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Abstract: The urban heat island (UHI) phenomenon has been identified and studied for over
two centuries. As one of the most important factors, land use, in terms of both composition and
configuration, strongly influences the UHI. As a result of the availability of detailed data, the modeling
of the residual spatio-temporal autocorrelation of UHI, which remains after the land use effects
have been removed, becomes possible. In this study, this key statistical problem is tackled by a
spatio-temporal Bayesian hierarchical model (BHM). As one of the hottest areas in China, southwest
China is chosen as our study area. Results from this study show that the difference of UHI levels
between different cities in southwest China becomes large from 2000 to 2015. The variation of the
UHI level is dominantly driven by temporal autocorrelation, rather than spatial autocorrelation.
Compared with the composition of land use, the configuration has relatively minor influence upon
UHI, due to the terrain in the study area. Furthermore, among all land use types, the water body is
the most important UHI mitigation factor at the regional scale.

Keywords: urban heat island (UHI); Bayesian hierarchical model (BHM); land use; entropy index;
green space; water body

1. Introduction

The process of urbanization has significant impact on the climatic change by influencing the water
balance, energy process and air movement [1], which can potentially lead to a warmer thermal climate
in urban areas. Previous studies have identified an increasing trend of heat waves, in terms of duration,
intensity and frequency, especially in the city [2–4]. Most cities in the world show a higher temperature
in the city center than in its rural area, which is called the urban heat island (UHI) phenomenon.
This phenomenon has caused an increasing number of premature deaths and heat-related diseases [5–7].
In addition, the level of energy consumption [8], air quality [9] and biodiversity [10] can also be
attributed to the UHI effect.

Studies on UHI investigation started about 200 years ago, when Luke Howard (1772–1864) [11]
found that there is a higher temperature in the urban core area than the surrounding rural area of
London. Similar studies have been continually conducted. Generally, when calculating the Heat
Island Intensity, there are two different ways to distinguish “rural” and “urban” areas: UHI-driven
and land-cover driven approaches [4,12]. The former approach separates rural from urban by the
temperature pattern, e.g., range and magnitude, while the latter defines the urban and rural areas by
different land uses, e.g., urban-green space and urban-rural [4]. Although comparison between the two
has been conducted [4,12], the choice of the definition is mainly determined by the data availability
and the nature of the study.

Both air temperature and land surface temperature (LST) were used to calculate the UHI:
atmospheric UHI and surface UHI, respectively; however, both indicators have specific advantages and
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disadvantages [12]. LST can normally be measured at a large spatial area from airborne or satellite-borne
sensors [13], but it is not a direct measurement of UHI. On the other hand, air temperature directly
estimates the UHI, but it is only available at discrete stations through a city. Therefore, although air
temperature has more meaning on people’s thermal feeling, it has limitation to calculate the UHI-driven
hot island area and land-cover driven micro-urban heat island [12]. Thus, a better knowledge of the
continuous distribution of air temperature is crucial, especially to health-related studies.

It has been estimated that air temperature and LST have a significantly positive correlation [12,14];
however, Sheng, Tang, You, Gu and Hu [4] pointed out that these two indicators are not numerically
equal, which can lead to the variation of the UHI estimation. Researchers from the urban climate
community argued that LST and air temperature should be distinguished, because both the data
content and the nature of the data acquisition are different in the two data types [13,15].

UHI tends to increase in terms of both frequency and intensity, due to the joint impact from both the
increase of extreme climatic events and the process of climate change [16]. To improve the development
of resilient cities, it is necessary to have a better understanding on the relationship between land use
and the climatic effects, especially air temperature, to support the decision-making process.

Researchers determined a complex and multi-fold relationship between UHI and the urban
environment [17,18]. Jusuf, et al. [19] and Alonso and Renard [20] analyzed the impact of land use
change on the variation of UHI using air temperature (meteorological ground measurements) from
both the quantitative and qualitative perspective of views. Recently, due to the development of remote
sensing technology, land surface temperature (LST) can be easily and widely captured, even at regional
and global scales. The temporal resolution of this monitoring can vary from hourly to yearly, depending
upon the revisit time frequency. Most previous studies confirmed the positive relationship between
LST and the developed built-up area [21], and the negative relationship between LST and vegetation
area [22–24]. The cooling effect from green spaces is named as the park cool island (PCI) [25,26]. It has
been widely accepted that vegetation offers the most important of climatic regulation at different spatial
scales [27]. The UHI mitigation effect from any water body has also been widely recognized [28–30],
although studies on it are not as many as for those to do with green space. However, most studies on
water bodies are from a purely spatial context, and a spatio-temporal perspective of view is missing.
In addition to the land composition, land configuration, such as the structural characteristics of land
use patches and the spatial arrangement, was also determined as an important factor contributing
to the UHI [31,32]. However, there is a lack of knowledge concerning the impact of land use change,
in terms of both composition and configuration [33], on the variation of UHI at different spatial scales.

A number of analysis methods were applied to estimate this relationship. Examples of studies
considering only the spatial context include [31,34,35], while spatial and temporal designs include [21,24,36].
The Pearson’s correlation coefficients and multiple linear regression are two commonly used methods to
analyze the covariate effects [37]. However, the UHI contains residual spatio-temporal autocorrelation after
the covariate effects have been separated, which disregards the assumption of statistical independence that
often substantiates the models [35,38]. The spatial autocorrelation [34,39] and temporal autocorrelation [40]
of the UHI pattern were separately discussed by many previous studies. This autocorrelation may be
introduced by unmeasured confounding, close neighborhood influence or grouping effects [41]. Therefore,
it is important to account for covariant effects and both spatial and temporal structure in one model by
including a set of autocorrelated random effects.

This paper pursues two goals: First, to uncover the spatial and temporal autocorrelation of the
UHI pattern at regional scale; second, to evaluate the impact of land use change, in terms of both
composition and configuration on the spatial and temporal variation of UHI distribution.
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2. Study Area, Data and Methods

2.1. Study Area

Southwest China comprises three provinces and one municipality: Sichuan, Guizhou, Yunnan
and Chongqing, with latitude and longitude ranging from 21–34◦ N and 97–110◦ E, which is one of the
most densely populated areas in China [42]. Among them, Sichuan and Chongqing are the top two
dense regions, even in their rural areas [43]. Regarding the temperature, the increase trend is more
significant in urban area than that in the rural, especially in Yunnan [43]. The three provinces and one
municipality comprise 47 cities. The area has complex landform and topography, which includes part
of the Tibetan Plateau, the Chengdu Plain, the Sichuan Basin and the Yunnan-Guizhou Plateau [44],
which causes unevenly distributed temperature. The average annual temperature is between 14 and
24 ◦C in most areas, with the highest record 43.5 ◦C being found in Chongqing in August 2006 [45].
Normally, August is the hottest month, and this, together with the adjacent four months (June, July,
September and October), comprises the hot season in Southwest China.

2.2. Data Used

The land use data in 2000, 2005, 2010 and 2015 were developed by Data Center for Resources
and Environmental Sciences (DCRES), Chinese Academy of Sciences [46]. Landsat thematic mapper
(TM) and enhanced thematic mapper (ETM) data were used as the major sources to derive the land
use information through the processes of image fusion, geometric correction, image enhancement, etc.
The average classification accuracy is over 0.85. All datasets have the same level one land use classification
(farm, water, grassland, forest, barren land and urban land), and have same spatial resolution (~30 m).

The digital elevation model (DEM) used in this study has a spatial resolution of 1 km, which was
aggregated from DEM with 90 m resolution. This dataset was captured as the outcome of the Shuttle
Radar Topography Mission (SRTM) project in 2000, and the data used in this study was accessed
through International Scientific and Technical Data Mirror Site, Computer Network Information
Center, Chinese Academy of Sciences [47]. The vertical accuracy requirement for SRTM data is
16 m [48]. The aggregated DEM was applied to the calculation process for solar radiation and air
temperature, respectively.

The meteorological data used in this study were collected and managed by the Climate Data
Center of the National Meteorological Information Center, China Meteorological Administration [49].
Stations with continuous missing values for over a month were excluded in the analysis. After the
filtering process, there are 92 spatially representative stations to monitor air temperature in southwest
China (Figure 1). The mean monthly temperature value was interpolated across our whole study area
based on the information from these 92 stations, using the method as described in Section 2.3.

2.3. Spatial Interpolation of Air Temperature

Compared with land surface temperature, air temperature is more directly related and important
to the biogeochemical processes [50]. Although it can be monitored at discrete locations, there is a
need of temperature information for the entire area or specific location. It is possible to interpolate
a continuous temperature information using isoline interpolator or expert knowledge; however,
Ninyerola, Pons and Roure [50] argued that it is more appropriate to combine a mathematic model and
expert knowledge to produce accurate results.

Among all interpolation methods, a multiple regression analysis with Inverse Distance Weighted
(IDW) interpolation of the residual errors of ground meteorological information was identified as
most accurate method to estimate monthly air temperature with a root-mean-square error (RMSE) of
less than 1 ◦C for all months [50,51]. Specifically, altitude, longitude, latitude and monthly average
solar radiation were used as independent variables in the regression, while the residual error was
included in the regression to adjust the result, which was interpolated by the IDW method. Therefore,
this method was applied in this study to interpolate the four year (2000, 2005, 2010 and 2015) monthly
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air temperature in southwest China. Altitude is represented by DEM data, and solar radiation was
derived from DEM by a solar radiation model [52]. Based on the number of available meteorological
stations and the nature of this study, a spatial continuous temperature map with a spatial resolution of
1 km is developed.
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2.4. Land Use Mix Indices

Land use mix indices were used in this study to represent the land configuration, which is
commonly quantified via the Entropy Index (EI) by many previous studies [53,54]. EI can be traced to
the work of Shannon [55,56] to measure the redundancy in data. After the introduction of this index,
it has been widely applied in many different research areas outside the information theory, such as
communication, ecology, urban planning and land use studies.

The EI can be defined as:

EIj = −
∑

i

Pij ×
ln

(
Pij

)
ln

(
Nj

) (1)

where Pij indicates the percentage of total area of land use i in city j, and Nj represents the total number
of land uses in city j. The value of EI ranges from 0 to 1, where 0 stands for homogenous land use, and
1 indicates a prefect mix in a city [53].

2.5. Bayesian Hierarchical Modelling (BHM)

The study region covers 47 cities, which are indexed by j ∈ {1, . . . , 47}. The data was observed for
each of these cities for t ∈ {1, . . . , 4} time periods: year 2000, year 2005, year 2010 and year 2015. A spatial
and temporal Bayesian hierarchical modeling (BHM) is developed for these data, with inference based on
Markov chain Monte Carlo (MCMC) simulation. The first level of this model is as follows:

Yjt
∣∣∣Ejt ∼ Poisson

(
Ejt

)
, (2)
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ln
(
Ejt

)
= XT

jtβ+ Ojt +ψjt (3)

where Yjt, Ejt and Rjt represent the observed level, expected level and risk of an urban heat island
(UHI) in city j during the hot season in year t. XT

jt is a vector of covariates relating to city j in year t.
While β stands for the regression parameters. Next, Ojt denotes a vector of offsets and ψjt represents
the random effects for city j and year t, encompassing one or more sets of residual spatio-temporal
autocorrelation. This random effect is allowed for any residual spatio-temporal autocorrelation in the
observed dataset after the effects are assessed and removed. A number of Gaussian Markov Random
Field (GMRF) models were proposed to represent this effect. In this study, this spatio-temporal random
autocorrelation was calculated by a model proposed by Napier, et al. [57], and the inference part was
developed Markov Chain Monte Carlo (MCMC) in a Bayesian setting. This is because the residual
spatial structure cannot be consistent for all time periods. Therefore, the random effect contains two
components: an overall temporal trend and a separate spatial structure for each time period, which
can be represented by [58]:

ψjt = φjt + δt (4)

φjt|φ−jt, W ∼ N

 ρS
∑K

k=1ωjkφkt

ρS
∑K

k=1ωjkφkt + 1− ρS
,

τ2
t

ρS
∑K

k=1ωjkφkt + 1− ρS

 (5)

δt|δt−1, D ∼ N

 ρT
∑N

k=1 dtkδk

ρT
∑N

k=1 dtk + 1− ρT
,

τ2
T

ρT
∑N

k=1 dtk + 1− ρT

 (6)

τ2
1, . . . , τ2

N, τ2
T, ∼ Inverse-Gamma(a, b) (7)

ρS, ρT ∼ Uniform(0, 1) (8)

where the overall temporal trend δ = (δ1, . . . , δN) is consistent to all areal units, which is interacted with
a separate spatial surface φt = (φ1t, . . . ,φKt) at each time period t. These two effects were modeled
by the conditional autoregressive (CAR) prior proposed by Leroux, et al. [59]. The latter shares a
common spatial dependence value ρS, but a temporally changed parameter τ2

t . ρS controls the spatial
autocorrelation structure, with ρS = 1 corresponding for a strong spatial autocorrelation (the intrinsic
CAR prior), while ρS = 0 represents independent random effects. Similarly, ρT controls the temporal
dependence. The set (τ2

1, . . . , τ2
N) was designed to examine the magnitude of the spatial variation in

the data over time. In the adjacency matrix W =
(
ωjk

)
,ωjk stands for the spatial connection between

spatial areal units (Sk, Sj). For example, in this study,ωjk = 1 means that areal units share a common
border, and is zero otherwise. Similarly, D = (dtk) measures the distance between two time periods.

To estimate the posterior values for the model parameters Θ =
(
β,φ, δ, τ2, ρS, ρT

)
, different size

of samples, ranging from 200 to 1,000,000, were drawn from the posterior distributions using MCMC
simulation, based on the Gibbs sampling method and Metropolis-Hastings steps. Both Pearson residual
and RMSE were applied to evaluate the performance and fitness of model development.

3. Results and Discussions

3.1. Spatio-Temporal Pattern of UHI

Prior to the estimation of the UHI, air temperature in the hot season (June, July, August, September
and October) in 2000, 2005, 2010 and 2015 was interpolated based on the monitoring data at separated
stations. Figure 2 gives examples of the interpolated outcomes using the method proposed in this
paper. Generally, the temperature distribution shows an unbalanced spatial trend, which decreases
from southeast to northwest, with a localized spatio-temporal variation.
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In this paper, the UHI was defined by the temperature pattern. Specifically, the range between
the highest temperature and lowest temperature across the study area in all five months were
calculated as the UHI. This value is different from the overall yearly temperature range, average hot
season temperature range and monthly temperature range. Therefore, it takes into account both the
heterogeneity and the stratification of spatial and temporal temperature distribution, which balances
the local and overall temperature pattern.

The temperature range in the hot season (five months) of 2000, 2005, 2010 and 2015 in 47 cities
was calculated separately (Figure 3). There are two different ways of map presentation, where one is to
try to emphasize the temporal variation and the other is to emphasize the spatial variation. This study
used Jenks Natural Breaks Classification to optimize the class range for better visual effect and ensure
the spatial variation. The level of the UHI increased gradually between 2000 and 2015; however,
no clear spatial pattern can be identified. This is because a spatial process normally contains not only
the covariate effects, but also spatial or even spatio-temporal autocorrelated random effects, which
normally can lead to an incorrect interpretation of the covariate effects. For example, as indicated by
Figure 4, no clear correlation pattern can be identified from the scatterplots between UHI and land
cover based on the information collected in the 47 cities between 2000 and 2015. This can be partly
attributed to the mixed, residual autocorrelated spatio-temporal structure and the covariate effects.
Therefore, to accurately estimate the impact of land use change on UHI, the residual autocorrelated
spatio-temporal structure needs to be determined first.
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3.2. The Land Use Mix

The proportions of different land use (farm, forest, grass, water, urban and others) in each city
were calculated for each city in 2000, 2005, 2010 and 2015, separately. Figure 5 demonstrates the
example of the urban land variation in 47 cities from 2000 to 2015. Generally, the proportion of urban
land use increased in the 15 years, in terms of both the highest level and the lowest level. The overall
spatial pattern did not change significantly, and only local variations can be observed.ISPRS Int. J. Geo-Inf. 2019, 8, 522 9 of 18 
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Figure 6 shows the spatio-temporal pattern of water bodies in the study area, which was calculated
from the small/big patches (presenting both rivers and lakes) in the land use data, and which was
distributed in both in cities or the countryside. The overall proportions did not change significantly
between 2000 and 2015, and the largest variation comes from 2015, in which the proportion of water
bodies increases in some cities.
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(c) 2010; and (d) 2015.

Although the proportion of urban land increased between 2000 and 2015, the level of land use mix
did not change correspondingly, as shown in Figure 7. The increase of EI was minor, and only a local
variation of land use mix was observed. Therefore, it is necessary to further investigate how much the
composition and configuration of land use impacts upon the spatial and temporal variations of the UHI.
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3.3. Estimation of Land Use Pattern’s Impact on UHI Distribution

The main aim of this study is to estimate the UHI impacts of different types of land use, and to
investigate the strength of spatial and temporal dependences. To ensure the accuracy of the estimation
of the posterior values for the model parameters, different sizes of samples were drawn from the
posterior distributions using MCMC simulation. Each sample can be viewed as a new simulated
dataset. Figure 8 shows that the accuracy of the estimation becomes better as the number of samples
increases, in terms of both Pearson residual and RMSE.
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The hierarchical model developed in this study purely allows the comparison of spatial
autocorrelation and temporal autocorrelation by separating the effects from the covariates. The spatial
(rho.S) and temporal (rho.T) dependence parameters exhibit different levels of values in the unit
interval (Table 1). Although both spatial and temporal autocorrelation are present in the UHI data,
our results suggest that after adjusting for the covariate effects, stronger temporal autocorrelation is
present in the UHI data, while spatial autocorrelation is relatively weak in the UHI. In other words,
the level of UHI could be more accurately predicted by a time-series analysis, rather than spatial
analysis, such as the Kriging method or inverse distance weighting (IDW). This can be partly explained
by the terrain in the study area that impedes the application of Tobler’s first law of geography [60].

Table 1. The posterior median and 95% credible interval for the spatial and temporal dependence
parameters on the urban heat island (UHI).

Median 2.5% 97.5%

rho.S 0.0533 0.0033 0.1754

rho.T 0.3161 0.0150 0.8650

Poisson models are typically presented as relative risks. In this study, the relative risk for a unit
µ increase from a covariate with parameter βi is presented by the transformation exp(µβi). Therefore,
a 5% increased risk can be shown by a relative risk of 1.05. The left side of Figure 10 shows the trace-plots
and the right demonstrates the posterior relative risk distributions of a one unit increase for some chosen
variables. As demonstrated from the sub-figures, the relative risk from all three different factors shows a
different pattern. The trace-plots show that the relative risk from EI is very consistent within a narrow
range around one (no impact) during the iteration process, while the relative risk from forest fluctuates
significantly, but most values are close to zero, which is also reflected by the density estimates.ISPRS Int. J. Geo-Inf. 2019, 8, 522 14 of 18 
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As a simplified summary of density estimates, Table 2 shows that five covariates exhibit different
relationships with UHI. Different from traditional regression, the impacts from covariates in this study
are represented as a posterior median and 95% credible intervals. The table shows that the relative
risk of a one percentage increase of urban area is 1.062, suggesting that such an increase corresponds
to 6.2% additional UHI risk. While, for one percentage increase in the area of forest, grass and farm,
the risk is 0.863, 0.965 and 0.975, respectively, which indicates the mitigation effect of forest on UHI is
slightly better than grass and farm. However, as indicated in Table 2, the most significant impact factor
is water, which was less compared with other land covers in one study. This study shows at a regional
scale, e.g., a group of cities or province, that the size of the water body has an impact on the mitigation
of UHI. Although the spatio-temporal variation of water bodies is not significant, its change pattern is
very similar as the UHI, especially in 2015. Compared with the composition of land use, the relative
risk from the configuration of land use is very minor. The posterior median for the relative risk of a
percentage increase in EI is nearly equal to 1, and the 95% credible interval is also very narrow and
close to 1 (Figure 10 and Table 2).

Table 2. A summary of the estimated covariate effects on UHI.

Median 2.5% 97.5%

EI 0.992 0.748 1.298

Urban 1.061 0.443 2.444

Forest 0.863 0.222 3.785

Grass 0.965 0.435 2.658

Farm 0.975 0.474 2.361

Water 0.351 0.007 5.849

There are three points which need to be further explained. First, the comparison of the composition
and configuration has been widely discussed and different conclusions were drawn [61–63]. This can
be attributed to the design of the research and the data used, but most importantly, the inconsistent
definition of land configuration is another factor. Second, due to the limitation of data availability,
a longer term of analysis should be conducted to evaluate the results of this study. Similarly, different
outcomes may be generated in different study areas, due to the variation of geomorphology, climate
zones, etc. Finally, the design of the BHM is based upon the assumption of spatial correlation; however,
the effect of spatial heterogeneity also exists in the UHI. In the future studies, the combination of the
two should be considered in the new designed model.

4. Conclusions

The correlation between land use and UHI has been studied intensively within previous studies.
However, due to the limitation of data availability and modeling skill, the residual spatio-temporal
autocorrelation of UHI cannot be separated from the covariate effects, which violates the constraint
of statistical independence underpinning the correlation models. Therefore, a spatio-temporal BHM
model is developed to solve this problem.

The results from this study show that the UHI can be accurately predicted using land use data based
on the spatio-temporal BHM model. Different from previous models, the model built in this study can not
only estimate the effects of land use on UHI, but also allows for residual spatio-temporal autocorrelation.

The results reveal that an increased proportion of urban area is related to the increased UHI risk,
while a decreased proportion of nature environmental space, as measured by both green area and
water body, is related to the decreased risks of UHI. Although the mitigation effect of a water body has
been discussed before, this study shows that compared with other factors, it is the most significant
mitigation factor at the regional scale. Also, compared with the composition of land use, the relative
risk from the configuration of land use is much less significant.
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One of the key motivations of this study was to separate the residual spatio-temporal
autocorrelation from the covariate effects. The outcome from this process shows a stronger temporal
autocorrelation in the UHI data, while spatial autocorrelation is relatively weak in the UHI. In other
words, the prediction of UHI risk can be more accurate from a temporal dimension. This can be
partly explained by the terrain in the study area that is impeding the application of Tobler’s first
law of geography. Another finding from this study is that the differentiation of UHI risk in different
cities becomes large from 2000 to 2015. The key factors that underpin this trend should be further
investigated by future studies.
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