Evaluation of the Resilience of the Socio-Hydrological System of the Tarim River Basin in China and Analysis of the Degree of Barriers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Data Sources and Processing
2.3. Research Ideas and Methods
2.3.1. Evaluation System
2.3.2. Indicator Systems
2.3.3. Resilience Classification
2.3.4. Data Standardisation
- Positive indicators:
- 2.
- Negative indicators:
2.3.5. Entropy Assignment
- 1.
- Calculate the weighting matrix of the indicator system:
- 2.
- Calculate the entropy value of each indicator:
- 3.
- Calculating indicator weights:
2.3.6. Random Empowerment
- 1.
- Construct a random weighting matrix :
- 2.
- Calculating the entropy value of an indicator:
- 3.
- Calculating random weights for indicators:
2.3.7. Comprehensive Empowerment
2.3.8. TOPSIS Algorithm
2.3.9. Barrier Degree Model
2.3.10. Sensitivity Analysis
3. Results
3.1. Weighting of Evaluation Indicators
3.2. Changes in Basin Socio-Hydrological Adaptation and Vulnerability
3.2.1. Adaptive Change in Basin Socio-Hydrological Systems
3.2.2. Changes in the Vulnerability of the Basin’s Socio-Hydrological System
3.2.3. Changes in the Resilience of the Basin’s Socio-Hydrological System
3.3. Analysis of the Degree of Resilience Barriers in Basin Socio-Hydrological Systems
4. Discussion
4.1. Changes in Basin Socio-Hydrological Adaptation and Vulnerability
4.2. Analysis of Barriers to Resilience in Social Hydrological Systems
4.3. Shortcomings and Outlook
5. Conclusions
- 1.
- Based on entropy weighting and random weighting, the comprehensive weights of each evaluation index in the Tarim River Basin were determined.
- 2.
- The socio-hydrological system resilience of the Tarim River Basin showed an overall upward trend from 2001 to 2020, with the resilience level mainly at the medium and good levels.
- 3.
- The main barriers to the resilience of the socio-hydrological system in the Tarim River Basin differ from year to year. Overall, the degree of pollution of surface runoff is the main barrier factor affecting the resilience of the system; additionally, water consumption per 10,000 yuan of GDP gradually replaces wastewater discharge as the main barrier factor.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Range of Variation (%) | Influencing Factors | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 | X11 | X12 | X13 | X14 | X15 | X16 | ||
System resilience growth rate (%) | −20 | 7.620 | 7.480 | 7.700 | 7.500 | 7.470 | 7.450 | 7.510 | 7.800 | 6.880 | 7.580 | 6.136 | 7.510 | 7.430 | 7.570 | 7.524 | 7.410 |
−10 | 7.650 | 7.540 | 7.650 | 7.550 | 7.530 | 7.520 | 7.550 | 7.700 | 7.210 | 7.590 | 6.908 | 7.560 | 7.510 | 7.590 | 7.563 | 7.500 | |
0 | 7.600 | 7.600 | 7.600 | 7.600 | 7.600 | 7.600 | 7.600 | 7.600 | 7.600 | 7.600 | 7.604 | 7.600 | 7.600 | 7.600 | 7.604 | 7.600 | |
10 | 7.420 | 7.670 | 7.550 | 7.670 | 7.690 | 7.690 | 7.660 | 7.510 | 8.050 | 7.620 | 8.228 | 7.660 | 7.700 | 7.620 | 7.646 | 7.720 | |
20 | 7.260 | 7.740 | 7.500 | 7.750 | 7.790 | 7.780 | 7.720 | 7.430 | 8.530 | 7.630 | 8.789 | 7.710 | 7.810 | 7.640 | 7.688 | 7.840 | |
30 | 7.120 | 7.820 | 7.460 | 7.830 | 7.900 | 7.870 | 7.780 | 7.350 | 9.060 | 7.650 | 9.294 | 7.780 | 7.920 | 7.660 | 7.730 | 7.970 | |
40 | 7.010 | 7.900 | 7.410 | 7.920 | 8.020 | 7.960 | 7.850 | 7.270 | 9.620 | 7.670 | 9.748 | 7.840 | 8.040 | 7.690 | 7.771 | 8.110 | |
50 | 6.980 | 7.980 | 7.370 | 8.030 | 8.160 | 8.060 | 7.920 | 7.200 | 10.220 | 7.700 | 10.159 | 7.920 | 8.170 | 7.710 | 7.811 | 8.250 | |
60 | 6.870 | 8.070 | 7.330 | 8.140 | 8.310 | 8.150 | 7.990 | 7.140 | 10.840 | 7.720 | 10.532 | 7.990 | 8.310 | 7.740 | 7.850 | 8.400 | |
Relative rate of change (%) | −20 | −0.070 | 0.600 | −0.480 | 0.520 | 0.690 | 0.770 | 0.490 | −0.960 | 3.620 | 0.110 | 7.340 | 0.450 | 0.850 | 0.150 | 0.399 | 0.990 |
−10 | −0.420 | 0.630 | −0.490 | 0.560 | 0.750 | 0.800 | 0.510 | −0.950 | 3.910 | 0.120 | 6.954 | 0.480 | 0.890 | 0.160 | 0.408 | 1.040 | |
0 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
10 | −1.790 | 0.680 | −0.500 | 0.660 | 0.870 | 0.850 | 0.560 | −0.910 | 4.420 | 0.140 | 6.245 | 0.530 | 0.980 | 0.180 | 0.418 | 1.130 | |
20 | −1.710 | 0.700 | −0.490 | 0.710 | 0.930 | 0.870 | 0.580 | −0.880 | 4.640 | 0.150 | 5.927 | 0.550 | 1.020 | 0.190 | 0.420 | 1.180 | |
30 | −1.610 | 0.720 | −0.490 | 0.750 | 0.990 | 0.880 | 0.600 | −0.860 | 4.850 | 0.160 | 5.633 | 0.580 | 1.060 | 0.200 | 0.420 | 1.220 | |
40 | −1.490 | 0.740 | −0.480 | 0.800 | 1.050 | 0.900 | 0.610 | −0.830 | 5.050 | 0.170 | 5.361 | 0.600 | 1.100 | 0.210 | 0.419 | 1.260 | |
50 | −1.250 | 0.760 | −0.470 | 0.850 | 1.110 | 0.910 | 0.630 | −0.800 | 5.230 | 0.190 | 5.111 | 0.620 | 1.140 | 0.220 | 0.415 | 1.300 | |
60 | −1.220 | 0.770 | −0.460 | 0.890 | 1.170 | 0.920 | 0.640 | −0.780 | 5.390 | 0.200 | 4.880 | 0.650 | 1.170 | 0.230 | 0.410 | 1.330 | |
Mean relative change (%) | −1.060 | 0.620 | −0.430 | 0.640 | 0.840 | 0.770 | 0.510 | −0.770 | 4.120 | 0.140 | 5.272 | 0.490 | 0.910 | 0.170 | 0.368 | 1.050 |
References
- Wang, H.; Wang, J.; Liu, J.; Mei, C. Analysis of urban water cycle evolution and countermeasures. J. Hydraul. Eng. 2021, 52, 3–11. [Google Scholar]
- Xu, Z.; Cheng, T. Basic theory for urban water management and sponge city—Review on urban hydrology. J. Hydraul. Eng. 2019, 50, 53–61. [Google Scholar]
- Tian, F.; Cheng, T.; Lu, Y.; Xu, Z. A review on socio-hydrology and urban hydrology. Adv. Earth Sci. 2018, 37, 46–56. [Google Scholar]
- Wagener, T.; Sivapalan, M.; Troch, P.A.; McGlynn, B.L.; Harman, C.J.; Gupta, H.V.; Kumar, P.; Rao, P.S.C.; Basu, N.B.; Wilson, J.S. The future of hydrology: An evolving science for a changing world. Water Resour. Res. 2010, 46, 8906. [Google Scholar] [CrossRef]
- Sivapalan, M.; Savenije, H.H.G.; Bloschl, G. Socio-hydrology: A new science of people and water. Hydrol. Processes 2012, 26, 1270–1276. [Google Scholar] [CrossRef]
- Montanari, A.; Young, G.; Savenije, H.H.G.; Hughes, D.; Wagener, T.; Ren, L.L.; Koutsoyiannis, D.; Koutsoyiannis, D.; Cudennec, C.; Toth, E.; et al. “Panta Rhei-Everything Flows”: Change in hydrology and society-The IAHS Scientific Decade 2013–2022. Hydrol. Sci. J. 2013, 58, 1256–1275. [Google Scholar] [CrossRef]
- Jimenez-Cisneros, B. Responding to the challenges of water security: The Eighth Phase of the International Hydrological Programme, 2014–2021. In 11th Kovacs Colloquium on Hydrological Sciences and Water Security: Past, Present and Future; UNESCO: Paris, France, 2014. [Google Scholar]
- Du, E.; Tian, Y.; Cai, X.; Zheng, Y.; Li, X.; Zheng, C. Exploring spatial heterogeneity and temporal dynamics of human-hydrological interactions in large river basins with intensive agriculture: A tightly coupled, fully integrated modeling approach. J. Hydrol. 2020, 591, 125313. [Google Scholar] [CrossRef]
- Loch, A.; Adamson, D.; Mallawaarachchi, T. Role of hydrology and economics in water management policy under increasing uncertainty. J. Hydrol. 2014, 518, 5–16. [Google Scholar] [CrossRef]
- Reddy, V.R.; Syme, G.J. Social sciences and hydrology: An introduction. J. Hydrol. 2014, 518, 1–4. [Google Scholar] [CrossRef]
- Herrera-Franco, G.; Montalván-Burbano, N.; Carrión-Mero, P.; Bravo-Montero, L. Worldwide Research on Socio-Hydrology: A Bibliometric Analysis. Water 2021, 13, 1283. [Google Scholar] [CrossRef]
- Liangqing, X.; Fan, Y.; Changbing, Y.; Luochen, Z.; Guanghui, W.; Xinfang, C. Sensitivity analysis of the streamflow alteration subjected to climate changes and anthropogenic activities in the Tarim River Basin. J. Hohai Univ. 2018, 46, 1–6. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?FileName=HHDX201801001&DbName=CJFQ2018 (accessed on 5 May 2022).
- Keilholz, P.; Disse, M.; Halik, U. Effects of Land Use and Climate Change on Groundwater and Ecosystems at the Middle Reaches of the Tarim River Using the MIKE SHE Integrated Hydrological Model. Water 2015, 7, 3040–3056. [Google Scholar] [CrossRef] [Green Version]
- Xue, L.; Yang, F.; Yang, C.; Luochen, Z.; Zhang, L.; Chi, Y.; Yang, G. Identification of potential impacts of climate change and anthropogenic activities on streamflow alterations in the Tarim River Basin, China. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, I.N.; Bolten, J.D.; Souter, N.J.; Shaad, K.; Vollmer, D. Diagnosing challenges and setting priorities for sustainable water resource management under climate change. Sci. Rep. 2022, 12, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Mao, F.; Clark, J.; Karpouzoglou, T.; Dewulf, A.; Buytaert, W.; Hannah, D. HESS Opinions: A conceptual framework for assessing socio-hydrological resilience under change. Hydrol. Earth Syst. Sci. 2017, 21, 3655–3670. [Google Scholar] [CrossRef] [Green Version]
- Eslamian, S.; Reyhani, M.N.; Syme, G. Building socio-hydrological resilience: From theory to practice. J. Hydrol. 2019, 575, 930–932. [Google Scholar] [CrossRef]
- Jaramillo, L.V.; Stone, M.C.; Morrison, R.R. An indicator-based approach to assessing resilience of socio-hydrologic systems in Nepal to hydropower development. J. Hydrol. 2018, 563, 1111–1118. [Google Scholar] [CrossRef]
- Dewulf, A.; Karpouzoglou, T.; Warner, J.; Wesselink, A.; Mao, F.; Vos, J.; Tamas, P.; Groot, A.E.; Heijmans, A.; Ahmed, F.; et al. The power to define resilience in social-hydrological systems: Toward a power-sensitive resilience framework. Water 2019, 6, 14. [Google Scholar] [CrossRef] [Green Version]
- Hund, S.V.; Allen, D.M.; Morillas, L.; Johnson, M.S. Groundwater recharge indicator as tool for decision makers to increase socio-hydrological resilience to seasonal drought. J. Hydrol. 2018, 563, 1119–1134. [Google Scholar] [CrossRef]
- Horn, F.; Elagib, N.A. Building socio-hydrological resilient cities against flash floods: Key challenges and a practical plan for arid regions. J. Hydrol. 2018, 564, 125–132. [Google Scholar] [CrossRef]
- Hough, M.; Pavao-Zuckerman, M.A.; Scott, C.A. Connecting plant traits and social perceptions in riparian systems: Ecosystem services as indicators of thresholds in social-ecohydrological systems. J. Hydrol. 2018, 566, 860–871. [Google Scholar] [CrossRef]
- Yuan, Y.; Bai, Z.; Zhang, J.; Xu, C. Increasing urban ecological resilience based on ecological security pattern: A case study in a resource-based city. Ecol. Eng. 2022, 175, 106486. [Google Scholar] [CrossRef]
- Chen, Y.; Su, X.Y.; Zhou, Q. Study on the Spatiotemporal Evolution and Influencing Factors of Urban Resilience in the Yellow River Basin. Int. J. Environ. Res. Public Health 2021, 18, 10231. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Zhang, H.; Qin, Y.; Dong, J.; Xu, E.; Yang, Y.; Zhang, G.; Xiao, X. Semi-natural areas of Tarim Basin in northwest China: Linkage to desertification. Sci. Total Environ. 2016, 573, 178–188. [Google Scholar] [CrossRef]
- Zuo, J.; Xu, J.; Chen, Y.; Li, W. Downscaling simulation of groundwater storage in the Tarim River basin in northwest China based on GRACE data. Phys. Chem. Earth 2021, 123, 103042. [Google Scholar] [CrossRef]
- Liu, Y.; Tian, F.; Hu, H.; Sivapalan, M. Socio-hydrologic perspectives of the co-evolution of humans and water in the Tarim River basin, Western China: The Taiji-Tire model. Hydrol. Earth Syst. Sci. 2014, 18, 1289–1303. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Huang, F.; Shi, F.; Wei, X.; Zamanian, K.; Zhao, X. Human and climatic drivers of land and water use from 1997 to 2019 in Tarim River basin, China. Int. Soil Water Conserv. Res. 2021, 9, 532–543. [Google Scholar] [CrossRef]
- Babel, M.S.; Pandey, V.P.; Rivas, A.A.; Wahid, S.M. Indicator-Based Approach for Assessing the Vulnerability of Freshwater Resources in the Bagmati River Basin, Nepal. Environ. Manag. 2011, 48, 1044–1059. [Google Scholar] [CrossRef]
- Folke, C. Resilience: The emergence of a perspective for social-ecological systems analyses. Glob. Environ. Change 2006, 16, 253–267. [Google Scholar] [CrossRef]
- Eakin, H.C.; Lemos, M.C.; Nelson, D.R. Differentiating capacities as a means to sustainable climate change adaptation. Glob. Environ. Change-Hum. Policy Dimens. 2014, 27, 1–8. [Google Scholar] [CrossRef]
- Dardonville, M.; Bockstaller, C.; Therond, O. Review of quantitative evaluations of the resilience, vulnerability, robustness and adaptive capacity of temperate agricultural systems. J. Clean. Prod. 2021, 286, 14. [Google Scholar] [CrossRef]
- Keck, M.; Sakdapolrak, P. What is Social Resilience? Lessons Learned and Ways Forward. Erdkunde 2013, 67, 5–19. [Google Scholar]
- Na, W.; Zhao, Z.C. The comprehensive evaluation method of low-carbon campus based on analytic hierarchy process and weights of entropy. Environ. Dev. Sustain. 2021, 23, 9308–9319. [Google Scholar] [CrossRef]
- Li, Y.; Sun, M.; Yuan, G.; Zhou, Q.; Liu, J. Study on Development Sustainability of Atmospheric Environment in Northeast China by Rough Set and Entropy Weight Method. Sustainability 2019, 11, 3793. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.; Wang, G.; Xue, W.; Yao, Z.; Xue, B. Assessing the Adaptability of Water Resources System in Shandong Province, China, Using a Novel Comprehensive Co-evolution Model. Water Resour. Manag. 2019, 33, 657–675. [Google Scholar] [CrossRef]
- Galik, A.; Bąk, M.; Bałandynowicz-Panfil, K.; Cirella, G.T. Evaluating Labour Market Flexibility Using the TOPSIS Method: Sustainable Industrial Relations. Sustainability 2022, 14, 526. [Google Scholar] [CrossRef]
- Shen, Z.Y.; Zhao, Q.Q.; Fang, Q.M. Analysis of Green Traffic Development in Zhoushan Based on Entropy Weight TOPSIS. Sustainability 2021, 13, 8109. [Google Scholar] [CrossRef]
- Wei, L.Y.; Zhang, Y.; Wang, L.; Cheng, Z.; Wu, X. Obstacle Indicators Diagnosis and Advantage Functions Zoning Optimization Based on “Production-Living-Ecological” Functions of National Territory Space in Jilin Province. Sustainability 2022, 14, 4215. [Google Scholar] [CrossRef]
- Bai, X.; Jin, J.; Zhou, R.; Wu, C.; Zhou, Y.; Zhang, L.; Cui, Y. Coordination evaluation and obstacle factors recognition analysis of water resource spatial equilibrium system. Environ. Res. 2022, 210, 112913. [Google Scholar] [CrossRef]
- Guoqiang., L.; Shuo, K. Cost-utility analysis of atelelizumab in combination with standard chemotherapy regimens for the treatment of extensive stage small cell lung cancer. China Pharm. 2021, 32, 77–81. [Google Scholar]
- Li, Z.; Hu, Y.; Liu, Q.; Liu, S. Early Warning Evaluation and Simulation Analysis of Resources and Environmental Carrying Capacity in Inland Arid Regions: An Empirical Analysis from Ningxia. Ecol. Econ. 2021, 37, 209–215. [Google Scholar]
- Meng, L.; Liu, Y.; Ma, W.; Wang, Q.; Mo, X.; Tian, J. Variable fuzzy evaluation model for water resources carrying capacity in the Tarim River Basin, China. Water Supply 2022, 22, 1445–1458. [Google Scholar] [CrossRef]
- Chen, H.; Gao, Z.; Zeng, W.; Liu, J.; Tan, X.; Han, S.; Wang, S.; Zhao, Y.; Yu, C. Scale Effects of Water Saving on Irrigation Efficiency: Case Study of a Rice-Based Groundwater Irrigation System on the Sanjiang Plain, Northeast China. Sustainability 2018, 10, 47. [Google Scholar] [CrossRef] [Green Version]
- Xu, W. Study on Multi-Objective Operation Strategy for Multi-Reservoirs in Small-Scale Watershed Considering Ecological Flows. Water Resour. Manag. 2020, 34, 4725–4738. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, X.; Zhang, M.; Li, H.; Lan, H.; Shi, Y. Public perception of water resources and water-saving intention in arid inland riverbasins of northwestern China: A case study of the Hexi Corridor in Gansu Province. China Popul. Resour. Environ. 2019, 29, 148–157. [Google Scholar]
- Zhu, Y.X.; Zhu, Y.; Sang, Y.-F.; Chen, D.; Sivakumar, B.; Li, D. Effects of the South Asian summer monsoon anomaly on interannual variations in precipitation over the South-Central Tibetan Plateau. Environ. Res. Lett. 2020, 15, 124067. [Google Scholar] [CrossRef]
- Wang, P. Study on the Utilization Efficiency of Agricultural Water Resources and the Economic Benefit of Famers’ Irrigation in Xinjiang; Xinjiang Agricultural University: Xinjiang, China, 2016. [Google Scholar]
- Zhao, J.Y. Multi-dimensional Perspectives and Differentiated Strategies of Basin-Scale Water Ecological Conservation and Restoration. Landsc. Archit. Front. 2021, 9, 8–11. [Google Scholar] [CrossRef]
Factor Level | Indicator Level | Calculation Method | Properties |
---|---|---|---|
Water resource changes | Coefficient of variation of rainfall (X1) | (Annual precipitation − Average annual precipitation)/Average annual precipitation | + |
Water scarcity | Percentage of population with unsafe drinking water (X2) | Number of people with non-safe drinking water/Total population | + |
Water consumption per capita (X3) | Total water consumption/Total population | + | |
Water use | Dam density (X4) | Number of dams/Total land area | − |
Rate of water resource development (X5) | Total water resources development and use/Total water resources | + | |
Water consumption per 10,000 yuan GDP (X6) | Total water consumption/Total GDP | + | |
Water pollution | Level of contamination of surface runoff (X7) | Effluent discharge/Surface water resources | + |
Wastewater discharge (X8) | Total annual wastewater discharge | + |
Factor Level | Indicator Level | Calculation Method | Properties |
---|---|---|---|
Natural adaptability | Total water resources (X9) | Natural resources such as rainfall, runoff, and snow | + |
Vegetation cover (X10) | Area of vegetation cover/total area of the region | + | |
Physical adaptability | Water-saving irrigation coverage (X11) | Water-saving irrigated area/effective irrigated area | + |
Water infrastructure investment (X12) | Total annual investment in water infrastructure | + | |
Reservoir storage capacity (X13) | Annual reservoir storage capacity | + | |
Social adaptability | Educational level (X14) | High school enrolment/primary school enrolment | + |
Percentage of economically active population (X15) | 1 − Urban unemployment rate | + | |
Economic adaptability | GDP per capita index (X16) | + |
Grade | Range of Resilience Indices | Description |
---|---|---|
Ⅰ | (1, +∞) | Good |
Ⅱ | (0.5, 1) | Moderate |
Ⅲ | (0.3, 0.50) | Poor |
Ⅳ | (0, 0.3) | Worse |
Factor Level | Weight | Indicator Level | Weight | Ranking |
---|---|---|---|---|
Water resource changes | 0.056 | Coefficient of variation of rainfall (X1) | 0.056 | 13 |
Water scarcity | 0.114 | Percentage of population with unsafe drinking water (X2) | 0.070 | 5 |
Water consumption per capita (X3) | 0.044 | 16 | ||
Water use | 0.189 | Dam density (X4) | 0.065 | 7 |
Rate of water resource development (X5) | 0.052 | 15 | ||
Water consumption per 10,000 yuan GDP (X6) | 0.072 | 4 | ||
Water pollution | 0.141 | Level of contamination of surface runoff (X7) | 0.066 | 6 |
Wastewater discharge (X8) | 0.076 | 1 |
Factor Level | Weight | Indicator Level | Weight | Ranking |
---|---|---|---|---|
Natural adaptability | 0.119 | Total water resources (X9) | 0.058 | 10 |
Vegetation cover (X10) | 0.065 | 8 | ||
Physical adaptability | 0.196 | Water-saving irrigation coverage (X11) | 0.056 | 14 |
Water infrastructure investment (X12) | 0.073 | 3 | ||
Reservoir storage capacity (X13) | 0.057 | 11 | ||
Social adaptability | 0.116 | Educational level (X14) | 0.056 | 12 |
Percentage of economically active population (X15) | 0.060 | 9 | ||
Economic adaptability | 0.069 | GDP per capita index (X16) | 0.069 | 2 |
Barrier Factors | X7 | X11 | X1 | X2 | X8 | X10 | X12 | X13 | X14 | X15 |
---|---|---|---|---|---|---|---|---|---|---|
Frequency (times) | 17 | 16 | 15 | 15 | 15 | 15 | 15 | 15 | 14 | 14 |
Entry frequency | 0.85 | 0.80 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.70 | 0.70 |
Year | 1 | 2 | 3 | 4 | 5 | Total | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Barrier Factor | Degree of Obstruction | Barrier Factor | Degree of Obstruction | Barrier Factor | Degree of Obstruction | Barrier Factor | Degree of Obstruction | Barrier Factor | Degree of Obstruction | ||
2001 | X8 | 0.112 | X12 | 0.108 | X16 | 0.106 | X13 | 0.098 | X10 | 0.095 | 0.519 |
2002 | X8 | 0.126 | X12 | 0.120 | X16 | 0.116 | X10 | 0.102 | X7 | 0.099 | 0.563 |
2003 | X8 | 0.110 | X12 | 0.108 | X16 | 0.105 | X7 | 0.097 | X10 | 0.088 | 0.508 |
2004 | X8 | 0.122 | X12 | 0.108 | X7 | 0.098 | X16 | 0.091 | X10 | 0.084 | 0.503 |
2005 | X8 | 0.117 | X7 | 0.106 | X12 | 0.106 | X10 | 0.081 | X4 | 0.078 | 0.488 |
2006 | X8 | 0.102 | X7 | 0.094 | X12 | 0.093 | X1 | 0.082 | X13 | 0.076 | 0.447 |
2007 | X8 | 0.099 | X12 | 0.092 | X7 | 0.090 | X16 | 0.075 | X10 | 0.072 | 0.428 |
2008 | X8 | 0.090 | X4 | 0.087 | X12 | 0.084 | X16 | 0.077 | X15 | 0.076 | 0.414 |
2009 | X13 | 0.093 | X16 | 0.091 | X15 | 0.090 | X1 | 0.084 | X9 | 0.082 | 0.439 |
2010 | X11 | 0.107 | X15 | 0.101 | X4 | 0.095 | X6 | 0.087 | X12 | 0.087 | 0.477 |
2011 | X11 | 0.095 | X6 | 0.091 | X2 | 0.085 | X4 | 0.085 | X15 | 0.080 | 0.435 |
2012 | X2 | 0.126 | X6 | 0.118 | X4 | 0.114 | X13 | 0.083 | X7 | 0.076 | 0.517 |
2013 | X2 | 0.137 | X6 | 0.135 | X11 | 0.100 | X13 | 0.072 | X7 | 0.072 | 0.516 |
2014 | X2 | 0.127 | X6 | 0.124 | X13 | 0.107 | X11 | 0.103 | X1 | 0.091 | 0.552 |
2015 | X2 | 0.149 | X6 | 0.143 | X11 | 0.115 | X13 | 0.083 | X7 | 0.069 | 0.561 |
2016 | X2 | 0.203 | X6 | 0.189 | X11 | 0.127 | X7 | 0.096 | X5 | 0.068 | 0.683 |
2017 | X2 | 0.201 | X6 | 0.194 | X11 | 0.157 | X5 | 0.078 | X7 | 0.065 | 0.695 |
2018 | X2 | 0.195 | X6 | 0.192 | X11 | 0.173 | X9 | 0.100 | X3 | 0.072 | 0.732 |
2019 | X6 | 0.193 | X2 | 0.193 | X11 | 0.157 | X9 | 0.082 | X1 | 0.075 | 0.700 |
2020 | X6 | 0.222 | X2 | 0.218 | X11 | 0.188 | X9 | 0.081 | X1 | 0.069 | 0.779 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, N.; Deng, X.; Long, A.; Zhang, L.; Gu, X. Evaluation of the Resilience of the Socio-Hydrological System of the Tarim River Basin in China and Analysis of the Degree of Barriers. Sustainability 2022, 14, 7571. https://doi.org/10.3390/su14137571
Pang N, Deng X, Long A, Zhang L, Gu X. Evaluation of the Resilience of the Socio-Hydrological System of the Tarim River Basin in China and Analysis of the Degree of Barriers. Sustainability. 2022; 14(13):7571. https://doi.org/10.3390/su14137571
Chicago/Turabian StylePang, Ning, Xiaoya Deng, Aihua Long, Lili Zhang, and Xinchen Gu. 2022. "Evaluation of the Resilience of the Socio-Hydrological System of the Tarim River Basin in China and Analysis of the Degree of Barriers" Sustainability 14, no. 13: 7571. https://doi.org/10.3390/su14137571