Review of the Impacts of Climate Change on Ports and Harbours and Their Adaptation in Spain
Abstract
:1. Introduction
2. Materials and Methods
3. Results and discussion
3.1. Sea Level Rise (SLR) and Flooding
Author | Region | Time Frame | Scenario | SLR | Methodology |
---|---|---|---|---|---|
Peltier, 2001 [26] | Global | 20th century | Present estimations | 1–2 mm/year | Tide gauges and GIA model |
Miller and Douglas, 2004 [25] | Tide gauges with observations of temperature and salinity | ||||
Church and White, 2006 [24] | 1.1 mm/year | Tide gauges | |||
Church and White, 2006 [28] | 1993–2010 | 3.1 mm/year | Satellite altimeter and island sea-level measurements | ||
Hay et al., 2015 [29] | 1993–2010 | 3 mm/year | Tide gauges and physics-based and model-derived signals (Probabilistic) | ||
Tsimpilis et al., 2013 [30] | 1993–2011 | 2.8–3 mm/year | Altimetry, temperature, salinity and gravity measurements | ||
Cazenave et al., 2004 [27] | 1993–2003 | 2.8–3.1 mm/year | Satellite altimeter | ||
IPCC 2013 [36] | 2100 | RCP8.5 | 53–97 cm | Numerical models | |
IPCC 2019 [6] | 61–110 cm | Numerical models | |||
IPCC 2021 [37] | 63–101 cm (SSP5–8.5) | Numerical models | |||
Rahmstorff et al., 2007 [38] | 50–140 cm | Semi-empirical model | |||
Horton et al., 2014 [39] | 50–150 cm | Experts survey | |||
Kopp et al., 2016 [40] | 52–131 cm | Statistical synthesis of regional sea-level reconstructions | |||
Mengel et al., 2016 [41] | 57–131 cm | Semi-empirical model | |||
Bamber et al., 2019 [42] | 21–163 cm | Structured expert judgement (Probabilistic) | |||
Ibañez et al., 1997 [43] | Ebro Delta | 20th century | Present estimations | 3 mm/year | Measure rates of sedimentation, accretion, vertical elevation and subsidence |
Jiménez et al., 1997 [44] | Tide gauges and Bruun’s rule | ||||
Vázquez et al., 2021 [45] | Cádiz | 1960–2020 | 3.5 mm/year | Tide gauges, linear regression and global records | |
Vargas-Yanez, 2021 [35] | 1880–2018 | 1.28 mm/year | Tide gauges and statitical linear models | ||
Marcos et al., 2021 [34] | 0.7 mm/year | Tide gauges and near records | |||
Chust et al., 2019 [46] | Basque Coast | 2nd half of 20th century | 2–2.5 mm/year | Tide gauges and LiDAR (altimetry) | |
Marcos et al., 2005 [47] | Tide gaguges and Empirical Orthogonal Function analysis | ||||
Leorri et al., 2008 [48] | Foraminifera-based transfer function | ||||
Vousdoukas et al., 2017 [49] | Europe | 2050 | RCP8.5 | 21–24 cm | Numerical models |
Luque et al., 2021 [20] | Balearic | 18–36 cm | Numerical models | ||
Chust et al., 2010 [50] | Basque Coast | 2100 | 28.5–48.7 cm | Temperature projections and LiDAR (altimetry) | |
Vitousek et al., 2017 [51] | Europe | 53–77 cm | Numerical models | ||
Luque et al., 2021 [20] | Balearic | 46–103 cm | Numerical models |
3.2. Impacts on Ports and Harbours and the Need to Adapt
3.2.1. Global Studies
3.2.2. Spanish Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. Las Evaluaciones del IPCC de 1990 y 1992; C.U. Press: Cambridge, UK, 1992; p. 196. [Google Scholar]
- Bindoff, N.L.; Cheung, W.W.L.; Kairo, J.G.; Arístegui, J.; Guinder, V.A.; Hallberg, R.; Hilmi, N.; Jiao, N.; Karim, M.S.; Levin, L.; et al. Changing Ocean, Marine Ecosystems, and Dependent Communities. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., et al., Eds.; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2019. [Google Scholar]
- Collins, M.; Sutherland, M.; Bouwer, L.; Cheong, S.-M.; Frölicher, T.; Jacot Des Combes, H.; Koll Roxy, M.; Losada, I.; McInnes, K.; Ratter, B.; et al. Extremes, Abrupt Changes and Managing Risk. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., et al., Eds.; United Nations: Geneve, Switzerland, 2019. [Google Scholar]
- Hock, R.; Rasul, G.; Adler, C.; Cáceres, B.; Gruber, S.; Hirabayashi, Y.; Jackson, M.; Kääb, A.; Kang, S.; Kutuzov, S.; et al. High Mountain Areas. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., et al., Eds.; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2019. [Google Scholar]
- Meredith, M.; Sommerkorn, M.; Cassotta, S.; Derksen, C.; Ekaykin, A.; Hollowed, A.; Kofinas, G.; Mackintosh, A.; Melbourne-Thomas, J.; Muelbert, M.M.C.; et al. Polar Regions. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., et al., Eds.; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2019. [Google Scholar]
- Oppenheimer, M.; Glavovic, B.C.; Hinkel, J.; van de Wal, R.; Magnan, A.K.; Abd-Elgawad, A.; Cai, R.; Cifuentes-Jara, M.; DeConto, R.M.; Ghosh, T.; et al. Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., et al., Eds.; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2019. [Google Scholar]
- IPCC. AR4 Climate Change 2007: Synthesis Report; Pachauri, R.K., Reisinger, A., Eds.; Intergovernmental Panel on Climate Change: Geneva, Switzerlnad, 2007. [Google Scholar]
- Losada, M.A.; Baquerizo, A.; Ortega-Sanchez, M.; Avila, A. Coastal Evolution, Sea Level, and Assessment of Intrinsic Uncertainty. J. Coast. Res. 2011, 59, 218–228. [Google Scholar] [CrossRef]
- Masselink, G.; Hughes, M. An Introduction to Coastal Processes and Geomorphology; Routledge: London, UK, 2003; p. 354. [Google Scholar] [CrossRef]
- Cramer, W.; Guiot, J.; Fader, M.; Garrabou, J.; Gattuso, J.-P.; Iglesias, A.; Lange, M.A.; Lionello, P.; Llasat, M.C.; Paz, S.; et al. Climate change and interconnected risks to sustainable development in the Mediterranean. Nat. Clim. Change 2018, 8, 972–980. [Google Scholar] [CrossRef] [Green Version]
- Giorgi, F.; Lionello, P. Climate change projections for the Mediterranean region. Glob. Planet. Change 2008, 63, 90–104. [Google Scholar] [CrossRef]
- Giorgi, F. Climate change hot-spots. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Mentaschi, L.; Vousdoukas, M.I.; Pekel, J.-F.; Voukouvalas, E.; Feyen, L. Global long-term observations of coastal erosion and accretion. Sci. Rep. 2018, 8, 12876. [Google Scholar] [CrossRef] [Green Version]
- Luijendijk, A.; Hagenaars, G.; Ranasinghe, R.; Baart, F.; Donchyts, G.; Aarninkhof, S. The State of the World’s Beaches. Sci. Rep. 2018, 8, 6641. [Google Scholar] [CrossRef]
- Leon-Mateos, F.; Sartal, A.; Lopez-Manuel, L.; Quintas, M.A. Adapting our sea ports to the challenges of climate change: Development and validation of a Port Resilience Index. Mar. Policy 2021, 130, 104573. [Google Scholar] [CrossRef]
- Garcia-Alonso, L.; Moura, T.G.Z.; Roibas, D. The effect of weather conditions on port technical efficiency. Mar. Policy 2020, 113, 103816. [Google Scholar] [CrossRef]
- IMO. International Shipping Facts and Figures—Information Resources on Trade, Safety, Security, Environment, Maritime Knowledge Centre; International Maritime Organization: London, UK, 2012. [Google Scholar]
- UNCTAD. Review of Maritime Transport; United Nations Publication: Geneve, Switzerland, 2019. [Google Scholar]
- Adebisi, N.; Balogun, A.-L.; Min, T.H.; Tella, A. Advances in estimating Sea Level Rise: A review of tide gauge, satellite altimetry and spatial data science approaches. Ocean. Coast. Manag. 2021, 208, 105632. [Google Scholar] [CrossRef]
- Luque, P.; Gomez-Pujol, L.; Marcos, M.; Orfila, A. Coastal Flooding in the Balearic Islands During the Twenty-First Century Caused by Sea-Level Rise and Extreme Events. Front. Mar. Sci. 2021, 8, 676452. [Google Scholar] [CrossRef]
- Jorda, G.; Gomis, D. On the interpretation of the steric and mass components of sea level variability: The case of the Mediterranean basin. J. Geophys. Res. Oceans 2013, 118, 953–963. [Google Scholar] [CrossRef] [Green Version]
- Kopp, R.E.; Horton, R.M.; Little, C.M.; Mitrovica, J.X.; Oppenheimer, M.; Rasmussen, D.J.; Strauss, B.H.; Tebaldi, C. Probabilistic 21st and 22nd century sea-level projections at a global network of tide-gauge sites. Earth’s Future 2014, 2, 383–406. [Google Scholar] [CrossRef]
- PSMSL. Permanent Service for Mean Sea Level. Available online: https://psmsl.org/ (accessed on 2 June 2022).
- Church, J.A.; White, N.J. A 20th century acceleration in global sea-level rise. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Miller, L.; Douglas, B.C. Mass and volume contributions to twentieth-century global sea level rise. Nature 2004, 428, 406–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peltier, W.R. Chapter 4 Global glacial isostatic adjustment and modern instrumental records of relative sea level history. In International Geophysics; Douglas, B., Kearney, M.S., Leatherman, S.P., Eds.; Academic Press: Cambridge, MA, USA, 2001; Volume 75, pp. 65–95. [Google Scholar]
- Cazenave, A.; Cabanes, C.; Dominh, K.; Gennero, M.C.; Le Provost, C. Present-Day Sea Level Change: Observations and Causes. Space Sci. Rev. 2003, 108, 131–144. [Google Scholar] [CrossRef]
- Church, J.A.; White, N.J. Sea-Level Rise from the Late 19th to the Early 21st Century. Surv. Geophys. 2011, 32, 585–602. [Google Scholar] [CrossRef] [Green Version]
- Hay, C.C.; Morrow, E.; Kopp, R.E.; Mitrovica, J.X. Probabilistic reanalysis of twentieth-century sea-level rise. Nature 2015, 517, 481–484. [Google Scholar] [CrossRef]
- Tsimplis, M.N.; Calafat, F.M.; Marcos, M.; Jorda, G.; Gomis, D.; Fenoglio-Marc, L.; Struglia, M.V.; Josey, S.A.; Chambers, D.P. The effect of the NAO on sea level and on mass changes in the Mediterranean Sea. J. Geophys. Res. Oceans 2013, 118, 944–952. [Google Scholar] [CrossRef] [Green Version]
- Antonioli, F.; De Falco, G.; Lo Presti, V.; Moretti, L.; Scardino, G.; Anzidei, M.; Bonaldo, D.; Carniel, S.; Leoni, G.; Furlani, S.; et al. Relative Sea-Level Rise and Potential Submersion Risk for 2100 on 16 Coastal Plains of the Mediterranean Sea. Water 2020, 12, 2173. [Google Scholar] [CrossRef]
- Vacchi, M.; Joyse, K.M.; Kopp, R.E.; Marriner, N.; Kaniewski, D.; Rovere, A. Climate pacing of millennial sea-level change variability in the central and western Mediterranean. Nat. Commun. 2021, 12, 4013. [Google Scholar] [CrossRef]
- Marcos, M.; Puyol, B.; Amores, A.; Pérez Gómez, B.; Fraile, M.Á.; Talke, S.A. Historical tide gauge sea-level observations in Alicante and Santander (Spain) since the 19th century. Geosci. Data J. 2021, 8, 144–153. [Google Scholar] [CrossRef]
- Marcos, M.; Puyol, B.; Wöppelmann, G.; Herrero, C.; García-Fernández, M.J. The long sea level record at Cadiz (southern Spain) from 1880 to 2009. J. Geophys. Res. Oceans 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Vargas-Yáñez, M.; Tel, E.; Moya, F.; Ballesteros, E.; Garcia-Martinez, M. Long-Term Changes, Inter-Annual, and Monthly Variability of Sea Level at the Coasts of the Spanish Mediterranean and the Gulf of Cádiz. Geosciences 2021, 11, 350. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; Cambridge University Press: New York, NY, USA, 2013; p. 1535. [Google Scholar]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University: Cambridge, UK; Cambridge University: New York, NY, USA, 2021. [Google Scholar]
- Rahmstorf, S. A Semi-Empirical Approach to Projecting Future Sea-Level Rise. Science 2007, 315, 368–370. [Google Scholar] [CrossRef] [Green Version]
- Horton, B.P.; Khan, N.S.; Cahill, N.; Lee, J.S.H.; Shaw, T.A.; Garner, A.J.; Kemp, A.C.; Engelhart, S.E.; Rahmstorf, S. Estimating global mean sea-level rise and its uncertainties by 2100 and 2300 from an expert survey. Npj Clim. Atmos. Sci. 2020, 3, 18. [Google Scholar] [CrossRef]
- Kopp, R.E.; Kemp, A.C.; Bittermann, K.; Horton, B.P.; Donnelly, J.P.; Gehrels, W.R.; Hay, C.C.; Mitrovica, J.X.; Morrow, E.D.; Rahmstorf, S. Temperature-driven global sea-level variability in the Common Era. Proc. Natl. Acad. Sci. USA 2016, 113, E1434–E1441. [Google Scholar] [CrossRef] [Green Version]
- Mengel, M.; Levermann, A.; Frieler, K.; Robinson, A.; Marzeion, B.; Winkelmann, R. Future sea level rise constrained by observations and long-term commitment. Proc. Natl. Acad. Sci. USA 2016, 113, 2597–2602. [Google Scholar] [CrossRef] [Green Version]
- Bamber, J.L.; Oppenheimer, M.; Kopp, R.E.; Aspinall, W.P.; Cooke, R.M. Ice sheet contributions to future sea-level rise from structured expert judgment. Proc. Natl. Acad. Sci. USA 2019, 116, 11195–11200. [Google Scholar] [CrossRef] [Green Version]
- Ibàñez, C.; Canicio, A.; Day, J.W.; Curcó, A. Morphologic development, relative sea level rise and sustainable management of water and sediment in the Ebre Delta, Spain. J. Coast. Conserv. 1997, 3, 191. [Google Scholar] [CrossRef]
- Jiménez, J.; Sánchez-Arcilla, A.; Valdemoro, H.I.; Gracia, V.; Nieto, F. Processes reshaping the Ebro delta. Mar. Geol. 1997, 144, 59–79. [Google Scholar] [CrossRef]
- Vazquez Pinillos, F.J.; Marchena Gomez, M.J. TERRITORIAL IMPACTS OF SEA-LEVEL RISE IN MARSH ENVIRONMENTS. THE CASE OF THE BAY OF CADIZ, SPAIN. Cuad. De Investig. Geogr. 2021, 47, 523–543. [Google Scholar] [CrossRef]
- Chust, G.; Ángel, B.; Liria, P.; Galparsoro, I.; Marcos, M.; Caballero, A.; Castro, R. Human impacts overwhelm the effects of sea-level rise on Basque coastal habitats (N Spain) between 1954 and 2004. Estuar. Coast. Shelf Sci. 2009, 84, 453–462. [Google Scholar] [CrossRef]
- Marcos, M.; Gomis, D.; Monserrat, S.; Álvarez-Fanjul, E.; Pérez, B.; García-Lafuente, J. Consistency of long sea-level time series in the northern coast of Spain. J. Geophys. Res. Oceans 2005, 110. [Google Scholar] [CrossRef]
- Leorri, E.; Horton, B.P.; Cearreta, A. Development of a foraminifera-based transfer function in the Basque marshes, N. Spain: Implications for sea-level studies in the Bay of Biscay. Mar. Geol. 2008, 251, 60–74. [Google Scholar] [CrossRef] [Green Version]
- Vousdoukas, M.I.; Mentaschi, L.; Voukouvalas, E.; Verlaan, M.; Feyen, L. Extreme sea levels on the rise along Europe’s coasts. Earths Future 2017, 5, 304–323. [Google Scholar] [CrossRef]
- Chust, G.; Caballero, A.; Marcos, M.; Liria, P.; Hernandez, C.; Borja, A. Regional scenarios of sea level rise and impacts on Basque (Bay of Biscay) coastal habitats, throughout the 21st century. Estuar. Coast. Shelf Sci. 2010, 87, 113–124. [Google Scholar] [CrossRef] [Green Version]
- Vitousek, S.; Barnard, P.L.; Limber, P.; Erikson, L.; Cole, B. A model integrating longshore and cross-shore processes for predicting long-term shoreline response to climate change. J. Geophys. Res. Earth Surf. 2017, 122, 782–806. [Google Scholar] [CrossRef]
- Hinkel, J.; Lincke, D.; Vafeidis, A.T.; Perrette, M.; Nicholls, R.J.; Tol, R.S.J.; Marzeion, B.; Fettweis, X.; Ionescu, C.; Levermann, A. Coastal flood damage and adaptation costs under 21st century sea-level rise. Proc. Natl. Acad. Sci. USA 2014, 111, 3292–3297. [Google Scholar] [CrossRef] [Green Version]
- Galassi, G.; Spada, G. Sea-level rise in the Mediterranean Sea by 2050: Roles of terrestrial ice melt, steric effects and glacial isostatic adjustment. Glob. Planet. Change 2014, 123, 55–66. [Google Scholar] [CrossRef]
- Gil-Guirado, S.; Perez-Morales, A.; Pino, D.; Pena, J.C.; Martinez, F.L. Flood impact on the Spanish Mediterranean coast since 1960 based on the prevailing synoptic patterns. Sci. Total Environ. 2021, 807, 150777. [Google Scholar] [CrossRef]
- Pérez-Morales, A.; Gil-Guirado, S.; Olcina-Cantos, J. Housing bubbles and the increase of flood exposure. Failures in flood risk management on the Spanish south-eastern coast (1975–2013). J. Flood Risk Manag. 2018, 11, S302–S313. [Google Scholar] [CrossRef]
- Ribas, A.; Olcina, J.; Saurí, D. More exposed but also more vulnerable? Climate change, high intensity precipitation events and flooding in Mediterranean Spain. Disaster Prev. Manag. 2020, 29, 229–248. [Google Scholar] [CrossRef]
- Vinet, F.; Bigot, V.; Petrucci, O.; Papagiannaki, K.; Llasat, M.C.; Kotroni, V.; Boissier, L.; Aceto, L.; Grimalt, M.; Llasat-Botija, M.; et al. Mapping Flood-Related Mortality in the Mediterranean Basin. Results from the MEFF v2.0 DB. Water 2019, 11, 2196. [Google Scholar] [CrossRef] [Green Version]
- Sayol, J.M.; Marcos, M. Assessing Flood Risk Under Sea Level Rise and Extreme Sea Levels Scenarios: Application to the Ebro Delta (Spain). J. Geophys. Res. Oceans 2018, 123, 794–811. [Google Scholar] [CrossRef] [Green Version]
- Grases, A.; Gracia, V.; Garcia-Leon, M.; Lin-Ye, J.; Pau Sierra, J. Coastal Flooding and Erosion under a Changing Climate: Implications at a Low-Lying Coast (Ebro Delta). Water 2020, 12, 346. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Doriga, U.; Jimenez, J.A. Impact of Relative Sea-Level Rise on Low-Lying Coastal Areas of Catalonia, NW Mediterranean, Spain. Water 2020, 12, 3252. [Google Scholar] [CrossRef]
- Ballesteros, C.; Jimenez, J.A.; Viavattene, C. A multi-component flood risk assessment in the Maresme coast (NW Mediterranean). Nat. Hazards 2018, 90, 265–292. [Google Scholar] [CrossRef] [Green Version]
- Hernandez-Mora, M.; Meseguer-Ruiz, O.; Karas, C.; Lambert, F. Estimating coastal flood hazard of Tossa de Mar, Spain: A combined model—Data interviews approach. Nat. Hazards 2021, 109, 2153–2171. [Google Scholar] [CrossRef]
- Nicholls, R.; Herweijer, C.; Ranger, N.; Hallegatte, S.; Corfee-Morlot, J.; Chateau, J.; Muir-Wood, R. Ranking Port Cities with High Exposure and Vulnerability to Climate Extremes: Exposure Estimates; OECD Environment Working Papers; OECD Publishing: Paris, France, 2008. [Google Scholar] [CrossRef]
- Camus, P.; Tomás, A.; Diaz-Hernandez, G.; Rodriguez, B.; Izaguirre, C.; Losada, I.J. Probabilistic assessment of port operation downtimes under climate change. Coast. Eng. 2019, 147, 12–24. [Google Scholar] [CrossRef]
- Chhetri, P.K.; Corcoran, J.; Gekara, V.O.; Maddox, C.G.; McEvoy, D. Seaport resilience to climate change: Mapping vulnerability to sea-level rise. J. Spat. Sci. 2015, 60, 65–78. [Google Scholar] [CrossRef]
- Nursey-Bray, M.; Blackwell, B.; Brooks, B.; Campbell, M.L.; Goldsworthy, L.; Pateman, H.; Rodrigues, I.; Roome, M.; Wright, J.T.; Francis, J.; et al. Vulnerabilities and adaptation of ports to climate change. J. Environ. Plan. Manag. 2013, 56, 1021–1045. [Google Scholar] [CrossRef]
- Hanson, S.; Nicholls, R.; Ranger, N.; Hallegatte, S.; Corfee-Morlot, J.; Herweijer, C.; Chateau, J. A global ranking of port cities with high exposure to climate extremes. Clim. Change 2011, 104, 89–111. [Google Scholar] [CrossRef] [Green Version]
- Haveman, J.; Shatz, H. Protecting the Nation’s Seaports: Balancing Security and Cost @BULLET @BULLET @BULLET; Public Policy Institute of California: San Francisco, CA, USA, 2006. [Google Scholar]
- Messner, S.F.; Moran, L.; Reub, G.; Campbell, J. Climate change and sea level rise impacts at ports and a consistent methodology to evaluate vulnerability and risk. In Proceedings of the Name of the Conference CP 2013, Uppsala, Sweden, 16–20 September 2013. [Google Scholar]
- McEvoy, D.; Mullett, J. Enhancing the Resilience of Seaports to a Changing Climate: Research Synthesis and Implications for Policy and Practice; National Climate Change Adaptation Research Facility (NCCARF): Gold Coast, Australia, 2013; Volume 11. [Google Scholar]
- Takagi, H.; Esteban, M.; Shibayama, T. Proposed methodology for evaluating the potential failure risk for existing caisson-breakwaters in a storm event using a level III reliability-based approach. In Coastal Engineering 2008; World Scientific: Singapore, 2009; pp. 3655–3667. [Google Scholar]
- Takagi, H.; Kashihara, H.; Esteban, M.; Shibayama, T. Assessment of future stability of breakwaters under climate change. Coast. Eng. J. 2011, 53, 21. [Google Scholar] [CrossRef]
- Takagi, H.; Shibayama, T.; Esteban, M. An Expansion of the Reliability Design Method for Caisson-Type Breakwaters towards Deep Water using the Fourth Order Approximation of Standing Waves. In Proceedings of the Asian and Pacific Coasts 2007, Nanjing, China, 21–24 September 2007. [Google Scholar]
- Mase, H.; Tsujio, D.; Yasuda, T.; Mori, N. Stability analysis of composite breakwater with wave-dissipating blocks considering increase in sea levels, surges and waves due to climate change. Ocean. Eng. 2013, 71, 58–65. [Google Scholar] [CrossRef] [Green Version]
- Becker, A.; Inoue, S.; Fischer, M.; Schwegler, B. Climate change impacts on international seaports: Knowledge, perceptions, and planning efforts among port administrators. Clim. Change 2012, 110, 5–29. [Google Scholar] [CrossRef]
- Becker, A.H.; Acciaro, M.; Asariotis, R.; Cabrera, E.; Cretegny, L.; Crist, P.; Esteban, M.; Mather, A.; Messner, S.; Naruse, S.; et al. A note on climate change adaptation for seaports: A challenge for global ports, a challenge for global society. Clim. Change 2013, 120, 683–695. [Google Scholar] [CrossRef] [Green Version]
- Mutombo, K.; Ölçer, A. Towards port infrastructure adaptation: A global port climate risk analysis. WMU J. Marit. Aff. 2017, 16, 161–173. [Google Scholar] [CrossRef] [Green Version]
- Prahl, B.F.; Boettle, M.; Costa, L.; Kropp, J.P.; Rybski, D. Damage and protection cost curves for coastal floods within the 600 largest European cities. Sci. Data 2018, 5, 180034. [Google Scholar] [CrossRef]
- Abadie, L.; Galarraga, I.; Markandya, A.; Sainz de Murieta, E. Risk measures and the distribution of damage curves for 600 European coastal cities. Environ. Res. Lett. 2019, 14, 064021. [Google Scholar] [CrossRef]
- Reckien, D.; Flacke, J.; Olazabal, M.; Heidrich, O. The Influence of Drivers and Barriers on Urban Adaptation and Mitigation Plans—An Empirical Analysis of European Cities. PLoS ONE 2015, 10, e0135597. [Google Scholar] [CrossRef] [PubMed]
- Christodoulou, A.; Christidis, P.; Demirel, H. Sea-level rise in ports: A wider focus on impacts. Marit. Econ. Logist. 2019, 21, 482–496. [Google Scholar] [CrossRef]
- Sanchez-Arcilla, A.; Pau Sierra, J.; Brown, S.; Casas-Prat, M.; Nicholls, R.J.; Lionello, P.; Conte, D. A review of potential physical impacts on harbours in the Mediterranean Sea under climate change. Reg. Environ. Change 2016, 16, 2471–2484. [Google Scholar] [CrossRef] [Green Version]
- Sierra, J.P.; Casas-Prat, M.; Virgili, M.; Moesso, C.; Sanchez-Arcilla, A. Impacts on wave-driven harbour agitation due to climate change in Catalan ports. Nat. Hazards Earth Syst. Sci. 2015, 15, 1695–1709. [Google Scholar] [CrossRef] [Green Version]
- Sierra, J.P.; Genius, A.; Lionello, P.; Mestres, M.; Mosso, C.; Marzo, L. Modelling the impact of climate change on harbour operability: The Barcelona port case study. Ocean. Eng. 2017, 141, 64–78. [Google Scholar] [CrossRef] [Green Version]
- Casas-Prat, M.; Sierra, J.P. Trend analysis of wave direction and associated impacts on the Catalan coast. Clim. Change 2012, 115, 667–691. [Google Scholar] [CrossRef] [Green Version]
- Casas-Prat, M.; Sierra, J.P. Trend analysis of wave storminess: Wave direction and its impact on harbour agitation. Nat. Hazards Earth Syst. Sci. 2010, 10, 2327–2340. [Google Scholar] [CrossRef] [Green Version]
- López, M.; Iglesias, G. Artificial neural networks applied to port operability assessment. Ocean Eng. 2015, 109, 298. [Google Scholar] [CrossRef]
- UNCTAD. Climate Change Impacts and Adaptation: A Challenge for Global Ports. Available online: https://unctad.org/system/files/official-document/dtltlb2011d2_en.pdf (accessed on 2 June 2022).
- Foti, E.; Musumeci, R.E.; Stagnitti, M. Coastal defence techniques and climate change: A review. Rend. Lincei. Sci. Fis. E Nat. 2020, 31, 123–138. [Google Scholar] [CrossRef]
- Tanik, A.; Tekten, D. Climate Change Adaptation Practices in Various Countries. In Proceedings of the Name of the Conference 2nd International Conference on Green Energy Technology (ICGET), Sapienza Univ Rome, Rome, Italy, 18–20 July 2017. [Google Scholar]
- Sánchez-Arcilla, A.; García-León, M.; Gracia, V.; Devoy, R.; Stanica, A.; Gault, J. Managing coastal environments under climate change: Pathways to adaptation. Sci. Total Environ. 2016, 572, 1336–1352. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Doriga, U.; Jimenez, J.A.; Bisaro, A.; Hinkel, J. Financing and implementation of adaptation measures to climate change along the Spanish coast. Sci. Total Environ. 2020, 712, 135685. [Google Scholar] [CrossRef] [PubMed]
- Maria Abadie, L.; Sainz de Murieta, E.; Galarraga, I. The Costs of Sea-Level Rise: Coastal Adaptation Investments vs. Inaction in Iberian Coastal Cities. Water 2020, 12, 1220. [Google Scholar] [CrossRef]
- Sierra, J.P.; Garcia-Leon, M.; Gracia, V.; Sanchez-Arcilla, A. Green measures for Mediterranean harbours under a changing climate. Proc. Inst. Civ. Eng. -Marit. Eng. 2017, 170, 55–66. [Google Scholar] [CrossRef] [Green Version]
- Velasco, M.; Russo, B.; Cabello, A.; Termes, M.; Sunyer, D.; Malgrat, P. Assessment of the effectiveness of structural and nonstructural measures to cope with global change impacts in Barcelona. J. Flood Risk Manag. 2018, 11, S55–S68. [Google Scholar] [CrossRef]
- Salvia, M.; Olazabal, M.; Fokaides, P.A.; Tardieu, L.; Simoes, S.G.; Geneletti, D.; Hurtado, S.D.G.; Viguie, V.; Spyridaki, N.-A.; Pietrapertosa, F.; et al. Climate mitigation in the Mediterranean Europe: An assessment of regional and city-level plans. J. Environ. Manag. 2021, 295, 113146. [Google Scholar] [CrossRef]
- Losada, I.J.; Toimil, A.; Muñoz, A.; Garcia-Fletcher, A.P.; Diaz-Simal, P. A planning strategy for the adaptation of coastal areas to climate change: The Spanish case. Ocean. Coast. Manag. 2019, 182, 104983. [Google Scholar] [CrossRef]
- Izaguirre, C.; Losada, I.J.; Camus, P.; González-Lamuño, P.; Stenek, V. Seaport climate change impact assessment using a multi-level methodology. Marit. Policy Manag. 2020, 47, 544–557. [Google Scholar] [CrossRef]
- Sauer, I.J.; Roca, E.; Villares, M. Integrating climate change adaptation in coastal governance of the Barcelona metropolitan area. Mitig. Adapt. Strateg. Glob. Change 2021, 26, 16. [Google Scholar] [CrossRef]
- Union, E. Ecclipse. Available online: https://ecclipse.eu/overview/ (accessed on 2 June 2022).
- Sanchez-Gomez, E.; Somot, S.; Josey, S.A.; Dubois, C.; Elguindi, N.; Deque, M. Evaluation of Mediterranean Sea water and heat budgets simulated by an ensemble of high resolution regional climate models. Clim. Dyn. 2011, 37, 2067–2086. [Google Scholar] [CrossRef] [Green Version]
- Toimil, A.; Losada, I.J.; Díaz-Simal, P.; Izaguirre, C.; Camus, P. Multi-sectoral, high-resolution assessment of climate change consequences of coastal flooding. Clim. Change 2017, 145, 431–444. [Google Scholar] [CrossRef]
Type of Study | Authors | Region | Main Conclusions | Methodology |
---|---|---|---|---|
Impacts of climate change on Spanish ports | Sánchez-Arcilla et al., 2016 [82] | Mediterranean | Overtopping and flooding are the main direct impacts of SLR. | Review of previous studies. |
Sierra et al., 2015, 2017 [83,84] | Catalan ports | Small ports will be affected by SLR because the relative increment of depth is high. | SWAN and Boussinesq models and linear wave theory. | |
Casas-Prat and Sierra, 2010, 2012 [85,86] | Directional changes will cause a mean increase of about 50% in harbor agitation. | Statistical and linear regression analysis and Boussinesq model. | ||
León-Mateos et al., 2021 [15] | A Coruña | Port Resilience Index to identify the areas in which improvement is necessary. | Identification of critical processes, risk scenarios and resilience indexes. Crossing of the datasets. | |
López et al., 2015 [87] | Ferrol | Implementation of ANNs, more efficient and less data needed than traditional methods. | Collection of the data from buoys, training and validation of the ANN. | |
Adaptation of Spanish ports | López-Dóriga et al., 2020 [92] | Spain | Investment in adaptation directly related to the regional GDP. Andalusia invests much more. | Data collection and correlation and statistical analysis. |
Abadie et al., 2020 [93] | Iberian Peninsula | Using median values can underestimate coastal risks. Invest in adaptation measures is needed. | Stochastic approach. Define SL cities percentiles and damage functions. | |
Sierra et a., 2017 [94] | Catalan ports | Seagrass meadows can attenuate 40% of waveheight. Higher density, higher attenuation. | SWAN and Boussinesq models. | |
Sánchez-Arcilla et al., 2016 [91] | Resilience is higher for energetic coasts. Sustainable practices are long-term practices. | Comparative analysis. | ||
Velasco et al., 2018 [95] | Barcelona | Nonstructural strategies are better than structural. Structural are more efficient, but more expensive. | 1D/2D coupled model (Infoworks ICM). | |
Adaptation and governance issues | Salvia et al., 2021 [96] | Mediterranean Europe | The west of Europe is more active in mitigation policies (stronger governance and regulation). | Data and plans review at regional level. Statistical analysis. |
Losada et al., 2019 [97] | Spain | Cooperation between stakeholders and policymakers, public and private sector, and at regional level is key. | Development of Spanish Strategy for Coastal Adaptation. | |
Sauer et al., 2021 [99] | Barcelona | Lack of diversity, vertical coordination and communication in climate change adaptation. | Social Network Analysis, quantitative metrics and semi-structured surveys. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Portillo Juan, N.; Negro Valdecantos, V.; del Campo, J.M. Review of the Impacts of Climate Change on Ports and Harbours and Their Adaptation in Spain. Sustainability 2022, 14, 7507. https://doi.org/10.3390/su14127507
Portillo Juan N, Negro Valdecantos V, del Campo JM. Review of the Impacts of Climate Change on Ports and Harbours and Their Adaptation in Spain. Sustainability. 2022; 14(12):7507. https://doi.org/10.3390/su14127507
Chicago/Turabian StylePortillo Juan, Nerea, Vicente Negro Valdecantos, and Jose María del Campo. 2022. "Review of the Impacts of Climate Change on Ports and Harbours and Their Adaptation in Spain" Sustainability 14, no. 12: 7507. https://doi.org/10.3390/su14127507