Evaluation of Land-Use Layout of the Rail Station Area Based on the Difference in Noise Sensitivity to Rail Transit, Taking a Suburb of Tokyo as an Example
Abstract
:1. Introduction
2. Methods and Materials
2.1. Research Scope
2.2. Research Method
- (1)
- Hedonic Price Method and Multiple Regression Analysis
- (2)
- Acoustic environment simulation
2.3. Data Acquisition
3. Analysis Process
3.1. Regression Analysis of the Influence of Noise on Land Prices
3.2. Regression Analysis of the Influence of Station Accessibility on Land Price
3.2.1. Commercial Plot
3.2.2. Residential Plot
3.3. Evaluation of the Land-Use Layout Scheme Based on the Noise Impact
3.3.1. Case Introduction
3.3.2. Multiple Scheme Generation and Comparison
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Z. The Impact of Urban Rail Transit on Ecological Environment. China Railw. Sci. 2001, 22, 126–132. [Google Scholar]
- Yin, H. Study on U-Shaped Beam Structure Noise and Shielding Effect of Beam Body on Wheel-Rail Noise. Master’s Thesis, Southwest Jiaotong University, Chengdu, China, 2014. [Google Scholar]
- Erickson, L.C.; Newman, R.S. Influences of Background Noise on Infants and Children. Curr. Dir. Psychol. Sci. 2017, 26, 451–457. [Google Scholar] [CrossRef] [PubMed]
- Dratva, J.; Phuleria, H.C.; Foraster, M.; Gaspoz, J.-M.; Keidel, D.; Künzli, N.; Liu, L.-J.S.; Pons, M.; Zemp, E.; Gerbase, M.W.; et al. Transportation Noise and Blood Pressure in a Population-Based Sample of Adults. Environ. Health Perspect. 2012, 120, 50–55. [Google Scholar] [CrossRef]
- Petri, D.; Licitra, G.; Vigotti, M.A.; Fredianelli, L. Effects of Exposure to Road, Railway, Airport and Recreational Noise on Blood Pressure and Hypertension. Int. J. Environ. Res. Public Health 2021, 18, 9145. [Google Scholar] [CrossRef] [PubMed]
- Ahlfeldt, G.M.; Nitsch, V.; Wendland, N. Ease vs. Noise: Long-Run Changes in the Value of Transport (Dis)Amenities. J. Environ. Econ. Manag. 2019, 98, 102268. [Google Scholar] [CrossRef] [Green Version]
- Andersson, D.E. Hypothesis Testing in Hedonic Price Estimation—On the Selection of Independent Variables. Ann. Reg. Sci. 2000, 34, 293–304. [Google Scholar] [CrossRef]
- Kitahara, A.; Ishikawa, S.; Shimizu, A. The latest trends in tire vibration and noise reduction technology. Tribologist 2020, 65, 153–158. [Google Scholar] [CrossRef]
- Saito, M.; Shiraishi, N.; Wakabayashi, Y.; Kurita, K.; Fujimoto, T.; Ichikawa, Y. Development of Low Noise Brake Discs for Shinkansen. Proc. Environ. Eng. Compr. Symp. 2019, 29, J109. [Google Scholar] [CrossRef]
- Hongqiang, L.; Xiaoping, W. Research on Urban Rail Transit Noise and Its Control. Noise Vib. Control 2007, 27, 78–82. [Google Scholar]
- Baohong, S. Noise and Vibration Control Countermeasures of Urban Rail Transit. Environ. Sci. Manag. 2005, 30, 7–9. [Google Scholar]
- Jiani, L. Research on the Noise Reduction Function of Garden Plants; Zhejiang University: Hangzhou, China, 2007. [Google Scholar]
- Fei, C.; Bizhuang, C. Research on the Connotation and Analysis Points of Transportation Cost. Transp. Transp. Ed. 2011, 27, 147–149. [Google Scholar]
- Flyvbjerg, B.; Bruzelius, N.; van Wee, B. Comparison of Capital Costs per Route-Kilometre in Urban Rail. arXiv 2013, arXiv:13036569. [Google Scholar]
- Wei, Z.; Xiafei, Y. Statistical Analysis of Urban Rail Transit Route Laying Mode—Research Report 6 Based on Data Analysis of China Urban Rail Transit Association. Urban Rail Transit Res. 2019, 22, 1–6. [Google Scholar]
- Calthorpe, P. The Future American Metropolis; China Construction Industry Press: Beijing, China, 2009; ISBN 978-7-112-10935-7. [Google Scholar]
- Taylor, E. The New Urbanism Charter; Electronic Industry Press: Beijing, China, 2016; ISBN 978-7-121-28247-8. [Google Scholar]
- Calthorpe. Urbanism in the Time of Climate Change; China Construction Industry Press: Beijing, China, 2012; ISBN 978-7-112-14532-4. [Google Scholar]
- Cervero, R.; Kockelman, K. Travel Demand and the 3Ds: Density, Diversity, and Design. Transp. Res. Part Transp. Environ. 1997, 2, 199–219. [Google Scholar] [CrossRef]
- Debrezion, G.; Pels, E.; Rietveld, P. The Impact of Railway Stations on Residential and Commercial Property Value: A Meta-Analysis. J. Real Estate Financ. Econ. 2007, 35, 161–180. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, T. A Case Study of Cost Effectivenes Analysis of Environmental Information. Stud. Reg. Sci. 1985, 16, 53–69. [Google Scholar] [CrossRef]
- Ming, Y. On the Legal Prevention and Remedy of Noise Pollution; University of International Business and Economics: Beijing, China, 2005. [Google Scholar]
- Yuqin, S. Research on the Influence of the Perception of Space Near People in Living Streets on the Evaluation of Road Traffic Noise; Dalian University of Technology: Dalian, China, 2021. [Google Scholar]
- Desidério, P.; Romão, B.; Oliveira, P. Municipal Strategy for Noise Reduction in Nightlife Establishments—Case Study Lisbon. In INTER-NOISE and NOISE-CON Congress and Conference Proceedings; Institute of Noise Control Engineering: West Lafayette, IN, USA, 2019; Volume 259, pp. 2524–2531. [Google Scholar]
- Wenjing, N. Research on the Influence of Visual Factors on the Subjective Annoyance of Environmental Noise; Tianjin University: Tianjin, China, 2014. [Google Scholar]
- Han, C. Research on the Influence of Music on Human Comfort and Work Efficiency in Noise Environment; Qingdao University of Technology: Qingdao, China, 2018. [Google Scholar]
- Qiannan, W.; Xiafei, Y. The Relationship between Urban Rail Transit Accessibility Improvement and Housing Price Appreciation. J. Tongji Univ. Sci. Ed. 2016, 44, 899–906. [Google Scholar]
- Cervero, R.; Duncan, M. Rail Transit’s Value Added: Effect of Proximity to Light and Commuter Rail Transit on Commercial Land Values in Santa Clara County California; National Association of Realtor Urban Land Institute: Washington, DC, USA, 2001; Volume 1805, pp. 8–15. [Google Scholar]
- Weinstein, B.L.; Clower, T.L. The Initial Economic Impacts of the Dart Lrt System; UNT Center for Economic Development and Research: Denton, TX, USA, 1999. [Google Scholar]
- Nikken Design Research Association for Integrated Station-City Development. Integrated Station-City Development: A New Generation of Public Transport-Oriented Urban Construction: Integrated Station-City Development: The Next Advances of TOD; China Architecture and Construction Press: Beijing, China, 2014; ISBN 978-7-112-16286-4. [Google Scholar]
- Ministry of the Environment of Japan Environmental Standards for Noise. Available online: http://www.env.go.jp/hourei/07/ (accessed on 20 April 2022).
- Chan, E.; Yiu, C.Y.; Baldwin, A.; Lee, G. Value of buildings with design features for healthy living: A contingent valuation approach. Facilities 2009, 27, 229–249. [Google Scholar] [CrossRef]
- Chan, E.; Lam, K.S.; Wong, W.S. Evaluation on indoor environment quality of dense urban residential buildings. J. Facil. Manag. 2008, 6, 245–265. [Google Scholar] [CrossRef]
- Fujita, M. Urban Economic Theory; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Bowes, D.R.; Ihlanfeldt, K.R. Identifying the Impacts of Rail Transit Stations on Residential Property Values. J. Urban Econ. 2001, 50, 1–25. [Google Scholar] [CrossRef]
- Rosen, S. Hedonic Prices and Implicit Markets: Product Differentiation in Pure Competition. J. Political Econ. 1974, 82, 34–55. [Google Scholar] [CrossRef]
- Chen, H.; Rufolo, A.; Dueker, K.J. Measuring the Impact of Light Rail Systems on Single-Family Home Values: A Hedonic Approach with Geographic Information System Application. Transp. Res. Rec. 1998, 1617, 38–43. [Google Scholar] [CrossRef]
- Cervero, R.; Duncan, M. Transit’s Value-Added Effects: Light and Commuter Rail Services and Commercial Land Values. Transp. Res. Rec. 2002, 1805, 8–15. [Google Scholar] [CrossRef]
- Kain, J.F.; Quigley, J.M. Measuring the value of housing quality. J. Am. Stat. Assoc. 1970, 65, 532–548. [Google Scholar] [CrossRef]
- Buck, A.J.; Deutsch, J.; Hakim, S.; Spiegel, U.; Weinblatt, J. A von Thünen model of crime, casinos and property values in New Jersey. Urban Stud. 1991, 28, 673–686. [Google Scholar] [CrossRef]
- Kim, J.; Zhang, M. Determining transit’s impact on Seoul commercial land values: An application of spatial econometrics. Int. Real Estate Rev. 2005, 8, 1–26. [Google Scholar] [CrossRef]
- Yang, T.; Jin, Y.; Yan, L.; Pei, P. Aspirations and realities of polycentric development: Insights from multi-source data into the emerging urban form of Shanghai. Environ. Plan. B Urban Anal. City Sci. 2019, 46, 1264–1280. [Google Scholar] [CrossRef]
- Wang, C.; Zhong, S. The Influence of Location Factors on Commercial Land Prices—Taking Yantai City as an Example. J. Ludong Univ. (Philos. Soc. Sci. Ed.) 2009, 26, 25–28. [Google Scholar]
- Damm, D.; Lerman, S.R.; Lerner-Lam, E.; Young, J. Response of urban real estate values in anticipation of the Washington Metro. J. Transp. Econ. Policy 1980, 1980, 315–336. [Google Scholar]
- Gatzlaff, D.H.; Smith, M.T. The impact of the Miami Metrorail on the value of residences near station locations. Land Econ. 1993, 1993, 54–66. [Google Scholar] [CrossRef]
- Hu, J.; Zhong, G. Research on urban space-time accessibility under subway travel mode. Planner 2012, 28, 29–33. [Google Scholar]
- Xiao, G.; Yamaguchi, M. Quantitative Analysis of Factors Affecting Urban Residential Land Prices in my country. Qiu Suo 2008, 28–29. [Google Scholar] [CrossRef]
- Anderson, R.J., Jr.; Crocker, T.D. Air pollution and residential property values. Urban Stud. 1971, 8, 171–180. [Google Scholar] [CrossRef]
- Tokyo JIhang Electric Railway Co., Ltd.; Tokyo JIhang Design Co., Ltd. Tokyu Futako Tamagawa Comprehensive Development. Archit. Tech. 2015, 11, 36–39. [Google Scholar]
- Liang, S. Rban Pedestrianization: Research on Urban Design Strategy; Southeast University Press: Nanjing, China, 2012; ISBN 978-7-5641-3406-8. [Google Scholar]
- Wu, X.; Zhou, X.; Gu, X.; Liu, L. Research on the revision of urban rail transit environmental noise prediction parameters. Environ. Impact Assess. 2019, 41, 59–62. [Google Scholar] [CrossRef]
Type of Areas | Standard Value | |||
---|---|---|---|---|
Grade | Description | Difference | Daytime | Night |
AA | Area in which medical facilities and social welfare facilities were provided | 50 db | 40 db | |
A | Dedicated areas for residence | Base value | 55 db | 45 db |
Roads facing two or more carriageways | 60 db | 55 db | ||
B | Areas mainly for residence | Base value | 55 db | 45 db |
Roads facing two or more carriageways | 65 db | 60 db | ||
C | Mainly for commerce or industry Area in which a few residential buildings were constructed | Base value | 60 db | 50 db |
Facing roads with carriageways | 65 db | 60 db | ||
Special notes: | Regardless of the above table, the road approaching major traffic should observe the standard value. | 70 db | 65 db | |
Simultaneously, if a certain residential building is located at one side that is prone to noise, when their windows are closed, the noise transmitted indoors must meet the standard value. | 45 db | 40 db |
Name | Noise Volume | Name | Noise Volume | Name | Noise Volume |
---|---|---|---|---|---|
Chūō Line | 98 | Ikebukuro Line | 88 | Nambu Line | 79 |
Sagamihara Line | 96 | Haijima Line | 85 | Tomono Line | 78 |
Keiō Line | 95 | Hachikō Line | 83 | Tama Lake Line | 78 |
Den-en-toshi Line | 95 | Yokohama line | 81 | Itsukaichi Line | 78 |
Odawara line | 95 | Musashino Main line | 81 | Ōme Line | 77 |
Tama Line | 93 | Inokashira Line | 80 | Seibuen Line | 73 |
Toei Shinjuku Line | 92 | Tamagawa line | 79 | Racecourse Line | 65 |
Model Name | Function Expression |
---|---|
Linear form | |
Semi-logarithmic form | |
Log-linear form |
Characteristic Variable | Description | |
---|---|---|
Geographical position data | UYamanote | Shortest straight-line distance to the planar graph of the Yamanote Line |
Uwalking | Walking distance to the nearest station | |
U | Ustation | Straight-line distance to the nearest rail line |
Urail | Straight-line distance to the nearest rail line | |
Supporting service data | UPS | Straight-line distance to the planar graph of the nearest primary school |
UJHS | Straight-line distance to the planar graph of the nearest junior high school | |
Ucommerce | Percentage of the commercial land area within a 1 km range | |
Population data | U2015 | Population density of the local area in 2015 as published by the Ministry of Land, Infrastructure, Transport and Tourism, Japan |
U2020 | Population density of the local area in 2020 as published by the Ministry of Land, Infrastructure, Transport and Tourism, Japan | |
Ugrowth | Average population density growth rate of the local area between 2015 and 2020 | |
Land-use data | UFAR | Plot ratio: ratio between residential community’s above-ground total building area and land parcel’s area |
UBD | Building density: percentage of the total sum of the basal area of the buildings in a certain range and the total area of the occupied land parcel’s area | |
Station data | UPF | Data of passenger flow in the station |
Noise date | Unoise | Noise level obtained from the measured noise value |
lnPR | Unoise | Ustation | Uwalking | UBD | UFAR | UYamanote | Urail | UPS | UJHS | Ucommerce | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pearson correlation | lnPR | 1.000 | −0.310 | −0.195 | −0.283 | 0.210 | 0.165 | −0.783 | 0.095 | −0.097 | −0.014 | 0.431 |
Unoise | 1.000 | −0.094 | −0.070 | 0.029 | −0.013 | 0.267 | −0.652 | −0.066 | −0.170 | −0.149 | ||
Ustation | 1.000 | 0.591 | −0.132 | −0.098 | 0.059 | −0.037 | 0.098 | 0.129 | −0.113 | |||
Uwalking | 1.000 | −0.160 | −0.164 | 0.058 | 0.024 | 0.098 | 0.111 | −0.133 | ||||
UBD | 1.000 | 0.931 | 0.093 | −0.038 | −0.114 | −0.151 | 0.323 | |||||
UFAR | 1.000 | 0.091 | −0.014 | −0.067 | −0.111 | 0.293 | ||||||
UYamanote | 1.000 | −0.065 | −0.143 | −0.199 | −0.116 | |||||||
Urail | 1.000 | −0.013 | −0.004 | −0.005 | ||||||||
UPS | 1.000 | 0.747 | −0.230 | |||||||||
UJHS | 1.000 | −0.156 | ||||||||||
Ucommerce | 1.000 | |||||||||||
Significance | lnPR | 0.000 | 0.003 | 0.000 | 0.001 | 0.010 | 0.000 | 0.091 | 0.088 | 0.421 | 0.000 | |
Unoise | 0.092 | 0.164 | 0.344 | 0.430 | 0.000 | 0.000 | 0.176 | 0.008 | 0.018 | |||
Ustation | 0.000 | 0.031 | 0.084 | 0.203 | 0.300 | 0.085 | 0.035 | 0.056 | ||||
Uwalking | 0.012 | 0.010 | 0.208 | 0.367 | 0.083 | 0.059 | 0.030 | |||||
UBD | 0.000 | 0.096 | 0.298 | 0.054 | 0.017 | 0.000 | ||||||
UFAR | 0.102 | 0.422 | 0.172 | 0.059 | 0.000 | |||||||
UYamanote | 0.179 | 0.022 | 0.002 | 0.051 | ||||||||
Urail | 0.427 | 0.480 | 0.472 | |||||||||
UPS | 0.000 | 0.001 | ||||||||||
UJHS | 0.014 |
Unstandardized Coefficient-B | Standard Error | Standardized Coefficient-Beta | t | Significance | |
---|---|---|---|---|---|
(constant) | 12.916 | 0.091 | 142.276 | 0.000 | |
Unoise | −0.038 | 0.014 | −0.094 | −2.786 | 0.006 |
Uwalking | 0.000 | 0.000 | −0.186 | −5.645 | 0.000 |
UBD | 0.008 | 0.002 | 0.170 | 4.904 | 0.000 |
UYamanote | −3.658 × 10−5 | 0.000 | −0.734 | −21.671 | 0.000 |
Ucommerce | 5.838 × 10−7 | 0.000 | 0.252 | 7.225 | 0.000 |
lnPB | UFAR | Uwalking | Ustation | UYamanote | UPF | U2015 | U2020 | Ugrowth | Unoise | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Pearson correlation | lnPB | 1.000 | 0.664 | 0.030 | −0.166 | −0.469 | 0.735 | 0.134 | 0.146 | 0.273 | −0.072 |
UFAR | 1.000 | 0.125 | −0.213 | −0.018 | 0.558 | 0.097 | 0.094 | 0.064 | −0.017 | ||
Uwalking | 1.000 | 0.038 | 0.129 | 0.041 | −0.073 | −0.074 | −0.088 | 0.065 | |||
Ustation | 1.000 | 0.018 | 0.188 | 0.138 | 0.136 | −0.017 | −0.375 | ||||
UYamanote | 1.000 | −0.238 | −0.403 | −0.421 | −0.494 | 0.080 | |||||
UPF | 1.000 | 0.091 | 0.096 | 0.165 | −0.090 | ||||||
U2015 | 1.000 | 0.999 | 0.398 | −0.200 | |||||||
U2020 | 1.000 | 0.432 | −0.202 | ||||||||
Ugrowth | 1.000 | −0.183 | |||||||||
Unoise | 1.000 | ||||||||||
Significance | lnPB | 0.000 | 0.336 | 0.009 | 0.000 | 0.000 | 0.029 | 0.019 | 0.000 | 0.154 | |
UFAR | 0.038 | 0.001 | 0.400 | 0.000 | 0.085 | 0.091 | 0.182 | 0.406 | |||
Uwalking | 0.294 | 0.033 | 0.280 | 0.151 | 0.146 | 0.106 | 0.180 | ||||
Ustation | 0.399 | 0.004 | 0.025 | 0.026 | 0.404 | 0.000 | |||||
UYamanote | 0.000 | 0.000 | 0.000 | 0.000 | 0.129 | ||||||
UPF | 0.099 | 0.086 | 0.009 | 0.100 | |||||||
U2015 | 0.000 | 0.000 | 0.002 | ||||||||
U2020 | 0.000 | 0.002 | |||||||||
Ugrowth | 0.004 |
Variables before regression analysis | UFAR, Ustation, UYamanote, UPF, U2020, Ugrowth |
Variables after regression analysis | UFAR, Ustation, UYamanote, UPF |
Unstandardized Coefficient-B | Standard Error | Standardized Coefficient-Beta | t | Significance | 95.0% Confidence Interval of B | ||
---|---|---|---|---|---|---|---|
Lower Limit | Upper Limit | ||||||
(constant) | 12.802 | 0.127 | 100.438 | 0.000 | 12.551 | 13.054 | |
UPF | 1.095 E−05 | 0.000 | 0.496 | 11.058 | 0.000 | 0.000 | 0.000 |
Ustation | −0.001 | 0.000 | −0.180 | −4.905 | 0.000 | −0.001 | 0.000 |
UYamanote | −3.100 E−05 | 0.000 | −0.342 | −9.893 | 0.000 | 0.000 | 0.000 |
UFAR | 0.002 | 0.000 | 0.343 | 7.838 | 0.000 | 0.002 | 0.003 |
LnPR800 | Uwalking | UBD | UFAR | Ustation | UPS | UJHS | Urail | UYamanote | Ucommerce | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Pearson correlation | LnPR800 | 1.000 | −0.054 | 0.198 | 0.165 | −0.085 | −0.014 | 0.056 | −0.080 | −0.804 | 0.424 |
Uwalking | 1.000 | −0.127 | −0.130 | 0.769 | −0.035 | 0.040 | 0.210 | 0.034 | 0.112 | ||
UBD | 1.000 | 0.915 | −0.083 | −0.010 | −0.118 | −0.074 | 0.072 | 0.366 | |||
UFAR | 1.000 | −0.086 | −0.041 | −0.111 | −0.064 | 0.071 | 0.357 | ||||
Ustation | 1.000 | −0.038 | 0.012 | 0.310 | 0.038 | 0.093 | |||||
UPS | 1.000 | 0.646 | −0.088 | −0.147 | −0.152 | ||||||
UJHS | 1.000 | −0.023 | −0.238 | −0.139 | |||||||
Urail | 1.000 | 0.061 | −0.088 | ||||||||
UYamanote | 1.000 | −0.096 | |||||||||
Ucommerce | 1.000 | ||||||||||
Significance | LnPR800 | 0.182 | 0.000 | 0.003 | 0.075 | 0.407 | 0.173 | 0.087 | 0.000 | 0.000 | |
Uwalking | 0.015 | 0.014 | 0.000 | 0.275 | 0.248 | 0.000 | 0.282 | 0.029 | |||
UBD | 0.000 | 0.079 | 0.433 | 0.022 | 0.104 | 0.112 | 0.000 | ||||
UFAR | 0.073 | 0.243 | 0.030 | 0.140 | 0.116 | 0.000 | |||||
Ustation | 0.261 | 0.419 | 0.000 | 0.262 | 0.057 | ||||||
UPS | 0.000 | 0.067 | 0.006 | 0.005 | |||||||
UJHS | 0.347 | 0.000 | 0.009 | ||||||||
Urail | 0.149 | 0.068 | |||||||||
UYamanote | 0.052 |
Residence | Office | Commercial Service |
50 | 33 | 17 |
Scheme | Commercial Area | Residential Area | (100 Million Yen) | ||||||
---|---|---|---|---|---|---|---|---|---|
Land Occupied Number | Ustation | (m2) | (Yen/m2) | Land Occupied Number | Unoise | (m2) | (Yen/m2) | ||
Original scheme | ① | 180 | 31,200 | −104,018 | ③ | 0 | 31,400 | 0 | −167.5 |
② | 330 | 53,700 | −176,268 | ||||||
④ | 559 | 15,200 | −265,426 | ||||||
Scheme 1 | ① | 180 | 31,200 | −104,018 | ② | 1 | 26,200 | −15,155 | −204.3 |
③ | 345 | 27,500 | −182,579 | ||||||
④ | 522 | 46,600 | −252,522 | ||||||
Scheme 2 | ① | 180 | 31,200 | −104,018 | ③ | 2 | 27,500 | −29,746 | −203.0 |
② | 318 | 26,200 | −170,664 | ||||||
④ | 522 | 46,600 | −252,522 | ||||||
Scheme 3 | ② | 330 | 53,700 | −176,268 | ① | 4 | 31,200 | −57,317 | −230.2 |
③ | 522 | 46,600 | −252,522 |
Name | Plane Figure | Type | Line Name | Connection Facilities |
---|---|---|---|---|
Mizonokuchi | Transfer Station | Den-en-toshi Line | Square + Footbridge | |
Tama Square | Midway Station | Den-en-toshi Line | Complex + Footbridge | |
Aobadai | Midway Station | Den-en-toshi Line | Complex + Square + Footbridge | |
Nagatsuta | Transfer Station | Den-en-toshi Line | Square + Footbridge | |
Central forest | Transfer Station | Den-en-toshi Line | Complex + Footbridge + Underground passage | |
Kokuryo | Midway Station | Keiō Line | Complex + Street | |
Fuchu | Midway Station | Keiō Line | Complex + Square + Underground passage | |
Bubaigawara | Transfer Station | Keiō Line | Square + Footbridge | |
Seiseki Sakuragaoka | Transfer Station | Keiō Line | Complex + Footbridge | |
Takahata Fudo | Transfer Station | Keiō Line | Complex + Square + Street | |
Kyohachioji | Transfer Station | Keiō Line | Complex + Square + Underground passage | |
Kichijoji | Midway Station | Inokashira Line | Square + Street | |
Keio Horinouchi | Midway Station | Sagamihara Line | Complex | |
Minami Osawa | Transfer Station | Sagamihara Line | Complex + Square | |
Kyodo | Midway Station | Odawara line | Complex | |
Front of Seijo Gakuen | Midway Station | Odawara line | Complex | |
Shinyuri Hill | Transfer Station | Odawara line | Square + Street + Footbridge | |
Tsurukawa | Midway Station | Odawara line | Square + Street | |
Machida | Transfer Station | Odawara line | Complex + Square + Street + Footbridge | |
Sagamiono | Transfer Station | Odawara line | Complex + Square + Street + Footbridge | |
Odaen | Transfer Station | Odawara line | Complex + Square + Footbridge + Underground passage |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhai, Z.; Yao, M.; Li, Y. Evaluation of Land-Use Layout of the Rail Station Area Based on the Difference in Noise Sensitivity to Rail Transit, Taking a Suburb of Tokyo as an Example. Sustainability 2022, 14, 7553. https://doi.org/10.3390/su14137553
Zhai Z, Yao M, Li Y. Evaluation of Land-Use Layout of the Rail Station Area Based on the Difference in Noise Sensitivity to Rail Transit, Taking a Suburb of Tokyo as an Example. Sustainability. 2022; 14(13):7553. https://doi.org/10.3390/su14137553
Chicago/Turabian StyleZhai, Zhijunjie, Minfeng Yao, and Yueying Li. 2022. "Evaluation of Land-Use Layout of the Rail Station Area Based on the Difference in Noise Sensitivity to Rail Transit, Taking a Suburb of Tokyo as an Example" Sustainability 14, no. 13: 7553. https://doi.org/10.3390/su14137553