Micro-Irrigation Technology Adoption in the Bekaa Valley of Lebanon: A Behavioural Model
Abstract
:1. Introduction
2. Behavioural Models and Research Hypotheses
3. Materials and Methods
3.1. Sampling and Data Collection
3.2. Survey Design
3.3. Statistical and Econometric Analysis
4. Results
4.1. Socio-Demographic and Economic Characteristics of Respondents
4.2. Results for UTAUT Behavioural Variables
4.2.1. Measurement Model
4.2.2. Estimation Results—Structural Model
5. Discussion
6. Conclusions
7. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Field, C.B. Climate Change 2014—Impacts, Adaptation and Vulnerability: Regional Aspects; Cambridge University Press: New York, NY, USA, 2014; ISBN 1107058163. [Google Scholar]
- Niles, M.T.; Mueller, N.D. Farmer perceptions of climate change: Associations with observed temperature and precipitation trends, irrigation, and climate beliefs. Glob. Environ. Chang. 2016, 39, 133–142. [Google Scholar] [CrossRef] [Green Version]
- Arbuckle, J.G.; Prokopy, L.S.; Haigh, T.; Hobbs, J.; Knoot, T.; Knutson, C.; Loy, A.; Mase, A.S.; McGuire, J.; Morton, L.W. Climate change beliefs, concerns, and attitudes toward adaptation and mitigation among farmers in the Midwestern United States. Clim. Chang. 2013, 117, 943–950. [Google Scholar] [CrossRef] [Green Version]
- Scoville-Simonds, M.; Jamali, H.; Hufty, M. The hazards of mainstreaming: Climate change adaptation politics in three dimensions. World Dev. 2020, 125, 104683. [Google Scholar] [CrossRef]
- El-Fadel, M.; Zeinati, M.; Jamali, D. Water resources in Lebanon: Characterization, water balance and constraints. Int. J. Water Resour. Dev. 2000, 16, 615–638. [Google Scholar] [CrossRef]
- UNDP; UNHCR. Lebanon Crisis Response Plan 2017–2021; The UN Refugee Agency: Beirut, Lebanon, 2021. [Google Scholar]
- Trærup, S.; Stephan, J. Technologies for adaptation to climate change. Examples from the agricultural and water sectors in Lebanon. Clim. Chang. 2015, 131, 435–449. [Google Scholar] [CrossRef]
- MoE; UNDP; GEF. Economic Costs to Lebanon from Climate Change: A First Look; Ministry of Environment—United Nations Development Programme: Beirut, Lebanon, 2015.
- FAOSTAT. Faostat Statistical Database. 2017. Available online: https://www.fao.org/faostat/en/#data/QI (accessed on 29 October 2020).
- MoE; UNDP. Lebanon’s Second National Communication to the United Nations Framework Convention on Climate Change. In Climate Change Vulnerability and Adaptation: Human Settlements and Infrastructure; The Ministry of Environment—United Nations Development Programme: Beirut, Lebanon, 2011. [Google Scholar]
- Ayas, S. The effects of different regimes on potato (Solanum tuberosum L. Hermes) yield and quality characteristics under unheated greenhouse conditions. Bulg. J. Agric. Sci. 2013, 19, 87–95. [Google Scholar]
- Jaafar, H.; King-Okumu, C.; Haj-Hassan, M.; Abdallah, C.; El-Korek, N.; Ahmad, F. Water Resources within the Upper Orontes and Litani Basins—A Balance, Demand and Supply Analysis amid the Syrian Refugees Crisis; IIED Working Paper; International Institute for Environment and Development: Beirut, Lebanon, 2016. [Google Scholar]
- MoA; LARI. A Technical Package of Booklets for the Following Selected Crops: Apple, Cherry, Grapevine, Tomato, Potato, EU Agriculture Development Project MED/2003/5715/ADP; The World Bank Group: Beirut, Lebanon, 2008. [Google Scholar]
- Houston, L.; Capalbo, S.; Seavert, C.; Dalton, M.; Bryla, D.; Sagili, R. Specialty fruit production in the Pacific Northwest: Adaptation strategies for a changing climate. Clim. Chang. 2018, 146, 159–171. [Google Scholar] [CrossRef] [Green Version]
- Suresh, D. Micro-Sprinkler Irrigation Systems (Guide for Performance Evaluation); LAP LAMBERT Academic Publishing: Chisinau, Moldova, 2020. [Google Scholar]
- Deligios, P.A.; Chergia, A.P.; Sanna, G.; Solinas, S.; Todde, G.; Narvarte, L.; Ledda, L. Climate change adaptation and water saving by innovative irrigation management applied on open field globe artichoke. Sci. Total Environ. 2019, 649, 461–472. [Google Scholar] [CrossRef]
- Darwish, T.; Atallah, T.; Hajhasan, S.; Chranek, A. Management of nitrogen by fertigation of potato in Lebanon. Nutr. Cycl. Agroecosystems 2003, 67, 1–11. [Google Scholar] [CrossRef]
- Darwish, T.M.; Atallah, T.W.; Hajhasan, S.; Haidar, A. Nitrogen and water use efficiency of fertigated processing potato. Agric. Water Manag. 2006, 85, 95–104. [Google Scholar] [CrossRef]
- Karam, F.; Karaa, K. Recent trends towards developing a sustainable irrigated agriculture in the Bekaa Valley of Lebanon. Option Méditerranéennes B Ser. 2000, 31, 65–86. [Google Scholar]
- Varma, S.; Namara, R.E. Promoting Micro Irrigation Technologies That Reduce Poverty; Water Policy Briefing Series; International Water Management Institute: Colombo, Sri Lanka, 2006. [Google Scholar]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User acceptance of information technology: Toward a unified view. MIS Q. 2003, 27, 425–478. [Google Scholar] [CrossRef] [Green Version]
- Featherman, M.S.; Pavlou, P.A. Predicting e-services adoption: A perceived risk facets perspective. Int. J. Hum. Comput. Stud. 2003, 59, 451–474. [Google Scholar] [CrossRef] [Green Version]
- Martins, C.; Oliveira, T.; Popovič, A. Understanding the Internet banking adoption: A unified theory of acceptance and use of technology and perceived risk application. Int. J. Inf. Manag. 2014, 34, 1–13. [Google Scholar] [CrossRef]
- Hair, J.F.; Sarstedt, M.; Ringle, C.M.; Gudergan, S.P. Advanced Issues in Partial Least Squares Structural Equation Modeling; Sage Publications: Thousand Oaks, CA, USA, 2017; ISBN 1483377385. [Google Scholar]
- Hair, J.F.; Hult, G.M.; Ringle, C.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), 2nd ed.; Sage Publications: Thousand Oaks, CA, USA, 2016; ISBN 1483377431. [Google Scholar]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Bandura, A. Social Foundations of Thought and Action: A Social Cognitive Theory; Prentice-Hall: Englewood Cliffs, NJ, USA, 1986. [Google Scholar]
- Davis, F.D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 1989, 13, 319–340. [Google Scholar] [CrossRef] [Green Version]
- Fishbein, M.; Ajzen, I. Intention and Behavior: An Introduction to Theory and Research; Addison-Wesley: Reading, MA, USA, 1975. [Google Scholar]
- Moore, G.C.; Benbasat, I. Development of an instrument to measure the perceptions of adopting an information technology innovation. Inf. Syst. Res. 1991, 2, 192–222. [Google Scholar] [CrossRef] [Green Version]
- Taylor, S.; Todd, P.A. Understanding information technology usage: A test of competing models. Inf. Syst. Res. 1995, 6, 144–176. [Google Scholar] [CrossRef]
- Thompson, R.L.; Higgins, C.A.; Howell, J.M. Personal computing: Toward a conceptual model of utilization. MIS Q. 1991, 15, 125–143. [Google Scholar] [CrossRef]
- Venkatesh, V.; Davis, F.D. A theoretical extension of the technology acceptance model: Four longitudinal field studies. Manag. Sci. 2000, 46, 186–204. [Google Scholar] [CrossRef] [Green Version]
- Holden, R.J.; Karsh, B.-T. The technology acceptance model: Its past and its future in health care. J. Biomed. Inform. 2010, 43, 159–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, F.D.; Bagozzi, R.P.; Warshaw, P.R. Extrinsic and intrinsic motivation to use computers in the workplace 1. J. Appl. Soc. Psychol. 1992, 22, 1111–1132. [Google Scholar] [CrossRef]
- Compeau, D.R.; Higgins, C.A. Computer self-efficacy: Development of a measure and initial test. MIS Q. 1995, 19, 189–211. [Google Scholar] [CrossRef] [Green Version]
- Compeau, D.; Higgins, C.A.; Huff, S. Social cognitive theory and individual reactions to computing technology: A longitudinal study. MIS Q. 1999, 23, 145–158. [Google Scholar] [CrossRef]
- Slade, E.L.; Dwivedi, Y.K.; Piercy, N.C.; Williams, M.D. Modeling consumers’ adoption intentions of remote mobile payments in the United Kingdom: Extending UTAUT with innovativeness, risk, and trust. Psychol. Mark. 2015, 32, 860–873. [Google Scholar] [CrossRef]
- Šumak, B.; Šorgo, A. The acceptance and use of interactive whiteboards among teachers: Differences in UTAUT determinants between pre-and post-adopters. Comput. Human Behav. 2016, 64, 602–620. [Google Scholar] [CrossRef]
- Im, I.; Hong, S.; Kang, M.S. An international comparison of technology adoption: Testing the UTAUT model. Inf. Manag. 2011, 48, 1–8. [Google Scholar] [CrossRef]
- Chau, P.Y.K.; Hu, P.J.-H. Investigating healthcare professionals’ decisions to accept telemedicine technology: An empirical test of competing theories. Inf. Manag. 2002, 39, 297–311. [Google Scholar] [CrossRef]
- De Veer, A.J.E.; Fleuren, M.A.H.; Bekkema, N.; Francke, A.L. Successful implementation of new technologies in nursing care: A questionnaire survey of nurse-users. BMC Med. Inform. Decis. Mak. 2011, 11, 67. [Google Scholar] [CrossRef] [Green Version]
- Taylor, S.; Todd, P. Assessing IT usage: The role of prior experience. MIS Q. 1995, 19, 561–570. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.; Karahanna, E. Time flies when you’re having fun: Cognitive absorption and beliefs about information technology usage. MIS Q. 2000, 24, 665–694. [Google Scholar] [CrossRef]
- Al-Gahtani, S.S. Computer technology acceptance success factors in Saudi Arabia: An exploratory study. J. Glob. Inf. Technol. Manag. 2004, 7, 5–29. [Google Scholar] [CrossRef]
- Cocosila, M.; Archer, N.; Haynes, R.B.; Yuan, Y. Can wireless text messaging improve adherence to preventive activities? Results of a randomised controlled trial. Int. J. Med. Inform. 2009, 78, 230–238. [Google Scholar] [CrossRef]
- Knight, J.; Weir, S.; Woldehanna, T. The role of education in facilitating risk-taking and innovation in agriculture. J. Dev. Stud. 2003, 39, 1–22. [Google Scholar] [CrossRef]
- Marra, M.; Pannell, D.J.; Ghadim, A.A. The economics of risk, uncertainty and learning in the adoption of new agricultural technologies: Where are we on the learning curve? Agric. Syst. 2003, 75, 215–234. [Google Scholar] [CrossRef]
- Straub, D.; Boudreau, M.-C.; Gefen, D. Validation guidelines for IS positivist research. Commun. Assoc. Inf. Syst. 2004, 13, 24. [Google Scholar] [CrossRef]
- Gefen, D.; Straub, D.; Boudreau, M.-C. Structural equation modeling and regression: Guidelines for research practice. Commun. Assoc. Inf. Syst. 2000, 4, 7. [Google Scholar] [CrossRef] [Green Version]
- Guggemos, J.; Seufert, S.; Sonderegger, S. Humanoid robots in higher education: Evaluating the acceptance of Pepper in the context of an academic writing course using the UTAUT. Br. J. Educ. Technol. 2020, 51, 1864–1883. [Google Scholar] [CrossRef]
- Kim, S.; Lee, K.-H.; Hwang, H.; Yoo, S. Analysis of the factors influencing healthcare professionals’ adoption of mobile electronic medical record (EMR) using the unified theory of acceptance and use of technology (UTAUT) in a tertiary hospital. BMC Med. Inform. Decis. Mak. 2015, 16, 12. [Google Scholar] [CrossRef] [Green Version]
- Tsourela, M.; Roumeliotis, M. The moderating role of technology readiness, gender, and sex in consumer acceptance and actual use of Technology-based services. J. High Technol. Manag. Res. 2015, 26, 124–136. [Google Scholar] [CrossRef]
- Lakhal, S.; Khechine, H.; Mukamurera, J. Explaining persistence in online courses in higher education: A difference-in-differences analysis. Int. J. Educ. Technol. High. Educ. 2021, 18, 19. [Google Scholar] [CrossRef]
- Garson, G.D. Structural Equation Modeling; Statistical Publishing Associates: North Carolina, NC, USA, 2015. [Google Scholar]
- Vinzi, V.E.; Trinchera, L.; Amato, S. PLS path modeling: From foundations to recent developments and open issues for model assessment and improvement. In Handbook of Partial Least Squares; Springer: New York, NY, USA, 2010; pp. 47–82. [Google Scholar]
- Garson, G.D. Path Analysis; Statistical Associates Publishing: Asheboro, NC, USA, 2013. [Google Scholar]
- Chin, W.W. Issues and opinion on structural equation modeling. MIS Q. 1998, 22, 7–16. [Google Scholar]
- Hair, J.F.; Risher, J.J.; Sarstedt, M.; Ringle, C.M. When to use and how to report the results of PLS-SEM. Eur. Bus. Rev. 2019, 31, 2–24. [Google Scholar] [CrossRef]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis, 7th ed.; Pearson Education Limited: New York, NY, USA, 2013. [Google Scholar]
- Bland, J.M.; Altman, D.G. Statistics notes: Cronbach’s alpha. BMJ 1997, 314, 572. [Google Scholar] [CrossRef] [Green Version]
- Nunnally, J.C. Psychometric Theory 3E; Tata McGraw-Hill Education: New York, NY, USA, 1994; ISBN 0071070885. [Google Scholar]
- Nunnally, J.C. The Asessment of Reliability. Psychom. Theory 1994, 3, 248–292. [Google Scholar]
- Henseler, J.; Ringle, C.M.; Sinkovics, R.R. The use of partial least squares path modeling in international marketing. Adv. Int. Mark. 2009, 20, 277–319. [Google Scholar] [CrossRef] [Green Version]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Canonical Correlation: A Supplement to Multivariate Data Analysis, 7th ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2010. [Google Scholar]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. Sci. 2015, 43, 115–135. [Google Scholar] [CrossRef] [Green Version]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. PLS-SEM: Indeed a Silver Bullet. J. Mark. Theory Pract. 2011, 19, 139–152. [Google Scholar] [CrossRef]
- Kumar, R.; Trivedi, H.; Yadav, R.; Das, B.; Bist, A.S. Effect of drip irrigation on yield and water use efficiency on brinjal (Solanum melongena) cv. Pant samrat. Int. J. Eng. Sci. Res. Technol. 2016, 5, 7–17. [Google Scholar] [CrossRef]
- Alshehri, A.; Rutter, M.J.; Smith, S. An implementation of the UTAUT model for understanding students’ perceptions of learning management systems: A study within tertiary institutions in Saudi Arabia. Int. J. Distance Educ. Technol. 2019, 17, 24. [Google Scholar] [CrossRef]
- Ronaghi, M.H.; Forouharfar, A. A contextualized study of the usage of the Internet of things (IoTs) in smart farming in a typical Middle Eastern country within the context of Unified Theory of Acceptance and Use of Technology model (UTAUT). Technol. Soc. 2020, 63, 101415. [Google Scholar] [CrossRef]
- Lampach, N.; Van Phu, N.; To The, N. The Effect of Agricultural Extension Programs on Technical Efficiency of Crop Farms in Low and Middle-Income Countries. 2021. Available online: https://ssrn.com/abstract=3208034 (accessed on 25 May 2022).
- Castillo, G.M.L.; Engler, A.; Wollni, M. Planned behavior and social capital: Understanding farmers’ behavior toward pressurized irrigation technologies. Agric. Water Manag. 2021, 243, 106524. [Google Scholar] [CrossRef]
- Namara, R.; Upadhyay, B.; Nagar, R.K. Adoption and Impacts of Microirrigation Technologies: Empirical Results from Selected Localities of Maharashtra and Gujarat States of India; International Water Management Institute (IWMI): Colombo, Sri Lanka, 2005; Volume 93. [Google Scholar]
- Wang, Y.-S.; Shih, Y.-W. Why do people use information kiosks? A validation of the Unified Theory of Acceptance and Use of Technology. Gov. Inf. Q. 2009, 26, 158–165. [Google Scholar] [CrossRef]
- USAID; LRBMS. Litani River Basin Management Support Program: Training on Mechanization of Field Drip Irrigation Installation; USAID Agency: Beirut, Lebanon, 2012.
- Chismar, W.G.; Wiley-Patton, S. Test of the technology acceptance model for the internet in pediatrics. In Proceedings of the AMIA Symposium, San Antonio, TX, USA, 9–13 November 2002; pp. 155–159. [Google Scholar]
- Phichitchaisopa, N.; Naenna, T. Factors affecting the adoption of healthcare information technology. EXCLI J. 2013, 12, 413–436. [Google Scholar]
- Kijsanayotin, B.; Pannarunothai, S.; Speedie, S.M. Factors influencing health information technology adoption in Thailand’s community health centers: Applying the UTAUT model. Int. J. Med. Inform. 2009, 78, 404–416. [Google Scholar] [CrossRef]
- Zhou, T.; Lu, Y.; Wang, B. Integrating TTF and UTAUT to explain mobile banking user adoption. Comput. Human Behav. 2010, 26, 760–767. [Google Scholar] [CrossRef]
- De Amicis, L.; Binenti, S.; Cardoso, F.M.; Gracia-Lázaro, C.; Sánchez, Á.; Moreno, Y. Understanding drivers when investing for impact: An experimental study. Palgrave Commun. 2020, 6, 86. [Google Scholar] [CrossRef]
- Agarwal, R.; Prasad, J. Are individual differences germane to the acceptance of new information technologies? Decis. Sci. 1999, 30, 361–391. [Google Scholar] [CrossRef]
- Claar, C.; Portolese Dias, L.; Shields, R. Student Acceptance of Learning Management Systems: A Study on Demographics. Issues Inf. Syst. 2014, 15, 409–417. [Google Scholar]
Socio-Economic Variables | Response Scale | North Bekaa (N = 69) | Central Bekaa (N = 36) | West Bekaa (N = 95) | Overall Bekaa (N = 200) | ||||
---|---|---|---|---|---|---|---|---|---|
Mean | Std.Dev | Mean | Std.Dev | Mean | Std.Dev | Mean | Std.Dev | ||
Age | 0: Less than 45 years 1: 45–60 years 2: More than 60 years | 0.99 | 0.10 | 1.22 | 0.14 | 1.14 | 0.06 | 1.14 | 0.06 |
Educational level | 0: Not attended school 1: Primary 2: Secondary 3: University | 1.93 | 0.11 | 1.94 | 0.14 | 1.82 | 0.10 | 1.88 | 0.06 |
Number of family members | Number | 4.51 | 0.25 | 4.72 | 0.24 | 4.71 | 0.21 | 4.64 | 0.14 |
Number of household members on-farm work | Number | 1.29 | 0.07 | 1.44 | 0.12 | 1.23 | 0.06 | 1.29 | 0.04 |
Number of household members in off-farm sector | Number | 0.58 | 0.11 | 0.80 | 0.17 | 0.77 | 0.10 | 0.71 | 0.07 |
Farming experience | 0: Less than 10 years 1: 10–30 years 2: More than 30 years | 1.07 | 0.10 | 1.27 | 0.13 | 1.18 | 0.07 | 1.16 | 0.05 |
Other financial income | 0: No 1: Yes | 0.32 | 0.06 | 0.58 | 0.08 | 0.44 | 0.05 | 0.43 | 0.04 |
Total land area | Hectares | 125 | 72.8 | 248.4 | 148.7 | 58.7 | 14.7 | 158 | 37.4 |
Potato cultivation area (ha) | Hectares | 45.4 | 15.7 | 222 | 147.7 | 41.2 | 11.1 | 75.2 | 27.8 |
Share of potato land | Percent | 80.30 | 3.48 | 78.00 | 5.42 | 86.61 | 5.00 | 82.88 | 2.83 |
Land management | 0: Rented land 1: Private land 2: Both private and rented | 1.03 | 0.10 | 1.11 | 0.14 | 0.93 | 0.08 | 0.99 | 0.06 |
Wholesale channel | 0: No 1: Yes | 0.45 | 0.06 | 0.47 | 0.08 | 0.45 | 0.05 | 0.46 | 0.04 |
Intermediaries/agents channel | 0: No 1: Yes | 0.68 | 0.05 | 0.86 | 0.06 | 0.72 | 0.05 | 0.73 | 0.03 |
Export channel | 0: No 1: Yes | 0.25 | 0.05 | 0.11 | 0.05 | 0.26 | 0.05 | 0.23 | 0.03 |
The overall number of channels per farmer | Numbers | 1.39 | 0.07 | 1.44 | 0.09 | 1.42 | 0.06 | 1.42 | 0.04 |
Gross margin (%) | Percent | 12.15 | 2.14 | 10.00 | 2.09 | 8.74 | 1.52 | 10.15 | 1.10 |
Social participation | 0: No 1: Yes | 0.30 | 0.06 | 0.58 | 0.08 | 0.29 | 0.05 | 0.35 | 0.03 |
Micro-irrigation experience | 0: I don’t have experience 1: I have experience | 0.07 | 0.03 | 0.19 | 0.07 | 0.12 | 0.03 | 0.12 | 0.02 |
Micro Irrigation (MI) Items and Latent Components | Loading | North Bekaa (N = 69) | Central Bekaa (N = 36) | West Bekaa (N = 95) | Overall Bekaa (N = 200) | ||||
---|---|---|---|---|---|---|---|---|---|
Mean | Std.Dev | Mean | Std.Dev | Mean | Std.Dev | Mean | Std.Dev | ||
Performance Expectancy | 0.52 | 0.13 | 0.35 | 0.22 | 0.43 | 0.11 | 0.45 | 0.08 | |
I think MI would increase my yield | 0.89 | 0.43 | 0.16 | 0.22 | 0.27 | 0.33 | 0.14 | 0.35 | 0.10 |
I think MI enhances the potato quality | 0.88 | 0.33 | 0.17 | 0.11 | 0.26 | 0.30 | 0.14 | 0.28 | 0.10 |
I find MI would reduce energy costs | 0.76 | 0.90 | 0.13 | 1.11 | 0.16 | 0.87 | 0.09 | 0.93 | 0.07 |
I find MI allows efficiency in fertilizers’ and pesticides’ use | 0.85 | 0.65 | 0.16 | 0.39 | 0.25 | 0.40 | 0.13 | 0.49 | 0.09 |
I think MI reduces disease incidence | 0.86 | 0.28 | 0.17 | −0.08 | 0.27 | 0.25 | 0.14 | 0.20 | 0.10 |
Effort Expectancy | 0.70 | 0.15 | 0.22 | 0.27 | 0.43 | 0.14 | 0.49 | 0.10 | |
I find MI does not need a lot of effort | 0.94 | 0.70 | 0.17 | 0.11 | 0.28 | 0.29 | 0.15 | 0.40 | 0.11 |
I think MI would save time in respect to my actual irrigation system | 0.94 | 0.71 | 0.16 | 0.33 | 0.28 | 0.56 | 0.14 | 0.57 | 0.10 |
Social Influence | 0.90 | 0.12 | 0.85 | 0.16 | 0.86 | 0.08 | 0.87 | 0.06 | |
I feel a moral obligation to modify my current irrigation system in order to save water to face the impact of climate change | 0.96 | 0.91 | 0.13 | 0.89 | 0.16 | 0.88 | 0.09 | 0.90 | 0.07 |
I feel a moral obligation to use MI in order not to be forced to move from growing potatoes to a rain-fed agriculture | 0.97 | 0.88 | 0.12 | 0.81 | 0.17 | 0.83 | 0.09 | 0.85 | 0.06 |
Facilitating Conditions | 1.38 | 0.08 | 1.13 | 0.16 | 1.19 | 0.08 | 1.25 | 0.05 | |
I need subsidies to be able to implement the MI system | 0.75 | 1.59 | 0.08 | 1.11 | 0.20 | 1.32 | 0.10 | 1.38 | 0.07 |
I need training to raise my awareness about the benefits of the MI and to technically know how use it in a proper way | 0.89 | 1.17 | 0.10 | 1.14 | 0.17 | 1.07 | 0.09 | 1.12 | 0.06 |
Farmers’ Risk Perception | 0.01 | 0.12 | 0.56 | 0.16 | 0.07 | 0.10 | 0.14 | 0.07 | |
In general, how risky would I say are my behaviour and the decisions I take? | 0.92 | 0.07 | 0.14 | 0.83 | 0.17 | 0.19 | 0.11 | 0.27 | 0.08 |
For the implementation of a micro-irrigation system in my farm, how risky would I say are my behaviour and the decisions I take? | 0.95 | 0.16 | 0.12 | 0.78 | 0.16 | 0.21 | 0.10 | 0.30 | 0.07 |
With regards to finance, how risky would I say are my behaviour and the decisions I take? | 0.91 | −0.20 | 0.13 | 0.08 | 0.19 | −0.18 | 0.11 | −0.14 | 0.08 |
Behavioural Intention | |||||||||
I am very likely to adopt the MI system for potato cultivation in the next 12–24 months | −0.04 | 0.14 | −0.22 | 0.24 | 0.24 | 0.15 | 0.06 | 0.10 | |
Use Behaviour | 17.28 | 1.70 | 14.08 | 2.33 | 15.09 | 1.34 | 15.67 | 0.96 | |
Percentage of my land on which I will adopt MI | 0.92 | 34.06 | 3.26 | 27.78 | 4.43 | 29.74 | 2.57 | 30.88 | 1.84 |
I really want to use micro-irrigation to improve my potato cultivation | 0.94 | 0.51 | 0.18 | 0.39 | 0.29 | 0.45 | 0.15 | 0.46 | 0.11 |
CR | CA | AVE | PE | EE | SI | FC | FRP | BI | UB | AGE | ExpMI | VoUS | UNMARG | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PE | 0.92 | 0.90 | 0.71 | 0.84 | ||||||||||
EE | 0.94 | 0.87 | 0.88 | 0.00 | 0.94 | |||||||||
SI | 0.95 | 0.92 | 0.93 | 0.61 | 0.61 | 0.95 | ||||||||
FC | 0.81 | 0.54 | 0.68 | 0.00 | 0.47 | 0.00 | 0.82 | |||||||
FRP | 0.95 | 0.92 | 0.86 | −0.19 | −0.03 | 0.00 | 0.08 | 0.93 | ||||||
BI | 1.00 | 1.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | |||||
UB | 0.92 | 0.84 | 0.86 | 0.71 | 0.74 | 0.61 | 0.42 | −0.26 | 0.83 | 0.93 | ||||
AGE | NA | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | |||
ExpMI | NA | NA | NA | 0.00 | −0.06 | 0.00 | 0.00 | 0.00 | −0.11 | 0.00 | 0.02 | 1.00 | ||
VoUS | NA | NA | NA | 0.45 | 0.60 | 0.45 | 0.55 | −0.07 | 0.68 | 0.72 | −0.14 | −0.20 | 1.00 | |
UNMARG | NA | NA | NA | 0.04 | 0.08 | 0.07 | 0.05 | −0.02 | 0.04 | 0.00 | −0.05 | −0.03 | 0.00 | 1.00 |
Educ | NA | NA | NA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.06 | 0.00 | −0.62 | 0.00 | 0.00 | 0.00 |
PE | EE | SI | FC | FRP | BI | UB | AGE | ExpMI | VoUS | UNMARG | |
---|---|---|---|---|---|---|---|---|---|---|---|
EE | 0.00 | ||||||||||
SI | 0.67 | 0.69 | |||||||||
FC | 0.00 | 0.70 | 0.00 | ||||||||
FRP | 0.22 | 0.04 | 0.00 | 0.13 | |||||||
BI | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ||||||
UB | 0.81 | 0.86 | 0.69 | 0.60 | 0.30 | 0.90 | |||||
AGE | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ||||
ExpMI | 0.00 | 0.06 | 0.00 | 0.00 | 0.00 | 0.11 | 0.00 | 0.02 | |||
VoUS | 0.46 | 0.65 | 0.47 | 0.74 | 0.07 | 0.68 | 0.78 | 0.14 | 0.20 | ||
UNMARG | 0.05 | 0.09 | 0.07 | 0.07 | 0.02 | 0.04 | 0.00 | 0.05 | 0.03 | 0.00 | |
Educ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.06 | 0.00 | 0.62 | 0.00 | 0.00 | 0.00 |
UTAUT | UTAUT + Farmers’ Risk Perception | |||
---|---|---|---|---|
D | D + I | D | D + I | |
Behavioural intention | ||||
R2 Adj. | 0.55 ** | 0.65 ** | 0.55 ** | 0.65 ** |
Performance expectancy (PE) | 0.32 ** | 0.31 ** | 0.31 ** | 0.29 ** |
Effort expectancy (EE) | 0.42 ** | 0.21 * | 0.45 ** | 0.24 ** |
Social influence (SI) | 0.08 | 0.04 | 0.05 | 0.01 |
Farmers’ risk perception (FRP) | 0.06 | −0.08 * | ||
Age | 0.07 | 0.05 | ||
Experience in micro-irrigation (ExpMI) | −0.01 | −0.04 | ||
Voluntariness of use (VoUS) | 0.45 ** | 0.44 ** | ||
PE × Age | −0.08 | −0.09 | ||
EE × Age | 0.09 | 0.11 * | ||
EE × ExpMI | 0.05 | 0.05 | ||
SI × Age | 0.03 | 0.02 | ||
SI × ExpMI | −0.07 | −0.07 | ||
SI × VoUS | 0.10 * | 0.10 * | ||
Use Behaviour | ||||
R2 Adj. | 0.71 ** | 0.74 ** | 0.71 ** | 0.74 ** |
Facilitating conditions (FC) | 0.13 ** | 0.14 ** | 0.13 ** | 0.14 ** |
Behavioural intention (BI) | 0.79 ** | 0.80 ** | 0.79 ** | 0.80 ** |
Age | −0.06 | −0.06 | ||
Experience in micro-irrigation (ExpMI) | 0.11 * | 0.11 ** | ||
Gross unit margin (UNMARG) | 0.11 * | 0.11 ** | ||
FC × Age | −0.03 | −0.03 | ||
FC × ExpMI | 0.02 | 0.02 | ||
FC × UNMARG | 0.10 * | 0.10 * | ||
Risk Perception | ||||
Educational level (Educ) | −0.28 ** | |||
Effort expectancy (EE) | −0.01 | |||
EE × Educ | −0.16 * | |||
Performance expectancy | ||||
Educational level (Educ) | 0.13 * | |||
Farmers’ risk perception (FRP) | −0.14 * | |||
FRP × Educ | −0.16 ** |
Hypotheses | Relationship | Result |
---|---|---|
H1 | Performance expectancy has a positive and significant impact on the behavioural intention to adopt a new micro-irrigation system. | Supported |
H1a | Age moderates the relationship between performance expectancy and behavioural intention. | Not supported |
H2 | Effort expectancy has a positive significant influence on the behavioural intention to introduce a new micro-irrigation system. | Supported |
H2a | Age moderates the relationship between effort expectancy and behavioural intention. | Supported |
H2b | Experience mediates the relationship between effort expectancy and behavioural intention. | Not supported |
H3 | Social influence has a positive and significant relationship with the behavioural intention to adopt a new micro-irrigation system. | Not supported |
H3a | Age moderates the relationship between social influence and behavioural intention. | Not supported |
H3b | Experience mediates the relationship between social influence and behavioural intention. | Not supported |
H3c | Voluntariness of use mediates the relationship between social influence and behavioural intention. | Supported |
H4 | Facilitating conditions have a positive significant impact on the use behaviour of a new micro-irrigation system. | Supported |
H4a | Age moderates the relationship between facilitating conditions and use behaviour. | Not supported |
H4b | Experience mediates the relationship between facilitating conditions and use behaviour. | Not supported |
H4c | Voluntariness of use mediates the relationship between facilitating conditions and use behaviour. | Not supported |
H4d | Gross unit margin mediates the relationship between facilitating conditions and use behaviour. | Supported |
H5 | Behavioural intention has a positive and significant impact on the use behaviour of a new micro-irrigation system. | Supported |
H6 | Farmers’ risk perception can negatively and significantly affect the BI to adopt a new micro-irrigation system. | Supported |
H7 | Farmers’ risk perception negatively and significantly affects their performance expectancy of micro-irrigation systems. | Supported |
H7a | Educational level mediates the relationship between farmers’ risk perception and performance expectancy. | Supported |
H8 | Effort expectancy can negatively influence farmers’ risk perception. | Supported |
H8a | Educational level mediates the relationship between effort expectancy and farmers’ risk perception. | Supported |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabbagh, M.; Gutierrez, L. Micro-Irrigation Technology Adoption in the Bekaa Valley of Lebanon: A Behavioural Model. Sustainability 2022, 14, 7685. https://doi.org/10.3390/su14137685
Sabbagh M, Gutierrez L. Micro-Irrigation Technology Adoption in the Bekaa Valley of Lebanon: A Behavioural Model. Sustainability. 2022; 14(13):7685. https://doi.org/10.3390/su14137685
Chicago/Turabian StyleSabbagh, Maria, and Luciano Gutierrez. 2022. "Micro-Irrigation Technology Adoption in the Bekaa Valley of Lebanon: A Behavioural Model" Sustainability 14, no. 13: 7685. https://doi.org/10.3390/su14137685