Zhong, S. Construction of rural landscape ecological corridor in water network plain area based on MCR Model. Trans. Chin. Soc. Agric. Eng. 2019, 35, 243–251. [Google Scholar]
- Zhou, Y. Developing urban greenspace ecological network in Chengdu City center based on multiple objectives. J. Zhejiang A F Univ. 2019, 36, 359–365. [Google Scholar]
- Zheng, Q.; Ceng, J.; Luo, J.; Cui, J.; Sun, X. Spatial Structure and Space Governance of Ecological Network in Wuhan City. Econ. Geogr. 2018, 38, 191–199. [Google Scholar]
- Jin, G.; Shi, X.; He, D.; Guo, B.; Li, Z.; Shi, X. Designing a spatial pattern to rebalance the orientation of development and protection in Wuhan. J. Geogr. Sci. 2020, 30, 569–582. [Google Scholar] [CrossRef]
- Zhu, K.; Chen, Y.; Zhang, S.; Yang, Z.; Huang, L.; Lei, B.; Li, L.; Zhou, Z.; Xiong, H.; Li, X. Identification and prevention of agricultural non-point source pollution risk based on the minimum cumulative resistance model. Glob. Ecol. Conserv. 2020, 23, e1149. [Google Scholar] [CrossRef]
- Chang, Q.; Liu, X.; Wu, J.; He, P. MSPA-Based Urban Green Infrastructure Planning and Management Approach for Urban Sustainability: Case Study of Longgang in China. J. Urban Plan. Dev. 2015, 141, A5014006. [Google Scholar] [CrossRef]
- Li, H.; Chen, W.; He, W. Planning of Green Space Ecological Network in Urban Areas: An Example of Nanchang, China. Int. J. Environ. Res. Public Health 2015, 12, 12889–12904. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Guo, N.; Lian, H.; Zhou, B. Construction and Optimization of Urban Area Ecological Network. Chongqing Archit. 2021, 20, 5–8. [Google Scholar]
- Amani-Beni, M.; Zhang, B.; Xie, G.; Odgaard, A.J. Impacts of the Microclimate of a Large Urban Park on Its Surrounding Built Environment in the Summertime. Remote Sens. 2021, 13, 4703. [Google Scholar] [CrossRef]
- Rakoto, P.Y.; Deilami, K.; Hurley, J.; Amati, M.; Sun, Q.C. Revisiting the cooling effects of urban greening: Planning implications of vegetation types and spatial configuration. Urban For. Urban Green 2021, 64, 127266. [Google Scholar] [CrossRef]
- Wang, H.Z. Urban Ecological Network Research—Taking Xiamen City as an Example. Master’s Thesis, East China Normal University, Shanghai, China, 2005. [Google Scholar]
- Haggett, P.; Chorley, R.J. Network Analysis in Geography; St. Martin’s Press: New York, NY, USA, 1970; Volume 1. [Google Scholar]
- Yu, M. Regional Eco-Corridor Construction under the Context of Human Activity: A Case Study of Liaoning Province, China. Master’s Thesis, Dalian University of Technology, Dalian, China, 2015. [Google Scholar]
- Zhu, Q.; Yu, K.; Li, D. The width of ecological corridor in landscape planning. Acta Ecol. Sin. 2005, 25, 2406–2412. [Google Scholar]
- Li, B.; Liu, Y.; Xing, H.; Meng, Y.; Yang, G.; Liu, X.; Zhao, Y. Integrating urban morphology and land surface temperature characteristics for urban functional area classification. Geo-Spat. Inf. Sci. 2022, 1, 1–16. [Google Scholar] [CrossRef]
- Tepanosyan, G.; Muradyan, V.; Hovsepyan, A.; Pinigin, G.; Medvedev, A.; Asmaryan, S. Studying spatial-temporal changes and relationship of land cover and surface Urban Heat Island derived through remote sensing in Yerevan, Armenia. Build. Environ. 2021, 187, 107390. [Google Scholar] [CrossRef]
- Yao, L.; Xu, Y.; Zhang, B. Effect of urban function and landscape structure on the urban heat island phenomenon in Beijing, China. Landsc. Ecol. Eng. 2019, 15, 379–390. [Google Scholar] [CrossRef]
- Liu, X.; Xiao, Z.; Liu, R. A Spatio-Temporal Bayesian Model for Estimating the Effects of Land Use Change on Urban Heat Island. ISPRS Int. J. Geo-Inf. 2019, 8, 522. [Google Scholar] [CrossRef] [Green Version]
- Qiu, G.Y.; Zou, Z.; Li, X.; Li, H.; Guo, Q.; Yan, C.; Tan, S. Experimental studies on the effects of green space and evapotranspiration on urban heat island in a subtropical megacity in China. Habitat Int. 2017, 68, 30–42. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, A.M.; Wang, T.X.; Xie, G.D.; Zhao, M.Y. IEEE urban heat island monitoring and analysis based on remotely SENSED data. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Melbourne, Australia, 21–26 July 2013; pp. 1493–1496. [Google Scholar]
- Huang, Q.; Huang, J.; Yang, X.; Fang, C.; Liang, Y. Quantifying the seasonal contribution of coupling urban land use types on Urban Heat Island using Land Contribution Index: A case study in Wuhan, China. Sustain. Cities Soc. 2019, 44, 666–675. [Google Scholar] [CrossRef]
- Su, W.; Gu, C.; Yang, G. Assessing the Impact of Land Use/Land Cover on Urban Heat Island Pattern in Nanjing City, China. J. Urban Plan. Dev. 2010, 136, 365–372. [Google Scholar] [CrossRef]
- Yin, C.; Yuan, M.; Lu, Y.; Huang, Y.; Liu, Y. Effects of urban form on the urban heat island effect based on spatial regression model. Sci. Total Environ. 2018, 634, 696–704. [Google Scholar] [CrossRef]
- Huang, H.C.; Yun, Y.X.; Xu, J.G.; Wang, S.Z.; Zheng, X.; Fu, J.; Bao, L.T. Scale and attenuation of water bodies on urban heat islands. Open House Int. 2017, 42, 108–111. [Google Scholar] [CrossRef]
- Wang, Y.; Zhan, Q.; Ouyang, W. How to quantify the relationship between spatial distribution of urban waterbodies and land surface temperature? Sci. Total Environ. 2019, 671, 1–9. [Google Scholar] [CrossRef]
- Yang, S.J.; Ran, G.P.; Zhang, W.; Wang, Z.H. The cooling effect of an urban lake landscape on the urban heat island: A case study in Jinan, China. Appl. Ecol. Environ. Res. 2020, 18, 2197–2211. [Google Scholar] [CrossRef]
- Ke, X.; Men, H.; Zhou, T.; Li, Z.; Zhu, F. Variance of the impact of urban green space on the urban heat island effect among different urban functional zones: A case study in Wuhan. Urban For. Urban Green. 2021, 62, 127159. [Google Scholar] [CrossRef]
- Sun, R.; Chen, L. How can urban water bodies be designed for climate adaptation? Landsc. Urban Plan. 2012, 105, 27–33. [Google Scholar] [CrossRef]
- Du, H.; Song, X.; Jiang, H.; Kan, Z.; Wang, Z.; Cai, Y. Research on the cooling island effects of water body: A case study of Shanghai, China. Ecol. Indic. 2016, 67, 31–38. [Google Scholar] [CrossRef]
- Du, H.; Cai, W.; Xu, Y.; Wang, Z.; Wang, Y.; Cai, Y. Quantifying the cool island effects of urban green spaces using remote sensing Data. Urban For. Urban Green. 2017, 27, 24–31. [Google Scholar] [CrossRef]
- Hu, Y.; Dai, Z.; Guldmann, J. Greenspace configuration impact on the urban heat island in the Olympic Area of Beijing. Environ. Sci. Pollut. Res. 2021, 28, 33096–33107. [Google Scholar] [CrossRef]
- Jiang, Y.; Huang, J.; Shi, T.; Wang, H. Interaction of Urban Rivers and Green Space Morphology to Mitigate the Urban Heat Island Effect: Case-Based Comparative Analysis. Int. J. Environ. Res. Public Health 2021, 18, 11404. [Google Scholar] [CrossRef]
- Huang, L.; Wang, J.; Fang, Y.; Zhai, T.; Cheng, H. An integrated approach towards spatial identification of restored and conserved priority areas of ecological network for implementation planning in metropolitan region. Sustain. Cities Soc. 2021, 69, 102865. [Google Scholar] [CrossRef]
- Isaac, N.J.B.; Brotherton, P.N.M.; Bullock, J.M.; Gregory, R.D.; Boehning-Gaese, K.; Connor, B.; Crick, H.Q.P.; Freckleton, R.P.; Gill, J.A.; Hails, R.S.; et al. Defining and delivering resilient ecological networks: Nature conservation in England. J. Appl. Ecol. 2018, 55, 2537–2543. [Google Scholar] [CrossRef]
- Cook, E.A. Landscape structure indices for assessing urban ecological networks. Landsc. Urban Plan. 2002, 58, 269–280. [Google Scholar] [CrossRef]
- Ezimand, K.; Azadbakht, M.; Aghighi, H. Analyzing the effects of 2D and 3D urban structures on LST changes using remotely sensed data. Sustain. Cities Soc. 2021, 74, 103216. [Google Scholar] [CrossRef]
- Dos Santos, A.R.; de Oliveira, F.S.; Da Silva, A.G.; Gleriani, J.M.; Goncalves, W.; Moreira, G.L.; Silva, F.G.; Branco, E.; Moura, M.M.; Da Silva, R.G.; et al. Spatial and temporal distribution of urban heat islands. Sci. Total Environ. 2017, 605, 946–956. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z. The Future Development of Regulatory Detailed Planning in China—A Study on How Regulatory Detailed Planning Accommodates the Needs of Urban Planning Management. Master’s Thesis, Tsinghua University, Beijing, China, 2004. [Google Scholar]
- Sun, X.; Tan, X.; Chen, K.; Song, S.; Zhu, X.; Hou, D. Quantifying landscape-metrics impacts on urban green-spaces and water-bodies cooling effect: The study of Nanjing, China. Urban For. Urban Green. 2020, 55, 126838. [Google Scholar] [CrossRef]
- Tong, S.; Wong, N.H.; Tan, C.L.; Jusuf, S.K.; Ignatius, M.; Tan, E. Impact of urban morphology on microclimate and thermal comfort in northern China. Sol. Energy 2017, 155, 212–223. [Google Scholar] [CrossRef]
Factor | Indicators | Resistance Value | Weight | Division Basis | ||
---|---|---|---|---|---|---|
Terrain position grade (slope) | <2° (flat) | 1 | 0.2 | [98,99] | ||
2~5° (gentle slope) | 10 | |||||
5~15° (slope) | 30 | |||||
15~25° (steep slope) | 60 | |||||
>25° (steep slope) | 100 | |||||
Land cover type | E2 | 100 | 0.8 | [100,101,102] | ||
E1 | 10 | |||||
Land for construction | A | 1000 | ||||
B | 1000 | |||||
G | G1 | 30 | ||||
G2 | 10 | |||||
H14 | >50 ha | 1000 | ||||
20–50 ha | 600 | |||||
<20 ha | 400 | |||||
R | R1 | 1000 | ||||
R2 | 1000 | |||||
R3 | 1000 | |||||
H4 | 1000 | |||||
M | 600 | |||||
S | 1000 | |||||
U | 1000 | |||||
W | 1000 | |||||
Other | 600 |
Land Code | Urban Heat Island Area | Urban Cold Island Area | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Area (km2) | Ratio (%) | Count | LST (°C) | Area (km2) | Ratio (%) | Count | LST (°C) | |||||||
MEAN | MIN | MAX | STD | MEAN | MIN | MAX | STD | |||||||
A | 2.79 | 3.08 | 122 | 32.20 | 31.34 | 36.61 | 0.88 | 0.7 | 0.46 | 32 | 26.84 | 24.66 | 27.70 | 0.73 |
B | 6.17 | 6.79 | 265 | 32.24 | 31.32 | 35.42 | 0.85 | 0.25 | 0.17 | 25 | 26.68 | 24.86 | 27.67 | 0.87 |
M | 35.7 | 39.30 | 459 | 32.74 | 31.32 | 37.55 | 1.23 | 4.3 | 2.84 | 30 | 26.90 | 24.87 | 27.71 | 0.74 |
R | 7.36 | 8.10 | 216 | 32.17 | 31.32 | 34.98 | 0.74 | 6.3 | 4.16 | 71 | 27.24 | 26.10 | 27.70 | 0.39 |
S | 5.85 | 6.44 | 119 | 32.36 | 31.32 | 36.03 | 0.94 | 1.53 | 1.01 | 49 | 26.56 | 24.50 | 27.69 | 0.95 |
U | 0.3 | 0.33 | 21 | 32.33 | 31.32 | 34.92 | 0.89 | 0.21 | 0.14 | 11 | 26.71 | 24.69 | 27.63 | 0.96 |
W | 3.97 | 4.37 | 68 | 32.69 | 31.36 | 35.37 | 0.94 | 0.01 | 0.01 | 1 | 27.31 | 27.31 | 27.31 | 0.00 |
G | 1.56 | 1.71 | 150 | 32.09 | 31.32 | 35.75 | 0.66 | 28.42 | 18.77 | 312 | 26.42 | 23.07 | 27.69 | 1.03 |
E1 | 0.43 | 0.48 | 68 | 32.21 | 31.32 | 36.77 | 0.90 | 26.28 | 17.36 | 655 | 26.15 | 23.12 | 27.71 | 1.05 |
E2 | 13.25 | 14.59 | 143 | 32.36 | 31.31 | 35.52 | 0.98 | 81.44 | 53.78 | 350 | 26.51 | 23.32 | 27.71 | 0.98 |
H14 | 13.03 | 14.35 | 147 | 32.25 | 31.31 | 35.15 | 0.80 | 0.85 | 0.56 | 16 | 26.99 | 25.61 | 27.68 | 0.64 |
H4 | 0.43 | 0.47 | 5 | 31.96 | 31.41 | 32.49 | 0.44 | 1.14 | 0.75 | 8 | 26.96 | 26.12 | 27.57 | 0.51 |
Total | 90.84 | 100.00 | 1783 | - | - | - | - | 151.41 | 100.00 | 1560 | - | - | - | - |
Distance | 0 m | 10 m | 20 m | 30 m | 50 m | 60 m | 80 m | 100 m | 150 m | 200 m | 300 m | 450 m | 600 m |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LST_mean | 26.51 | 26.90 | 26.98 | 27.08 | 27.22 | 27.36 | 27.48 | 27.61 | 27.76 | 27.86 | 27.85 | 27.78 | 27.69 |
LST_std | 2.44 | 2.30 | 2.30 | 2.30 | 2.31 | 2.33 | 2.35 | 2.37 | 2.39 | 2.40 | 2.41 | 2.45 | 2.42 |
LST_min | 15.79 | 16.37 | 16.47 | 16.67 | 16.80 | 16.96 | 17.23 | 17.53 | 18.25 | 18.80 | 18.63 | 18.83 | 19.17 |
LST_max | 33.81 | 33.18 | 32.94 | 32.53 | 32.14 | 32.55 | 32.94 | 33.28 | 33.69 | 33.85 | 33.24 | 33.49 | 33.31 |
Distance | 10 m | 20 m | 30 m | 60 m | 100 m | 150 m | 200 m | 300 m | 450 m | 600 m |
---|---|---|---|---|---|---|---|---|---|---|
LST_mean | 27.98 | 27.98 | 28.00 | 28.02 | 28.14 | 28.33 | 28.51 | 28.69 | 28.88 | 29.02 |
LST_std | 1.38 | 1.37 | 1.37 | 1.36 | 1.37 | 1.40 | 1.42 | 1.42 | 1.35 | 1.32 |
LST_min | 23.43 | 23.45 | 23.46 | 23.53 | 23.57 | 23.65 | 23.71 | 23.83 | 24.36 | 24.90 |
LST_max | 31.32 | 31.35 | 31.39 | 31.44 | 31.97 | 33.22 | 33.71 | 33.56 | 32.95 | 32.82 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, N.; Liang, X.; Meng, L. Evaluation of the Thermal Environmental Effects of Urban Ecological Networks—A Case Study of Xuzhou City, China. Sustainability 2022, 14, 7744. https://doi.org/10.3390/su14137744
Guo N, Liang X, Meng L. Evaluation of the Thermal Environmental Effects of Urban Ecological Networks—A Case Study of Xuzhou City, China. Sustainability. 2022; 14(13):7744. https://doi.org/10.3390/su14137744
Chicago/Turabian StyleGuo, Nana, Xinbin Liang, and Lingran Meng. 2022. "Evaluation of the Thermal Environmental Effects of Urban Ecological Networks—A Case Study of Xuzhou City, China" Sustainability 14, no. 13: 7744. https://doi.org/10.3390/su14137744